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ABSTRACT

We report the statistical properties of stars, brown dwarfs and multiple systems obtained

from the largest hydrodynamical simulation of star cluster formation to date that resolves

masses down to the opacity limit for fragmentation (a few Jupiter masses). The simulation is

essentially identical to that of Bate, Bonnell & Bromm except that the initial molecular cloud

is larger and more massive. It produces more than 1250 stars and brown dwarfs, providing

unprecedented statistical information that can be compared with observational surveys. The

calculation uses sink particles to model the stars and brown dwarfs. Part of the calculation is

rerun with smaller sink particle accretion radii and gravitational softening to investigate the

effect of these approximations on the results.

We find that hydrodynamical/sink particle simulations can reproduce many of the observed

stellar properties very well. Multiplicity as a function of the primary mass, the frequency of

very low mass (VLM) binaries, general trends for the separation and mass ratio distributions of

binaries and the relative orbital orientations of triples systems are all in reasonable agreement

with observations. We also examine the radial variations of binarity, velocity dispersion and

mass function in the resulting stellar cluster and the distributions of disc truncation radii due

to dynamical interactions. For VLM binaries, because their separations are typically close,

we find that their frequency is sensitive to the sink particle accretion radii and gravitational

softening used in the calculations. Using small accretion radii and gravitational softening

results in a frequency of VLM binaries similar to that expected from observational surveys

(≈20 per cent). We also find that VLM binaries evolve from wide, unequal-mass systems

towards close equal-mass systems as they form. The two main deficiencies of the calculations

are that they overproduce brown dwarfs relative to stars and that there are too few unequal-

mass binaries with K- and G-dwarf primaries. The former of these is likely due to the absence

of radiative feedback and/or magnetic fields.

Key words: binaries: general – stars: formation – stars: kinematics – stars: low-mass, brown

dwarfs – stars: luminosity function, mass function – ISM: clouds.

1 IN T RO D U C T I O N

Understanding the origin of the statistical properties of stellar sys-

tems is the fundamental goal of a complete theory of star formation.

In terms of their impact on galaxy formation and evolution, the most

important statistical properties are probably the stellar initial mass

function (IMF) and the star formation rate and efficiency. However,

for understanding the formation and evolution of stellar clusters,

stellar systems themselves, protoplanetary discs and planetary sys-

tems, many more statistical properties are important. Furthermore,

there are currently many models that have been proposed for the

⋆E-mail: mbate@astro.ex.ac.uk

origin of the IMF (see the recent review of Bonnell, Larson &

Zinnecker 2007 or the introduction of Bate & Bonnell 2005, here-

after BB2005). Many of these are able to explain qualitatively the

observed form of the IMF, but most of these do not predict other

statistical properties. A complete model must be able to explain the

origin of all the statistical properties of stellar systems, and how

these depend on variations in environment and initial conditions.

Along with the IMF and star formation rate and efficiency, these

other statistical properties include the structure of stellar clusters

and stellar velocity dispersions, the properties of multiple stellar

systems, jets, protoplanetary discs, and the rotation rates and mag-

netic fields of stars. In particular, when considering binary, triple

and higher-order multiple stellar systems, there are many statistical

properties that require understanding such as their frequencies, their
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Stellar and multiple star properties from simulations 591

mass ratios, their orbital separations and eccentricities, relations be-

tween orbits and mass ratios in hierarchical systems, and relative

stellar rotations.

To investigate the origin of a wide range of statistical proper-

ties of stars directly through hydrodynamical calculations is dif-

ficult because it is necessary to produce a large number of ob-

jects (to get statistically significant results) and to use high reso-

lution (to model low-mass objects such as brown dwarfs, multiple

systems and circumstellar discs). One approach is to perform a

large number of high-resolution calculations of the collapse of iso-

lated small molecular cloud cores (e.g. Delgado-Donate, Clarke

& Bate 2004; Delgado-Donate et al. 2004; Goodwin, Whitworth

& Ward-Thompson 2004a,b,c, 2006). Such calculations have been

able to qualitatively match some of the observed statistical proper-

ties of stellar systems. For example, Delgado-Donate et al. (2004)

found that multiplicity is an increasing function of primary mass

(though they obtained a steeper function than is observed).

Goodwin et al. (2004c) found that star formation in small cores

might be a good explanation for the somewhat unusual stellar mass

function in Taurus (namely the relatively high proportion of stars

with masses ≈1 M⊙). However, such calculations are not applica-

ble to denser star-forming regions since they neglect interactions

between cores and protostellar systems. Furthermore, they use an

arbitrary population of dense cores for their initial conditions, which

may or may not be a good representation of real dense cores.

Over the past few years, we have performed large-scale hy-

drodynamical calculations of the collapse and fragmentation of

turbulent molecular clouds to investigate the origins of stellar prop-

erties (Bate, Bonnell & Bromm 2002a,b, 2003, hereafter BBB2003;

BB2005; Bate 2005, hereafter B2005). In these large-scale calcula-

tions, dense cores are formed self-consistently from hydrodynami-

cal flows on larger scales, and interactions between dense cores and

protostellar systems occur naturally. These calculations have dif-

fered from most other large-scale hydrodynamical star formation

calculations in that they modelled clouds that were large enough

to produce dozens of stars and yet simultaneously they resolved

down to and beyond the opacity limit for fragmentation. Thus, they

resolved the entire mass function, capturing the formation of all

stars and brown dwarfs. They also allowed discs with sizes down to

≈10 au and binaries with separations of a few astronomical units to

be resolved. Earlier similar large-scale hydrodynamical calculations

(Klessen, Burkert & Bate 1998; Klessen & Burkert 2000; Bonnell

et al. 2001; Klessen 2001; Klessen & Burkert 2001; Bonnell &

Bate 2002; Bonnell, Bate & Vine 2003) formed large numbers of

stars, but were unable to resolve brown dwarfs, most binaries and

discs. All these calculations used smoothed particle hydrodynamics

(SPH) with sink particles to model the star-forming clouds. Most

recently, grid-based adaptive mesh refinement (AMR) calculations

have also begun to compete, forming up to a few dozen objects

and resolving discs and binaries (Li et al. 2004; Offner, Klein &

McKee 2008). However, regardless of whether SPH or AMR has

been used, even the largest high-resolution large-scale calculations

published to date have only formed a few dozen stars and brown

dwarfs, making it difficult to compare the results with observations

in any detail.

In this paper, we report the results from two large-scale hydrody-

namical calculations of the collapse and fragmentation of turbulent

molecular clouds. The calculations follow the evolution of 500 M⊙
clouds (similar to the calculation presented by BBB2003, but an

order of magnitude more massive) to form hundreds of stars and

brown dwarfs. Two versions of the same calculation are performed,

one with sink particles with radii of 5 au (as in BBB2003) and a

rerun version that has sink particle radii of only 0.5 au, but which

is not followed as far. The large accretion radii calculation forms

1254 stars and brown dwarfs in 1.5 initial cloud free-fall times.

This large number of objects allows us, for the first time, to make

a meaningful comparison of the statistical properties of stars and

binary and multiple systems with observations.

This paper is structured as follows. In Section 2, we briefly de-

scribe the numerical method and the initial conditions for the simu-

lations. In Section 3, we present our results and compare them with

the results of observational surveys. Our conclusions are given in

Section 4.

2 C O M P U TAT I O NA L M E T H O D

The calculations presented here were performed using a three-

dimensional SPH code. The SPH code is based on a version orig-

inally developed by Benz (Benz 1990; Benz et al. 1990). The

smoothing lengths of the particles are variable in time and space,

subject to the constraint that the number of neighbours for each par-

ticle must remain approximately constant at Nneigh = 50. The SPH

equations are integrated using a second-order leapfrog integrator

with individual time-steps for each particle. Gravitational forces

between particles and a particle’s nearest neighbours are calculated

using a binary tree. We use the standard form of artificial viscosity

(Monaghan & Gingold 1983; Monaghan 1992) with strength pa-

rameters αv = 1 and βv = 2. Further details can be found in Bate,

Bonnell & Price (1995). The code has been parallelized by M. Bate

using OPENMP.

2.1 Equation of state

To model the thermal behaviour of the gas without performing

radiative transfer, we use a barotropic equation of state for the

thermal pressure of the gas p = Kρη, where K is a measure of the

entropy of the gas. The value of the effective polytropic exponent η

varies with density as

η =

{

1, ρ ≤ ρcrit,

7/5, ρ > ρcrit.
(1)

We take the mean molecular weight of the gas to be μ = 2.46. The

value of K is defined such that when the gas is isothermal K =

c2
s , with the sound speed cs = 1.84 × 104 cm s−1 at 10 K, and the

pressure is continuous when the value of η changes.

The value of the critical density above which the gas becomes

non-isothermal is set to ρcrit = 10−13 g cm−3. This equation of state

has been chosen to match the relationship between temperature and

density closely during the spherically symmetric collapse of molec-

ular cloud cores with solar metallicity as calculated with frequency-

dependent radiative transfer (e.g. Masunaga & Inutsuka 2000). The

equation of state is discussed further by BBB2003.

The heating of the molecular gas that begins at the critical density

inhibits fragmentation at higher densities. This effect is known as

the opacity limit for fragmentation (Low & Lynden-Bell 1976; Rees

1976; Silk 1977a,b; Boyd & Whitworth 2005). It results in the for-

mation of distinct pressure-supported fragments within collapsing

gas because the temperature increases quickly enough with den-

sity that the Jeans mass increases, and the high-density region that

was collapsing becomes Jeans stable. These regions stop collapsing

and can only contract as they accrete mass. The value of the initial

mass of a fragment presumably also gives the minimum mass for

a brown dwarf, since any subsequent accretion will only increase a

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 392, 590–616
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592 M. R. Bate

fragment’s mass. This minimum mass depends on the value of the

critical density and is approximately equal to the Jeans mass at that

density and temperature. The lowest mass object produced by the

calculations was ≈4 Jupiter masses (MJ).

2.2 Sink particles

As the pressure-supported fragments accrete, their central den-

sity increases, and it becomes computationally impractical to

follow their internal evolution because of the short dynamical time-

scales involved. Therefore, when the central density of a pressure-

supported fragment exceeds ρs = 1000ρcrit, we insert a sink particle

into the calculation (Bate et al. 1995). This value of ρs is a factor

of 10 higher than in earlier calculations (e.g. BBB2003), which al-

lows more time for an object to merge or be disrupted before being

replaced by a sink particle.

In the main calculation discussed in this paper, a sink particle is

formed by replacing the SPH gas particles contained within racc =

5 au of the densest gas particle in a pressure-supported fragment

by a point mass with the same mass and momentum. Any gas that

later falls within this radius is accreted by the point mass if it is

bound, and its specific angular momentum is less than that required

to form a circular orbit at radius racc from the sink particle. Thus,

gaseous discs around sink particles can only be resolved if they have

radii �10 au. Sink particles interact with the gas only via gravity

and accretion. The angular momentum accreted by a sink particle

is recorded but plays no further role in the calculation.

Since all sink particles are created from pressure-supported frag-

ments, their initial masses are several MJ, as given by the opac-

ity limit for fragmentation. Subsequently, they may accrete large

amounts of material to become higher-mass brown dwarfs (�75MJ)

or stars (�75MJ), but all the stars and brown dwarfs begin as these

low-mass pressure-supported fragments.

In the main calculation, the gravitational acceleration between

two sink particles is Newtonian for r ≥ 4 au, but is softened within

this radius using spline softening (Benz 1990). The maximum accel-

eration occurs at a distance of ≈1 au; therefore, this is the minimum

separation that a binary can have even if, in reality, the binary’s orbit

would have been hardened.

Part of the main calculation was rerun from just before the first

star formed with sink particle accretion radii of racc = 0.5 au and with

no gravitational softening between sink particles. This was done to

investigate the dependence of the results on these approximations.

This partial rerun (henceforth referred to as the rerun calculation)

could not be followed as long as the main calculation due to the

smaller time-steps required.

Sink particles were permitted to merge in either calculation if

they passed within 0.02 au of each other (i.e. ≈4 R⊙). This radius

was chosen because recently formed protostars are thought to have

relatively large radii (e.g. Larson 1969). Again, this differs from

previous similar calculations. In the main calculation, 23 mergers

occurred and in the rerun calculation, 20 mergers occurred (in a

shorter period of time).

The benefits and potential problems associated with introducing

sink particles are discussed in more detail in BBB2003 and will be

further examined in this paper.

2.2.1 Identification of multiple stellar systems

With the calculations presented in this paper producing many hun-

dreds of stars and brown dwarfs, it is important to automate the

analysis as much as possible. Much of this is straightforward. How-

ever, in order to analyse binaries and multiple stellar systems, we

first need to identify them. This is done as follows.

At the end of each calculation, we essentially construct a structure

‘tree’. We begin with every star or brown dwarf (sink particle) being

a ‘node’. We then loop over all pairs of nodes calculating the closest

pair of ‘nodes’ that are gravitationally bound to each other (i.e. the

sum of their relative gravitational and kinetic energies is negative).

This pair of ‘nodes’ then becomes a new node and the original

nodes are removed. For example if the two nodes are single stars

then these nodes are replaced by a new node containing a binary

that is located at the binary’s centre of mass and has the binary’s

mass and centre-of-mass velocity. If one node is a binary and the

other is a single star, the new node contains a triple system. This

process is then repeated until no new nodes are formed. The result

is a structure tree that contains single objects (e.g. some that might

have been ejected), binaries or multiples that are not bound to any

other node, and some nodes which may contain clusters of dozens

or hundreds of stars and brown dwarfs, many of which may also be

binaries or multiples within these clusters.

The observant reader may note later in the paper that there are a

few binaries that have separations of several thousand astronomical

units. These have been checked manually. They are wide binaries in

the periphery of the cluster. They are composed of ejected objects

that happen to be gravitationally bound to one another due to their

similar ejection velocities.

2.3 Initial conditions

The initial conditions are essentially identical to the calculation of

Bate et al. (2002a,b) and BBB2003, except that the cloud has 10

times the mass and a larger radius so as to give the same initial

density, and a larger Mach number so as to balance the turbulent

and gravitational energies initially. A 500 M⊙ molecular cloud was

set up as a uniform density sphere. The cloud’s radius was set to

0.404 pc (83 300 au). At the initial temperature of 10 K, the mean

thermal Jeans mass is 1 M⊙ (i.e. the cloud contains 500 thermal

Jeans masses).

Although the cloud was uniform in density, we imposed an initial

supersonic ‘turbulent’ velocity field in the same manner as Ostriker,

Stone & Gammie (2001) and BBB2003. We generated a divergence-

free random Gaussian velocity field with a power spectrum P(k) ∝

k−4, where k is the wavenumber. In three dimensions, this results in

a velocity dispersion that varies with distance, λ, as σ (λ) ∝ λ1/2, in

agreement with the observed Larson scaling relations for molecular

clouds (Larson 1981). The velocity field was generated on a 1283

uniform grid and the velocities of the particles were interpolated

from the grid. As in BBB2003, the velocity field is normalized so

that the kinetic energy of the turbulence equals the magnitude of

the gravitational potential energy of the cloud. Thus, the initial rms

Mach number of the turbulence wasM = 13.7. This is higher than

that in BBB2003 (which wasM = 6.4).

The initial free-fall time of the cloud was tff = 6.0 × 1012 s or

1.90 × 105 yr (the same as in BBB2003).

2.4 Resolution

The local Jeans mass must be resolved throughout the calculations

to model fragmentation correctly (Bate & Burkert 1997; Truelove

et al. 1997; Whitworth 1998; Boss et al. 2000; Hubber, Goodwin &

Whitworth 2006). This requires �1.5 Nneigh SPH particles per Jeans

mass; Nneigh is insufficient (BBB2003). The minimum Jeans mass

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 392, 590–616
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Stellar and multiple star properties from simulations 593

occurs at the maximum density during the isothermal phase of the

collapse, ρcrit = 10−13 g cm−3, and is ≈0.0011 M⊙ (1.1 MJ). Thus,

we used 3.5 × 107 particles to model the 500-M⊙ cloud.

The main calculation required approximately 100 000 CPU hours

on a 1.65 GHz IBM p570 compute node of the United Kingdom

Astrophysical Fluids Facility (UKAFF), while the rerun calculation

took approximately half as long.

3 R ESULTS

The main calculation is the largest simulation of star cluster forma-

tion to date in which collapsing gas is resolved down to the opacity

limit for fragmentation. The simulation is similar to that presented

by BBB2003, but is of a more massive cloud. The main purpose

of performing the simulation was simply to provide much more

accurate statistical information. BBB2003 only formed 50 stars and

brown dwarfs, whereas the main calculation here forms 1254 stars

and brown dwarfs in 1.50tff (285 350 yr), and even the rerun calcula-

tion that uses smaller accretion radii and no gravitational softening

produces 258 objects in 1.038tff (197 460 yr). See Table 1 for a

summary of the statistics, including the numbers of stars and brown

dwarfs produced by the end of the two calculations, the total mass

that has been converted to stars and brown dwarfs and the mean

stellar mass.

In BBB2003, although binaries and higher-order multiple sys-

tems were produced by the simulation, with such small numbers of

objects little could be said about their statistical properties. Even

adding together the results of the three simulations presented by

BBB2003, BB2005 and B2005 (which had different initial condi-

tions or thermal physics), provides 22 binary systems, 15 of which

are components of triple and/or quadruple systems. By contrast,

the new calculations presented here provide a wealth of binary and

high-order multiple systems. The main calculation produced 90 bi-

nary, 23 triple and 25 quadruple systems, including 38 very low

mass (VLM) multiples in which all components are VLM (masses

less than 0.1 M⊙). Note that throughout the rest of this paper we

will usually refer to VLM objects rather than brown dwarfs in or-

der to allow better comparison to be made with the observational

surveys that often combine studies of VLM stars and high-mass

brown dwarfs in order to increase the sample sizes. At times, we

will also make a distinction between VLM objects and low-mass

brown dwarfs. The latter are the subset of VLM objects whose

masses are less than 0.03 M⊙ (30 Jupiter masses). The rerun cal-

culation produced 17 binary, six triple and 17 quadruple systems

including 13 VLM multiples. Thus, we have the ability not just

to examine the frequencies of binary stars and VLM objects, but

Table 1. The parameters and overall statistical results for the BBB2003 calculation and the two calculations presented here. The initial conditions were similar

except that the two calculations presented here are of more massive, larger clouds than that presented by BBB2003. In particular, the initial densities and mean

thermal Jeans masses were identical. In each case, the magnitudes of the initial turbulent velocity fields were scaled so that the kinetic energy equalled the

magnitude of the gravitational potential energy. The calculations were run for different numbers of initial cloud free-fall times. Brown dwarfs are defined as

having final masses less than 0.075 M⊙. The numbers of stars (brown dwarfs) are lower (upper) limits because some of the brown dwarfs were still accreting

when the calculations were stopped. The only difference between the main and rerun calculations presented here are in the accretion radii and gravitational

softening of the sink particles, and the fact that the evolution of the rerun calculation could not be followed as long due to computational limitations.

Calculation Initial gas Initial Jeans Mach Accretion Gravity End No. stars No. brown Mass of stars & Mean

mass radius mass number radii softening time formed dwarfs formed brown dwarfs Mass

M⊙ pc M⊙ au au tff M⊙ M⊙

BBB2003 50 0.188 1 6.4 5 4 1.40 ≥23 ≤27 5.9 0.12

Main 500 0.404 1 13.7 5 4 1.50 ≥459 ≤795 191 0.15

1.04 ≥102 ≤119 32.6 0.15

Rerun 500 0.404 1 13.7 0.5 0 1.04 ≥94 ≤164 32.0 0.12

binarity as a function of primary mass, and the separation and mass

ratio distributions.

The star formation process itself is similar to that seen in

BBB2003, BB2005 and B2005. Fig. 1 shows snapshots of column

density from the main calculation illustrating the global evolution.

The initial turbulent velocity field generates structures with those

that are strongly self-gravitating collapsing to form stellar groups

and clusters. The main difference from the earlier calculations is that

with such a large cloud at least five subclusters containing dozens

to hundreds of objects form (t ≈ 1.10–1.20tff), and then merge

together to form a single dense stellar cluster by the end of the

calculation. Such hierarchical buildup of a stellar cluster was previ-

ously highlighted in the lower resolution simulation of a 1000 M⊙
cloud performed by Bonnell et al. (2003). The evolution of the cloud

and the formation and merger of the subclusters are best viewed in

an animation. Animations of the main calculation can be down-

loaded from http://www.astro.ex.ac.uk/people/mbate/Cluster/ both

in the colour scheme of Fig. 1 and as a three-dimensional red-cyan

movie. Unfortunately, the resolved circumstellar discs and binary

systems are not visible on the scale of Fig. 1; however, with well

over 100 multiple systems, it is impossible to display these in a

paper. In Fig. 2, we display the global evolution of the rerun calcu-

lation. There are no substantial differences on large scales between

the two calculations, with the exception of the different pattern of

ejected objects visible at t = 1.00tff (cf. the two panels in Figs 1

and 2). Since the dynamics of individual stellar systems are chaotic,

even changing the sink particle parameters on very small scales

affects the outcomes of dynamical interactions. In the following

sections of the paper, we examine the statistical properties of the

stellar systems.

3.1 The initial mass function

The IMF produced by the end of the main calculation is shown in

Fig. 3 and is compared with the parametrizations of the observed

IMF given by Chabrier (2003), Kroupa (2001) and Salpeter (1955).

The IMFs obtained from BBB2003 and B2005 were, within the

statistical uncertainties, consistent with the observed IMF. However,

the IMF from the main calculation reported here is much more

accurately determined and is clearly not consistent with the observed

IMF. The computed IMF has a similar overall form to the observed

IMF, with a reasonable Salpeter-type slope at the high-mass end, a

flattening below a solar mass and an eventual turnover. However, it

significantly overproduces brown dwarfs. The calculation produces

459 stars and 795 brown dwarfs (masses <0.075 M⊙). Even taking

into account that 46 of the brown dwarfs are still accreting when

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 392, 590–616
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594 M. R. Bate

Figure 1. The global evolution of the main calculation. Shocks lead to the dissipation of the turbulent energy that initially supports the cloud, allowing parts

of the cloud to collapse. Star formation begins at t = 0.715tff in a collapsing dense core. By t = 1.20tff , the cloud has produced five main subclusters, and

by the end of the calculation four out of five of these subclusters have merged into a single large cluster. Each panel is 0.8 pc (165 000 au) across. Time is

given in units of the initial free-fall time, tff = 1.90 × 105 yr. The panels show the logarithm of column density, N, through the cloud, with the scale covering

−1.4 < log N < 1.0 with N measured in g cm−2.

the calculation is stopped and may eventually reach stellar masses,

the ratio of brown dwarfs to stars is at least 3:2, whereas recent

observations suggest that the IMF produces more stars than brown

dwarfs (Greissl et al. 2007; Luhman 2007; Andersen et al. 2008).

Andersen et al. (2008) find that the ratio of stars with masses 0.08–

1.0 M⊙ to brown dwarfs with masses 0.03–0.08 M⊙ is N(0.08–

1.0)/N(0.03–0.08) ≈ 5 ± 2. For the main calculation, this ratio

is 408/326 = 1.25. Although the IMF below 0.03 M⊙ is not yet

well constrained observationally, the number of objects seems to be

decreasing for lower masses. Thus, it is unlikely that the true ratio of

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 392, 590–616
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Stellar and multiple star properties from simulations 595

Figure 2. The global evolution of the rerun calculation with smaller sink particle accretion radii and no gravitational softening between sink particles. The

global evolution is very similar to the main calculation, but due to the chaotic nature of the dynamics on small scales, the detailed structure of the multiple

systems and the ejections differs. The calculation is only followed to just over one free-fall time because it is much more computationally expensive. Each

panel is 0.8 pc (165 000 au) across. Time is given in units of the initial free-fall time, tff = 1.90 × 105 yr. The panels show the logarithm of column density, N,

through the cloud, with the scale covering −1.4 < log N < 1.0 with N measured in g cm−2.

Figure 3. Histograms giving the IMF of the 1254 stars and brown dwarfs

that had been produced by the end of the main calculation. The single-

hashed region gives all objects, while the double-hashed region gives those

objects that have stopped accreting. Parametrizations of the observed IMF

by Salpeter (1955), Kroupa (2001) and Chabrier (2003) are given by the

magenta line, red broken power law and black curve, respectively. The nu-

merical IMF broadly follows the form of the observed IMF, with a Salpeter-

like slope above ∼0.5 M⊙ and a turnover at low masses. However, it clearly

overproduces brown dwarfs by a factor of ≈4.

brown dwarfs to stars exceeds 1:3. The main calculation, therefore,

overproduces brown dwarfs relative to the stars by a factor of ≈4

compared with the observed IMF.

3.1.1 The dependence of the IMF on numerical approximations

and missing physics

There are several potential causes of brown dwarf overproduc-

tion that may be divided into two categories: numerical effects

or neglected physical processes. Arguably, the main numerical ap-

proximation made in the calculations is that of the sink particles.

High-density gas is replaced by a sink particle whenever the maxi-

mum density exceeds 10−10 g cm−3, and the gas within a radius of

5 au is accreted on to the sink particle producing a gravitating point

mass containing a few Jupiter masses of material. These sink parti-

cles then interact with each other ballistically, which, for example,

might plausibly artificially enhance ejections and the production of

low-mass objects.

In order to investigate the effect of the sink particle approximation

on the results, we reran part of the main calculation with smaller

sink particles (accretion radii of 0.5 au) and without gravitational

softening between sink particles (they were allowed to merge if

they came within 4 R⊙ of each other.). This calculation was only

followed to 1.038tff due to its much more time consuming nature.

The small accretion radius calculation produced 258 stars and brown

dwarfs in the same time-period that the main calculation produced

221 objects. Because the calculations are chaotic, identical results

should not be expected. The main question to answer is whether or

not the results are statistically different.

In Figs 4 and 5, we compare the IMFs produced by the main

calculation and the smaller sink particle calculation at the same time.

The smaller sink particle calculation produces twice as many objects

with masses less than 10 Jupiter masses than the main calculation,

but overall the two IMFs are very similar. A Kolmogorov–Smirnov

(K–S) test run on the two distributions shows that they have a

13 per cent probability of being drawn from the same underlying

IMF (i.e. they are statistically indistinguishable). Removing objects

with less than 10 Jupiter masses from the K–S test results in a

38 per cent probability of the two distributions being drawn from

the same underlying IMF. We conclude that the variations in the

sink particle accretion radii and gravitational softening may have

an effect on the production of extremely low mass objects. However,

changes in the sink particle parameters do not significantly alter the

overall results and, thus, the use of sink particles is probably not

responsible for the significant overproduction of brown dwarfs.

It seems most likely that the overproduction of brown dwarfs is

related to the physical processes that are not included in the cal-

culations. Whitehouse & Bate (2006) showed that replacing the

barotropic equation of state by radiative transfer can lead to tem-

peratures up to an order of magnitude higher near young low-mass

protostars and, thus, potentially strongly inhibits fragmentation.

Krumholz (2006) made a similar argument analytically. Further-

more, in purely hydrodynamical/sink particles star cluster forma-

tion calculations, many of the brown dwarfs formed originate via

disc fragmentation (e.g. Bate et al. 2002a found that 3/4 of the

brown dwarfs originated from disc fragmentation). Rafikov (2005),

Matzner & Levin (2005), Kratter & Matzner (2006) and Whitworth

& Stamatellos (2006) have all pointed out that accurate treatments

of radiative transfer are likely to significantly decrease disc frag-

mentation. Along with the likely effect of radiative feedback on
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596 M. R. Bate

Figure 4. Histograms giving the IMF of the 221 stars and brown dwarfs at t = 1.038tff in the main calculation (left-hand panel), and the 258 objects formed

at the same time in the rerun calculation with smaller sink particle accretion radii and no gravitational softening between sink particles (right-hand panel). The

rerun calculation appears to produce a few more very low-mass brown dwarfs (masses less than 10 Jupiter masses), but even this difference is not statistically

significant (see Fig. 5), so we conclude that changing the sink particle parameters does not adversely affect the resulting IMF. Comparing the left-hand panel

with the IMF in Fig. 3 at the end of the main calculation, we find that much of the overproduction of brown dwarfs occurs late in the calculation (see also

Fig. 6).

Figure 5. The cumulative IMFs from the main calculation (solid line) and

the rerun calculation with small accretion radii (dot–dashed line) both at

1.038 tff (see Fig. 4 for differential graphs of the IMFs). The calculation

with the smaller accretion radii seems to produce more very low-mass brown

dwarfs with masses less than 10 Jupiter masses. However, even with this

apparent difference, a K–S test on the two distributions gives a 13 per cent

probability that the two IMFs were drawn from the same underlying distri-

bution (i.e. they are statistically indistinguishable). Thus, the results do not

seem to be adversely affected by the sink particle approximation.

fragmentation, we note that as the main calculation progresses, the

ratio of low- to high-mass objects increases. This can be seen in

Fig. 6 which plots the final mass of an object versus its time of

formation, as well as by comparing Fig. 3 with the left-hand panel

of Fig. 4 which show the IMFs from the main calculations at t =

1.50 and 1.038tff , respectively. Radiative feedback is likely to heat

the entire central cluster region later in the calculation, potentially

curtailing the formation of many of the late low-mass objects.

Another possibility is the effect of magnetic fields. Recently,

Price & Bate (2007) showed that stronger magnetic fields generally

inhibit disc formation and binary formation (see also Hennebelle &

Fromang 2008; Hennebelle & Teyssier 2008). Price & Bate (2008)

ran star cluster formation simulations similar to BBB2003, but with

magnetic fields. They found that the extra pressure support provided

by magnetic fields generally decreased the rate of star formation and

Figure 6. Time of formation and mass of each star and brown dwarf at

the end of the main calculation. It is clear that the objects that are the

most massive at the end of the calculation are actually some of the first to

collapse and form sink particles. Furthermore, the longer the calculation

proceeds, the higher the ratio brown dwarfs to stars becomes. Objects that

are still accreting significantly at the end of the calculation are represented

with vertical arrows. The horizontal dashed line marks the star/brown dwarf

boundary. Time is measured from the beginning of the calculation in terms

of the free-fall time of the initial cloud (top panel) or years (bottom panel).

the importance of dynamical interactions between objects. Stronger

magnetic fields resulted in a decrease in the ratio of brown dwarfs to

stars (though the total numbers of objects formed in the calculations

were small, ranging from 15 to 69.).

In summary, we have shown for the first time that purely hydrody-

namical simulations of star cluster formation over-produce brown

dwarfs. This result is statistically robust. This disagreement with

observations is most likely due to the negligence of the physical

processes of radiative feedback and/or magnetic fields.

3.1.2 The origin of the initial mass function

BB2005 analysed the earlier calculation presented by BBB2003

and another calculation beginning with a denser cloud to determine

the origin of the IMF in those calculations (see also B2005). They
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found that the IMF resulted from competition between accretion

and ejection. There was no significant dependence of the mean

accretion rate of an object on its final mass. Rather, there was a

roughly linear correlation between an object’s final mass and the

time between its formation and the termination of its accretion.

Furthermore, the accretion on to an object was usually terminated

by a dynamical interaction between the object and another system,

ejecting the object. Thus, objects formed with VLMs (a few Jupiter

masses) and accreted to higher masses until their accretion was

terminated, usually, by a dynamical encounter. This combination of

competitive accretion and stochastic ejections produced the mass

function.

In Figs 7–9, we plot similar figures to those found in BB2005

and B2005. These figures display the same trends as found by

BB2005, but with a much greater statistical significance. Fig. 7

gives the time-averaged accretion rates of all the objects formed

in the main calculation versus the object’s final mass. The time-

averaged accretion rate is the object’s final mass divided by the

time between its formation (i.e. the insertion of a sink particle)

and the end of its accretion (defined as the last time its accretion

rate drops below 10−7 M⊙ yr−1) or the end of the calculation. As

in BB2005, there is no dependence of the time-averaged accretion

rate on an object’s final mass, except that objects need to accrete

at a rate at least as quickly as their final mass divided by their age

(i.e. the lower right-hand portion of Fig. 7 cannot have any objects

lying in it). This means that the most massive stars have higher

time-averaged accretion rates than the bulk of the stars and VLM

objects. On the other hand, if the calculation were continued longer,

objects that are accreting with lower time-averaged accretion rates

could also reach high masses.

The mean of the accretion rates is 1.02 × 10−5 M⊙ yr−1, which

is within a factor of 2 of the mean accretion rates of the three calcu-

Figure 7. The time-averaged accretion rates of the objects formed in the

main calculation versus their final masses. The accretion rates are calculated

as the final mass of an object divided by the time between its formation and

the termination of its accretion or the end of the calculation. Objects that

are still accreting significantly at the end of the calculation are represented

with horizontal arrows. There is no dependence of mean accretion rate on

final mass for objects with less than ∼0.5 M⊙ (and a large dispersion).

However, there is a low-accretion rate region of exclusion for the most

massive objects since only objects with mean accretion rates greater than

their mass divided by their age can reach these high masses during the

calculation. The horizontal solid line gives the mean of the accretion rates:

1.02 × 10−5 M⊙ yr−1. The accretion rates are given in M⊙/tff on the left-

hand axes and M⊙ yr−1 on the right-hand axes. The vertical dashed line

marks the star/brown dwarf boundary.

Figure 8. The time between the formation of each object and the termination

of its accretion or the end of the main calculation versus its final mass.

Objects that are still accreting significantly at the end of the calculation are

represented with arrows. As in BBB2003, BB2005 and B2005, there is a

clear linear correlation between the time an object spends accreting and its

final mass. The solid line gives the curve that the objects would lie on if

each object accreted at the mean of the time-averaged accretion rates. The

accretion times are given in units of the tff on the left-hand axes and years

on the right-hand axes. The vertical dashed line marks the star/brown dwarf

boundary.

Figure 9. For each single object that has stopped accreting by the end of

the main calculation, we plot the time of the ejection of the object from a

multiple system versus the time at which its accretion is terminated. As in

the smaller calculations of BBB2003, BB2005 and B2005, these times are

correlated showing that the termination of accretion on to an object is usually

associated with dynamical ejection of the object. Open circles give those

objects where multiple ‘ejections’ are detected by the ejection detection

algorithm and, hence, the ejection time is ambiguous (see the main text).

Binaries have been excluded from the plot because it is difficult to determine

when a binary has been ejected.

lations analysed by BB2005 and B2005. Thus, the mean accretion

rate does not depend significantly on cloud density (BB2005), on

the equation of state of high-density gas (B2005) or on the total mass

of the gas cloud (this work). The dispersion in the accretion rates

is about 0.4 dex, also similar to the previous simulations. Rather,

the primary determinant of the final mass of a star or brown dwarf

is the period over which it accretes. Fig. 8 very clearly shows the
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598 M. R. Bate

linear relation (with some dispersion) between the period of time

over which an object accretes and its final mass.

Finally, in Fig. 9, for each object that has stopped accreting

by the end of the main calculation (excluding the components of

binaries), we plot the time at which the object undergoes an ejection

versus the time that its accretion is terminated. There is a very

strong correlation between the two, showing that the accretion is

usually terminated by a dynamical encounter with other objects,

and confirming the results of BB2005 and B2005. We define the

time of ejection of an object as the last time the magnitude of its

acceleration drops below 2000 km s−1 Myr−1 (or the end of the

calculation). The acceleration criterion is based on the fact that

once an object is ejected from a stellar multiple system, subcluster

or cluster through a dynamical encounter, its acceleration will drop

to a low value. The specific value of the acceleration was chosen

by comparing animations and graphs of acceleration versus time

for individual objects. We exclude binaries because they have large

accelerations throughout the calculation, which frequently results

in false detections of ejections. Also, in Fig. 9, we use two different

symbols (filled and open circles). For the former, we are confident

of the ejection time. However, for those objects denoted by the

open circles, we find that at least two ‘ejections’ more than 2000 yr

apart have occurred. These are usually objects that have had a close

dynamical encounter with a multiple system that has put them into

long-period orbits rather than ejecting them. In these cases, we

chose the ‘ejection’ time closest to the accretion termination time

but we use an open symbol to denote our uncertainty in whether or

not we have identified the best time for the dynamical encounter.

In terms of raw results, we find that, excluding binaries, for 635

objects out of 899 (71 per cent), the accretion termination time and

the ejection time are within 2000 yr of each other. If we also exclude

those objects for which we are uncertain in our identifications of

the ejection times as described above, we find 483 objects out of

592 (82 per cent) are consistent with ejection terminating their

accretion. These are probably lower limits in the sense that it is

difficult to determine in an automated way the time at which an

ejection occurs, and an erroneous value is much more likely to

differ from the accretion termination time by more than 2000 yr

than coincide with it. In any case, it is clear that for the majority of

objects, their accretion is terminated by dynamical encounters with

other stellar systems.

3.2 Stellar cluster properties

At the end of the main calculation, the bulk of the stars and

brown dwarfs are contained within a single compact stellar clus-

ter surrounded by a low-density halo of objects (lower right-hand

panel of Fig. 1). The stellar cluster has a half-mass radius of only

10 900 au (0.053 pc), ignoring the gas. The radii containing 80

and 90 per cent of the mass are 29 800 (0.14 pc) and 54 200 au

(0.26 pc), respectively.

In Fig. 10, we plot the magnitude of the velocity of every star

or brown dwarf relative to the centre of mass of the stellar sys-

tem at the end of the main calculation. For binaries, we plot

the two components with the centre-of-mass velocity of the bi-

nary using filled squares connected by a dotted line. The over-

all rms velocity dispersion (counting each binary only once) is

5.6 km s−1 (three dimensional) or 3.2 km s−1 (one dimensional).

BBB2003, BB2005 and B2005 found no significant dependence

of the velocity dispersion on mass. Here, with a much larger sam-

ple of objects, we find that stars tend to have a slightly higher

dispersion than VLM objects, consistent with observations (e.g.

Figure 10. The magnitudes of the velocities of each star and brown dwarf

relative to the centre-of-mass velocity of the stellar system at the end of the

main calculation. For binaries, the centre-of-mass velocity of the binary is

given, and the two stars are connected by dotted lines and plotted as squares

rather than circles. Objects still accreting at the end of the calculation are

denoted by horizontal arrows. The rms velocity dispersion for the association

(counting each binary once) is 5.6 (three dimensional) or 3.2 km s−1 (one

dimensional). There is a weak dependence of the velocity dispersion on mass

with VLM objects having a slightly lower velocity dispersion than stars (see

the main text). Binaries are found to have a lower velocity dispersion than

single objects of only 3.8 km s−1 (three dimensional). The vertical dashed

line marks the star/brown dwarf boundary.

Joergens 2006). The rms velocity dispersion of VLM systems is

5.4 km s−1 (three dimensional), while for the stars (masses

≥0.1 M⊙), the rms velocity dispersion is 6.9 km s−1 (three di-

mensional). Binaries have a velocity dispersion of only 3.8 km s−1

(three dimensional), significantly lower than single objects.

Since this is the first hydrodynamical calculation to form a mas-

sive stellar cluster while simultaneously resolving brown dwarfs

and binaries, it is of interest to examine how the stellar properties

vary with radius. We define the cluster centre to be the location of

the most massive star (5.3 M⊙). In Table 2, we present statistics

on how the stellar masses, velocity dispersion and binary fraction

vary with radius from the cluster centre. Note that for this table, we

have defined the binary fraction as the number of binaries divided

by the number of systems (single objects and binaries). We do not

make any attempt to identify triple or higher-order systems. Each

binary is counted once and its centre-of-mass velocity is used when

calculating the stellar velocity dispersions.

We find that within the radius containing 80 per cent of the mass

(excluding the gas), there is little evidence of a radial variation in

the stellar mass function (see Fig. 11), the velocity dispersion or the

binary fraction. The exception may be the very centre of the cluster

(within 1000 au of the most massive star) where the median stellar

mass, the upper quartile mass, the velocity dispersion and the binary

fraction are all higher than in the bulk of the cluster. However, there

are only eight objects in this region so the statistical uncertainties

are great.

In the periphery of the cluster containing 20 per cent of the stellar

mass (perhaps better described as the halo), we do find statistically

significant differences. The mass function is still indistinguishable

from the mass function found in the bulk of the cluster (the median,

the upper quartile mass and the maximum mass are all similar to

those values found in the bulk of the cluster.). However, the velocity

dispersion increases monotonically as the distance from the cluster
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Table 2. Radial properties of the stellar cluster at the end of the main calculation. The cluster is very compact with a half-mass radius of 10 900 au. The radii

containing 80 and 90 per cent of the mass are 29 800 and 54 200 au, respectively. There is no evidence for radial mass segregation in terms of the median mass,

the upper quartile mass and the maximum mass, except in the inner 1000 au. In terms of the binary fraction and the stellar velocity dispersion, again the very

centre of the cluster has a higher velocity dispersion and a higher binary frequency than the bulk of the cluster. However, unlike the mass function, the velocity

dispersion and binary fraction also differ in the outer regions of the cluster (the outer 20 per cent of the mass, beyond three half-mass radii). The outer regions

have a higher velocity dispersion and a lower binary fraction than the bulk of the cluster.

Quantity/distance range <1000 au 1000–3000 au 3000 × 104 au 1−3 × 104 au 3−10 × 104 au >1 × 105 au

Median mass [M⊙] 0.18 0.024 0.035 0.056 0.054 0.045

Upper quartile mass [M⊙] 0.30 0.091 0.098 0.15 0.18 0.095

Maximum mass [M⊙] 5.3 2.9 3.7 2.5 2.1 2.0

Velocity dispersion [km s−1] 6.1 4.0 4.2 4.3 8.2 13.8

Number objects 8 56 569 408 172 41

Number binaries 2 8 68 55 13 0

Binary fraction 0.33 0.167 0.136 0.156 0.082 0.0

Figure 11. The cumulative fractions of stars as a function of distance from

the most massive star at the end of the main calculation. The solid line gives

the result for all stars, while the dotted, short-dashed, long-dashed and dot–

dashed lines give the cumulative distributions for the stellar mass ranges

M < 0.1, 0.1 ≤ M < 0.3, 0.3 ≤ M < 1.0 and M ≥ 1.0 M⊙, respectively.

There is no significant mass segregation observed.

centre increases (see Table 2 and Fig. 12). This is because only

objects that have been ejected quickly can have made it out to these

distances by the end of the calculation. Also, the binary fraction de-

creases outside of the 80 per cent mass radius. It drops by a factor of

2 between the 10 000–30 000 au (1–3 half-mass radii) radial bin and

the 30 000–100 000 au (3–9 half-mass radii) bin, and there are no bi-

naries (out of 41 objects) more than 100 000 au (>9 half-mass radii)

from the cluster centre. Presumably, even though some binaries are

ejected, they are less likely to be ejected than single objects, and

the likelihood of them surviving the ejection process decreases with

increasing ejection velocity (since a closer dynamical encounter is

required to achieve a higher ejection velocity).

Observationally, the best cluster to compare our results to is the

Orion Nebula Cluster (ONC). Hillenbrand & Hartmann (1998) ex-

amined its structure and dynamics. They estimated the stellar mass

to be ≈2 × 103 M⊙ and the half-mass radius to be ≈0.8 pc, so

the main simulation discussed here produces a cluster that is sig-

nificantly less massive and more compact than the ONC. Although

the ONC is larger and more massive, it is probably at a similar

stage of evolution as the main calculation when it is stopped in the

sense that it does not contain significant substructure (Bate, Clarke

Figure 12. For each star and brown dwarf, we plot the magnitude of its

velocity relative to the centre-of-mass velocity of the stellar system versus

its distance from the most massive star in the cluster at the end of the

main calculation. For binaries, the centre-of-mass velocity of the binary

is given and the binary is plotted as a square rather than a circle. The

velocity dispersion clearly depends on radius, with the outer regions having

a significantly larger velocity dispersion. These outer objects have been

ejected (see also Table 2).

& McCaughrean 1998; Scally & Clarke 2002) and, if it was assem-

bled from the merger of subclusters, the ONC’s period of violent

relaxation has ended. By contrast, the ρ Ophiuchi cloud contains

a similar mass of stars and gas to the calculations presented here

(Bontemps et al. 2001), but it is composed of many subclusters

rather than a single large cluster.

Hillenbrand & Hartmann (1998) investigated mass segregation

in the ONC and found that within the half-mass radius there was ev-

idence for general mass segregation with stars in various mass bins

becoming more centrally concentrated with increasing stellar mass.

At larger radii, there was little evidence for mass segregation. At the

end of the main calculation, we find no significant mass segregation.

This is ironic since one of the main arguments usually advanced in

favour of the competitive accretion model for star formation is that

it naturally produces mass-segregated clusters (e.g. Bonnell et al.

1997, 2001). The difference here is most probably that the stellar

cluster existing at the end of the main calculation has just formed

from the merger of five subclusters, and even if these subclusters

were mass-segregated before their mergers it is going to take some
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600 M. R. Bate

time for the entire cluster to settle down again. This does illustrate

that competitive accretion does not necessarily produce clusters that

are mass-segregated throughout their entire formation process.

Köhler et al. (2006) investigated binarity in the ONC. They found

that there was no significant dependence of the binary fraction on

the distance from the cluster centre by comparing samples within

≈0.3 pc (approximately 40 per cent of the half-mass radius) of the

centre with observations between 0.7 and 1.8 pc from the centre

(approximately 1–2 half-mass radii). They stated that this was in

contrast to the theory that the low binary frequency in the ONC com-

pared to low-density star-forming regions was due to the dynamical

disruption. However, their result is consistent with our hydrody-

namical simulation, in that we also find no significant variation of

binary fraction within three half-mass radii and binary disruption

certainly occurs in the simulation. Only outside of three half-mass

radii does there appear to be a slow decline in binarity. Needless to

say, it would be interesting to try and detect a lower binary fraction

or a higher velocity dispersion at distances more than three half-

mass radii from the centre of the ONC to see whether the ONC

displays variations like those apparent in the simulation. However,

this would presumably be very difficult given the low stellar density

and the problems of determining membership so far from the cluster

centre.

3.3 Stellar encounters and disc sizes

Reipurth & Clarke (2001) proposed that brown dwarfs may be

formed from dynamical ejections of low-mass objects from accret-

ing unstable multiple systems, thus terminating their accretion and

fixing them at low masses. Bate et al. (2002a), BBB2003, BB2005

and B2005 performed hydrodynamical simulations in which it was

found that dynamical interactions were crucial in terminating ac-

cretion and setting an object’s mass, but that this applied to stars

as well as brown dwarfs (see also Section 3.1.2). Brown dwarfs

were simply ejected soon after they had formed, while those ob-

jects ending up as stars suffered ejections only after a longer period

of accretion.

Reipurth & Clarke (2001) also speculated that if brown dwarfs

formed via ejection, they might have smaller, lower mass discs

than stars. BBB2003, BB2005 and B2005 found that discs around

stars and brown dwarfs were frequently truncated by dynamical

encounters. However, some large discs were found to exist around

both stars and brown dwarfs, while other stars and brown dwarfs

had discs truncated to below the resolution limit of ≈10 au in their

calculations.

In the calculations presented here, discs are resolved with radii

down to ≈10 au in the main calculation and down to a few astronom-

ical units in the rerun calculation. However, with SPH, the resolution

length depends on density. Thus, for example, more massive discs

are better resolved than low-mass discs. Furthermore, low-mass

discs evolve much more quickly than high-mass discs due to the ar-

tificial viscosity present in the simulations (since the magnitude of

the viscosity also depends on density). Because of these numerical

effects, it is difficult to determine robustly the statistical properties

of discs (e.g. their size and mass distributions).

By contrast, it is relatively simple to determine the closest dy-

namical encounter every star or brown dwarf has had during the

calculation. In Fig. 13, we plot the distance of the closest encounter

that every star and brown dwarf has had by the end of the main

calculation. As in the earlier papers, there is a wide range of closest

encounter distances, but stars have generally had closer encounters

than brown dwarfs. However, this is somewhat misleading for sev-

Figure 13. The closest encounter distances of each star or brown dwarf

during the main calculation versus the final mass of each object. Objects

that are still accreting significantly at the end of the calculation are denoted

with arrows indicating that they are still evolving and that their masses are

lower limits. Binaries are plotted with the two components connected by

dotted lines and squares are used as opposed to circles. Encounter distances

less than 4 au are upper limits since the point mass potential is softened

within this radius. The vertical dashed line marks the star/brown dwarf

boundary. The brown dwarfs in the top left-hand corner of the figure that

are still accreting formed shortly before the calculation was stopped are thus

still evolving rapidly. They may not end up as brown dwarfs.

eral reasons. First, as will be seen in the next section, multiplicity

is a strong function of primary mass. In Fig. 13, it clear that (close)

binaries are responsible for many of the ‘closest encounters’. Sec-

ondly, objects that are still accreting at the end of the calculation are

still evolving and, since the mass of an object depends on its ‘age’,

more massive accreting objects are more likely to have had close en-

counters. In particular, most objects with brown dwarf masses that

are still accreting have formed shortly before the calculation was

stopped. They have not had much time for dynamical encounters

to occur and may not end up as brown dwarfs. Finally, BBB2003,

BB2005 and B2005 found that many stars that had close encounters

still had resolved discs at the end of their calculations because those

discs formed from accretion subsequent to their closest dynamical

encounter.

Despite these difficulties, if an object suffers a dynamical en-

counter that terminates its accretion, this encounter will truncate

any disc that is larger than approximately one-half of the perias-

tron distance during the encounter (Hall, Clarke & Pringle 1996).

Therefore, excluding binaries and objects that are still accreting,

determining the distribution of one-half of the closest encounter

distance should give us an indication of the disc size distribution

around single objects that have reached their final masses. Note that

formally we have still included the wide components of triple and

quadruple systems, but these constitute only 48 objects out of the

884 ‘single’ non-accreting objects, so should not adversely affect

any conclusions.

In Fig. 14, we plot the cumulative distributions of disc truncation

radii (taken to be one-half of the closest encounter distance) for

these objects. The solid line gives the cumulative distribution for

all 884 objects, while in the other distributions we break the sample

into mass bins of M < 0.1, 0.1 ≤ M < 0.3, 0.3 ≤ M < 1.0 and

M ≥ 1.0 M⊙. More massive stars tend to have had closer encounters

and, thus, have smaller disc truncation radii. The median truncation

radius is two orders of magnitude larger for the VLM objects than
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Stellar and multiple star properties from simulations 601

Figure 14. Due to dynamical interactions, stars and brown dwarfs poten-

tially have their discs truncated to approximately one-half of the periastron

separation during the encounter (see also Fig. 13). At the end of the main

calculation, we plot the cumulative fraction objects as a function of the po-

tential truncation radius. We exclude binaries and any objects that are still

accreting at the end of the calculation. The solid line gives the result for

all stars and brown dwarfs, while the dotted, short-dashed, long-dashed and

dot–dashed lines give the cumulative distributions for the mass ranges M <

0.1, 0.1 ≤ M < 0.3, 0.3 ≤ M < 1.0 and M ≥ 1.0 M⊙, respectively. More

massive stars tend to have had closer encounters.

for the solar-type stars. In particular, we note that 10 per cent of the

VLM stars have truncation radii greater than 40 au, while one-third

have truncation radii greater than 10 au.

We emphasize that Fig. 14 should be used with caution. First,

the simulation presented here produces a very dense stellar cluster.

Disc truncation may be less important for setting disc sizes in a

lower density star-forming region. Secondly, Fig. 14 does not give

a disc size distribution. At best, it is a distribution of lower limits to

disc sizes because of the fact that stars can suffer a close dynamical

encounter, but then accrete more material from the molecular cloud

and form a new disc. This happens frequently in the simulation,

especially for the higher-mass stars. The distribution is likely to

be most useful for VLM objects because they tend to have their

accretion terminated soon after they form by dynamical encounters

and generally will not subsequently accrete significantly from the

molecular cloud.

Armitage, Clarke & Palla (2003) considered the lifetimes of cir-

cumstellar discs surrounding young stars. They obtained a good

fit to the observed distributions of lifetimes with a 1σ dispersion

of 0.5 dex in the initial disc masses, with the exception of the

≈30 per cent of young weak-lined T-Tauri stars (WTTS) that ap-

peared to have lost their discs even with an age of 1 Myr. There

are two points of interest here. First, we note that the dispersion of

the time-averaged accretion rates for an object of a given final mass

(Section 3.1.2 and Fig. 7) is 0.4 dex in the main calculation (and

similar values were obtained by BBB2005 and B2005). This might

naturally be expected to lead to the dispersion in disc masses that

Armitage et al. required to explain the disc lifetime distributions.

Secondly, we find that many objects have had very close dynamical

encounters. For some objects, their closest encounters will be the

one that ejects them from the stellar group they are formed in. Once

they are ejected, it is unlikely they will accrete a new disc. Such ob-

jects might help to explain the observation that some WTTS appear

to have lost their discs at a very young age (see also Armitage &

Clarke 1997).

3.4 Multiplicity as a function of primary mass

We turn now to the properties of the binary and higher-order mul-

tiple stars and brown dwarfs produced by the simulations. The

properties of multiple stellar systems have been investigated in the

past through ensembles of small N-body (e.g. McDonald & Clarke

1993, 1995; Sterzik & Durisen 1998, 2003; Hubber & Whitworth

2005) or hydrodynamical (e.g. Delgado-Donate et al. 2004;

Goodwin et al. 2004b,c) simulations, with some of the observed

trends in properties being reproduced depending on the input pa-

rameters. However, this is the first time a large number of multiple

stars and brown dwarfs have been produced from a single hydro-

dynamical simulation of star formation. Although the calculation

produces more brown dwarfs than is realistic, it is still of great

importance to compare the multiple systems with the observations.

It may be, for example, that precisely modelling the IMF requires

radiative transfer to be included, but that some binary properties do

not depend significantly on whether radiative transfer is included or

not.

Observationally, it is clear that the fraction of stars or brown

dwarfs that are in multiple systems increases with stellar mass (mas-

sive stars: Mason et al. 1998; Preibisch et al. 1999, intermediate-

mass stars: Patience et al. 2002, solar-type stars: Duquennoy &

Mayor 1991, M dwarfs: Fischer & Marcy 1992 and VLM stars

and brown dwarfs: Close et al. 2003; Siegler et al. 2005; Basri &

Reiners 2006). It also seems that the multiplicity of young stars

in low-density star-forming regions is somewhat higher than that

of field stars (Ghez, Neugebauer & Matthews 1993; Leinert et al.

1993; Simon et al. 1995; Duchêne et al. 2007). However, IC 348

has a similar binary frequency to the field (Duchêne, Bouvier &

Simon 1999). In the ONC, Köhler et al. (2006) find that the binary

frequency of low-mass stars is similar to that of field M dwarfs and

lower than that of field solar-type stars, but that stars with masses

M > 2 M⊙ have a higher binarity than stars with 0.1 < M < 2 M⊙
by a factor of 2.4 to 4.

To quantify the fraction of stars and brown dwarfs that are in

multiple systems, we use the multiplicity fraction (MF) defined as

a function of stellar mass. We define this as

MF =
B + T + Q

S + B + T + Q
, (2)

where S is the number of single stars within a given mass range

and B, T and Q are the numbers of binary, triple and quadruple

systems, respectively, for which the primary has a mass in the

same mass range. Note that this differs from the companion star

fraction (CSF), that is also often used and where the numerator

has the form B + 2T + 3Q. We choose the multiplicity fraction

following Hubber & Whitworth (2005), who point out that this

measure is more robust observationally in the sense that if a new

member of a multiple system is found (e.g. a binary is found to

be a triple), the quantity remains unchanged. We also note that

it is more robust for simulations too in the sense that if a high-

order system decays because it is unstable, the numerator only

changes if a quadruple decays into two binaries (which is quite rare).

Furthermore, if the denominator is much larger than the numerator

(e.g. for brown dwarfs where the multiplicity fraction is low), the

production of a few single objects does not result in a large change

in the value of MF. This is useful because many of the systems in

existence at the end of the calculations presented here may undergo

further dynamical evolution. By using the multiplicity fraction, our

statistics are less sensitive to this later evolution.

When analysing the simulations, some subtleties arise. For ex-

ample, many ‘binaries’ are in fact members of triple or quadruple
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602 M. R. Bate

Table 3. The numbers of single and multiple systems for different primary

mass ranges at the end of the main calculation. In the lower portion of the

table, the numbers exclude brown dwarf (M < 0.075 M⊙ companions) to

allow better comparison with the surveys of Duquennoy & Mayor (1991)

and Fischer & Marcy (1992) which were not sensitive to brown dwarfs

(e.g. a solar-type star with any number of brown dwarf companions would

be counted as a single solar-type star, while a solar-type star with a close

brown dwarf companion and a wide M-star companion would be counted

as a solar-type binary).

Mass range [M⊙] Single Binary Triple Quadruple

M < 0.01 82 0 0 0

0.01 ≤ M < 0.03 348 8 1 0

0.03 ≤ M < 0.07 207 18 2 0

0.07 ≤ M < 0.10 78 6 1 2

0.10 ≤ M < 0.20 99 22 4 2

0.20 ≤ M < 0.50 59 23 5 10

0.50 ≤ M < 0.80 16 7 4 4

0.80 ≤ M < 1.2 7 3 3 3

M > 1.2 9 3 3 4

All masses 905 90 23 25

0.10 ≤ M < 0.20 (no BD) 116 15 0 1

0.20 ≤ M < 0.50 (no BD) 66 25 8 1

0.50 ≤ M < 0.80 (no BD) 18 10 3 1

0.80 ≤ M < 1.2 (no BD) 8 5 3 0

M > 1.2 (no BD) 12 4 3 0

systems, and some ‘triple’ systems are components of quadruple

or higher-order systems. From this point onwards, unless other-

wise stated, we define the numbers of multiple systems as follows.

The number of binaries excludes those that are components of

triples or quadruples. The number of triples excludes those that

are members of quadruples. However, higher-order systems are ig-

nored (e.g. a quintuple system may consist of a triple and a binary

in orbit around each other, but this would be counted as one binary

and one triple). We need to stop counting larger and larger multiple

systems at some point because in fact the simulation forms one large

cluster to which many of the multiple systems are still bound when

the calculation is finished (see Section 2.2.1 for a description of

Figure 15. Multiplicity fraction as a function of primary mass. The left- and right-hand panels both give results from the main calculation, but different mass

ranges are used for the low-mass stars. On the right, the mass ranges are those given in the upper section of Table 3, while on the left only three mass ranges

are used for objects with masses M < 0.8 M⊙ (namely, M < 0.03, 0.03 ≤ M < 0.1 and 0.1 ≤ M < 0.8 M⊙). The blue filled squares surrounded by shaded

regions give the results from the main calculation with their statistical uncertainties. The open black squares with error bars and/or upper/lower limits give

the observed multiplicity fractions from the surveys of Close et al. (2003), Basri & Reiners (2006), Fischer & Marcy (1992), Duquennoy & Mayor (1991),

Preibisch et al. (1999) and Mason et al. (1998), from left to right in each panel. The red filled squares and associated shaded regions in the right-hand panel give

the multiplicity fractions excluding brown dwarf companions (masses <0.075 M⊙) to allow better comparison with the surveys of Duquennoy & Mayor and

Fischer & Marcy. The general trend of increasing multiplicity with primary mass is well reproduced by the main calculation. Note that because the multiplicity

is a steep function of primary mass, it is important to ensure that similar mass ranges are used when comparing the simulation with observations.

how we identify multiple systems). We choose quadruple systems

as a convenient point to stop, as it is likely that most higher-order

systems would decay if the cluster was evolved for many millions

of years. The numbers of single and multiple stars produced by the

main hydrodynamical calculation are given in Table 3 following

these definitions.

In Fig. 15, we plot the multiplicity fraction of the stars and

brown dwarfs as a function of the primary mass for the main

calculation, based on the numbers given in Table 3. In the left-

hand panel, we divide the objects into low-mass brown dwarfs

(masses <30 Jupiter masses or 0.03 M⊙), VLM objects excluding

the low-mass brown dwarfs (masses 0.03–0.10 M⊙), low-mass stars

(masses 0.10–0.80 M⊙), solar-type stars (masses 0.80–1.20 M⊙)

and intermediate-mass stars (masses >1.2 M⊙). In the right-hand

panel, finer mass divisions are used for masses less than 0.8 M⊙.

These divisions are chosen for comparison with various observa-

tional surveys. In Fig. 15, the filled blue squares give the multiplicity

fraction, while the surrounding blue-hatched regions give the range

in primary masses over which the fraction is calculated and the 1σ

(68 per cent) uncertainty on the multiplicity fraction (e.g. for solar-

type primary stars, the multiplicity fraction is 0.56 ± 0.12). The

black open boxes and their associated error bars and/or upper/lower

limits give the results from a variety of observational surveys (see

the figure caption). Finally, in the right-hand panel, the filled red

squares and their associated red-hatched regions give the multiplic-

ity fractions excluding brown dwarfs (masses less than 0.075 M⊙).

The main hydrodynamical calculation clearly predicts that the

multiplicity fraction strongly increases with increasing primary

mass. Furthermore, the values in each mass range are in reasonable

agreement with observation. There is excellent agreement for solar-

type and low-mass stars. For intermediate-mass stars, the statistics

from the calculation are poor (and the observed value is also uncer-

tain), while for VLM objects, the hydrodynamical calculation gives

a slightly lower prediction than the observations, but not unreason-

ably so.

In detail, we find the following.

Solar-type stars. Duquennoy & Mayor (1991) find an observed

multiplicity fraction of 0.58 ± 0.1. The main calculation gives

a multiplicity fraction of 0.56 ± 0.12. However, this figure in-

cludes brown dwarf companions and Duquennoy & Mayor’s
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Stellar and multiple star properties from simulations 603

survey was not sensitive to brown dwarfs. Excluding them, we ob-

tain 0.50 ± 0.13 which is still in good agreement with the observed

value.

M dwarfs. Fischer & Marcy (1992) find an observed multiplicity

fraction of 0.42 ± 0.09. In the mass range 0.1–0.8 M⊙, we obtain

MF = 0.32 ± 0.03 which is slightly lower than the observed value,

though still within the uncertainties. However, in this mass range

the multiplicity fraction changes quite rapidly with mass. Fischer

& Marcy’s sample contains stars with masses between 0.1 and

0.57 solar masses, but the vast majority have masses in the range

0.2 − 0.5 M⊙, whereas in the hydrodynamical simulation around

half of the low-mass stars have masses less than 0.2 M⊙. In the

0.2–0.5 M⊙ mass range, we obtain MF = 0.39 ± 0.05. However,

Fischer & Marcy’s survey was also not sensitive to brown dwarf

companions. Removing these, we obtain 0.34 ± 0.05. This value

is consistent with the observed value, lying well within the 1σ

uncertainties.

VLM objects. There has been much interest in the multiplicity

of VLM objects in recent years (Martı́n et al. 2000, 2003; Bouy

et al. 2003, 2006; Close et al. 2003, 2007; Gizis et al. 2003; Pinfield

et al. 2003; Siegler et al. 2003, 2005; Luhman 2004; Kraus, White

& Hillenbrand 2005, 2006; Maxted & Jeffries 2005; Basri &

Reiners 2006; Reid et al. 2006; Ahmic et al. 2007; Allen et al. 2007;

Konopacky et al. 2007; Law, Hodgkin & Mackay 2008; Maxted

et al. 2008; Reid et al. 2008). For a recent review, see Burgasser

et al. (2007). Over the entire mass range of 0.003–0.10 M⊙, we

find a very low multiplicity of just 0.047 ± 0.008. We note the

main calculation, which is essentially a larger version of the calcu-

lation reported in BBB2003, produces a VLM object multiplicity in

agreement with the earlier, smaller calculations which gave MF ≈

0.06 (B2005). However, in the earlier calculations it was impossi-

ble to subdivide the VLM objects because of the small numbers. As

with the M dwarfs, the multiplicity drops rapidly with decreasing

primary mass, and the observed VLM objects tend to have high

masses. The main calculation gives multiplicities of 0.22 ± 0.04 for

the mass range 0.1–0.2 M⊙, 0.10 ± 0.03 for the mass range 0.07–

0.10 M⊙, 0.09 ± 0.02 for the mass range 0.03–0.07 M⊙, 0.025 ±

0.008 for the mass range 0.01–0.03 M⊙ and 0.00 ± 0.01 for masses

less than 0.01 M⊙. Therefore, to compare with observations, it is

very important to compare like with like. The observed frequency

of VLM binaries is typically found to be ≈15 per cent (Bouy et al.

2003; Close et al. 2003, 2007; Gizis et al. 2003; Martı́n et al.

2003; Siegler et al. 2005; Reid et al. 2008). The surveys are most

complete for binary separations greater than a couple of astronom-

Figure 16. Multiplicity fraction as a function of primary mass for the main calculation at t = 1.038tff (left-hand panel) and the rerun calculation at the same

time (right-hand panel). The blue filled squares surrounded by shaded regions give the results from the calculations. The open black squares with error bars

and/or upper/lower limits give the observed multiplicity fractions from the surveys of Close et al. (2003), Basri & Reiners (2006), Fischer & Marcy (1992),

Duquennoy & Mayor (1991), Preibisch et al. (1999) and Mason et al. (1998), from left to right in each panel. The multiplicities for primaries with masses in

the range 0.03–0.8 M⊙ are higher in the rerun calculation in which the sink particles have smaller accretion radii and no gravitational softening.

ical units. Recently, Basri & Reiners (2006) estimated the total fre-

quency (including spectroscopic systems) to be ≈20–25 per cent.

These surveys typically targeted primaries with masses in the range

0.03–0.1 M⊙, but most of these objects in fact have masses greater

than 0.07 M⊙. Thus, the closest comparison with our calculation

is our frequency of 0.10 ± 0.03 for the mass range 0.07–0.10 M⊙.

This is somewhat lower than the observed frequency (a factor of 2

at face value), but still in better agreement than that from the earlier

simulations (B2005). In the next section, we show that decreasing

the accretion radii of the sink particles increases the frequency of

VLM binaries bringing them into good agreement with the observed

value. Thus, the main calculation produces a VLM binary frequency

that is consistent with observations (at around 2–3σ level), but it is

lower and we attribute this to the effects of the sink particle approx-

imation rather than a fundamental failing of the hydrodynamical

star formation model.

Low-mass brown dwarfs. The frequency of low-mass binary

brown dwarfs (primary masses less than 30 Jupiter masses) is obser-

vationally unconstrained. We predict that the multiplicity continues

to fall as the primary mass is decreased as described above. Even

if our predicted multiplicities are underestimated by a factor of 2

or even 3 due to the effects of sink particles, we would predict

that the binary frequency in the mass range of 0.01–0.03 M⊙ is

�7 per cent. Companions to brown dwarfs with masses less than

10 Jupiter masses should be exceptionally rare (�3 per cent).

3.4.1 The dependence of multiplicity on sink particle

approximations

As with the IMF, the question arises on how dependent these results

are on the use of sink particles. In particular, in the main calculation,

binaries cannot have separations smaller than 1 au (due to the grav-

itational softening), and the sink particle accretion radius removes

all gas within 5 au of the sink particle, presumably affecting close

dynamical interactions between protostellar objects. This is likely

to have a severe effect on the properties of short-period binaries. As

mentioned above and will be seen in more detail in Section 3.3, this

particularly affects the VLM binaries whose median separation in

the main calculation (and observationally) is less than 10 au.

In Fig. 16, we compare the multiplicity fractions produced by the

main calculation (left-hand panel) and the rerun calculation (right-

hand panel) at the end time of the rerun calculation (tff = 1.038). The

first point to note is that the fractions given by the main calculation
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604 M. R. Bate

at 1.038 and 1.50tff are the same within the statistical uncertainties.

Therefore, we conclude that the fractions do not evolve significantly

with time (though their mass ratios and separations might – see

Sections 3.5 and 3.6). There are few stars with masses greater than

0.8 M⊙ at the earlier time because they have not yet had time to

accrete to high masses. Thus, the multiplicity fractions of solar-

type and intermediate-mass stars are poorly defined. However, for

low-mass stars, the fractions are 0.51 ± 0.07 and 0.32 ± 0.03,

respectively, which lie within 2σ of each other. For VLM systems,

the fractions are 0.10 ± 0.04 and 0.092 ± 0.016, respectively.

For low-mass brown dwarfs, the fractions are 0.054 ± 0.030 and

0.021 ± 0.007, respectively.

We now compare the fractions given by the main calculation and

the rerun calculation, the latter of which has smaller sink particle

accretion radii (left- and right-hand panels of Fig. 16). The multi-

plicity fractions are greater in the rerun calculation for VLM objects

and low-mass stars, but not for the low-mass brown dwarfs. An in-

crease in the multiplicity fractions for small sink particles is what

we might expect since binaries can become tighter (due to the ab-

sence of gravitational softening) and dissipative processes can play

a role on smaller scales (due to the smaller accretion radii of only

0.5 au). Low-mass stars in the rerun calculation have a multiplic-

ity of 0.60 ± 0.08, which differs by ≈0.6σ from the main cal-

culation at the same time. VLM binaries have a multiplicity of

0.19 ± 0.05. This is 1σ higher than the main calculation at the same

time. Finally, low-mass brown dwarfs have a multiplicity of 0.026 ±

0.018 which differs by 0.6σ from the main calculation at the same

time.

Clearly, even with such large numbers of objects, statistical un-

certainties still make comparison of the results difficult. However,

the indication is that decreasing the sizes of the sink particles in-

creases the multiplicity fractions, at least for the mass range 0.03–

0.80 M⊙. In particular, decreasing the sizes of the sink particles

maintains the good agreement with observations for solar-type and

low-mass stars, and improves the agreement for VLM objects. The

multiplicity of 19 ± 5 per cent for the mass range 0.03–0.10 M⊙
is in excellent agreement with the typically observed value of

≈15 per cent (Close et al. 2003) and the upper limit of 20–25

per cent estimated by Basri & Reiners (2006).

In summary, it seems that purely hydrodynamical simulations

of star formation using sink particles can reproduce the observed

multiplicities of solar-type stars, low-mass stars and VLM objects.

The results appear to depend slightly on the sink particle assump-

tions, with smaller sink particles generally leading to slightly higher

multiplicities and better agreement with observations.

3.4.2 Star–VLM binaries

We turn now to the issue of VLM/brown dwarf companions to stars.

As in the previous section, we do not consider brown dwarf com-

panions as such, rather we consider VLM companions (<0.1 M⊙)

to stars (≥0.1 M⊙). The main calculation produced 26 stellar-VLM

binaries out of 290 stellar systems, a frequency of 9.0 ± 1.6 per cent.

For the vast majority of these stellar-VLM binaries, the star is a low-

mass star: 14 of the primaries have masses between 0.1 and 0.2 M⊙,

seven have primary masses in the range 0.2–0.5 M⊙ and three

have primary masses between 0.5 and 0.8 M⊙. However, within

the statistical uncertainties, the frequency of VLM companions is

not found to depend on primary mass. Even around solar-type and

intermediate-mass stars we find VLM companions, but the statis-

tics are very poor with only two out of the 35 systems with pri-

mary masses greater than 0.8 M⊙ being star/VLM binaries (6 ±

4 per cent).

Although there is no statistically significant dependence of the

frequency of such systems on primary mass, the separation distribu-

tions are very different. For primaries with masses of 0.1–0.2 M⊙,

the semimajor axes of all but three of the 14 systems are less than

30 au. The other three all have semimajor axes greater than 1000 au.

This separation distribution is very similar to the VLM and brown

dwarf binaries discussed in Section 3.5. For the seven primaries with

masses of 0.2–0.5 M⊙, three have VLM companions within 10 au,

there is one at 49 au and the remaining three have wide companions

(greater than 1000 au). The VLM companions of the three pri-

maries with masses of 0.5–0.8 M⊙ have semimajor axes between

27 and 65 au. Finally, the two star/VLM binaries with primary

masses greater than 0.8 M⊙ both have semimajor axes greater than

1000 au. Thus, the typical separation of star/VLM binaries seems

to increase strongly as the mass of the primary increases.

In addition to the star/VLM binaries, there are four triple systems

consisting of a star with two VLM companions and eight quadruple

systems that contain at least one star/VLM pair. In all but three of

these 12 systems, the widest orbit has a semimajor axis in the range

50–500 au. The remaining three systems have very wide outer orbits

(>1000 au).

There has been much discussion over the past decade about the

observed ‘brown dwarf desert’ for close brown dwarf companion

solar-type stars (frequency ≈1 per cent; Marcy & Butler 2000;

Grether & Lineweaver 2006) and how this changes for wider sep-

arations and different primary masses. McCarthy & Zuckerman

(2004) found that the frequency of wide brown dwarfs to G, K and

M stars between 75 and 300 au was 1 ± 1 per cent. The frequencies

of wide brown dwarf companions to A and B stars (Kouwenhoven,

Brown & Kaper 2007), M dwarfs (Gizis et al. 2003) and other

brown dwarfs appear to be similarly low, although the frequency

of wide binary brown dwarfs may be higher when they are very

young (Close et al. 2007). Our results are consistent with these

observations in the sense that we do not find brown dwarf compan-

ions to solar-type stars in close orbits (frequency �8 per cent at the

95 per cent confidence level), but that VLM companions exist or-

biting stars and brown dwarfs with a wide range of masses. Our

results are also in good agreement with surveys of VLM objects

that are frequently found to have companions, but where their sepa-

rations are usually less than ≈20 au (Close et al. 2003, 2007; Allen

et al. 2007). It would be of great interest to map out the separation

distributions of VLM companions over a wide range of primary

masses. From the results of the main calculation, we predict that the

frequency of star–brown dwarf systems should not depend greatly

on primary mass, but that the typical star–brown dwarf binary sep-

aration should increase monotonically from �10 au for primary

masses less than 0.2 M⊙ to ∼50 au for primary masses ∼0.4 M⊙
and to >100 au for solar-type stars.

3.4.3 The frequencies of triple and quadruple systems

Consulting Table 3, we find that the main calculation produced 905

single stars/brown dwarfs, 90 binaries, 23 triples and 25 quadruples.

This gives an overall frequency of triple and quadruple systems of

only 2.3 ± 0.5 and 2.5 ± 0.5 per cent, respectively. These are

upper limits because some of these systems may be disrupted if the

calculation were followed longer.

Although the overall frequencies are low, it is clear from the ta-

ble that the frequencies of high-order multiples depend strongly on
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Stellar and multiple star properties from simulations 605

primary mass. For VLM primaries, the frequencies of triple/

quadruple systems range from 3.4 ± 2.0 per cent for the mass range

0.07–0.10 M⊙ to 0.9 ± 0.6 per cent for 0.03–0.07 M⊙ and much

less than 1 per cent for lower primary masses. For low-mass M stars

in the range 0.10–0.20 M⊙, the frequency of triples/quadruples is

5 ± 2 per cent. For M stars with masses in the range 0.20–0.50 M⊙,

the frequency of triples/quadruples is 15 ± 4 per cent, while for

solar-type and intermediate-mass stars the frequency is ≈37 ±

12 per cent.

How do these frequencies compare with observations? Fischer

& Marcy (1992) find seven triples and one quadruple amongst 99

M-star primaries giving a frequency of 8 ± 3 per cent. As mentioned

earlier, Fischer and Marcy’s survey was not sensitive to brown dwarf

companions, and most of their M stars had masses in the range 0.2–

0.5 M⊙. Excluding brown dwarfs from the multiple statistics, we

find a frequency of 9 ± 3 per cent for this stellar mass range in ex-

cellent agreement. Duquennoy & Mayor (1991) found seven triples

and two quadruples from their 164 solar-type primaries giving a

frequency of 5 ± 2 per cent. For solar-type stars (excluding brown

dwarf companions), we find a frequency of 18 ± 10 per cent. The

large uncertainty in our result makes comparison difficult for the

solar-type stars, but our result is not unreasonable, especially given

the fact that Duquennoy & Mayor admit that they are likely to have

missed some high-order multiple systems.

In summary, our frequencies of triples/quadruples are consistent

with the current observational surveys, though more robust statistics

from observations, particularly for VLM objects, and improved

statistics from the simulations, particularly for intermediate-mass

stars, are obviously desirable.

3.5 Separation distributions of multiples

With 58 stellar and 32 VLM binaries we can, for the first time,

study the properties of a reasonably large sample of binary systems

formed in a single star cluster. The main calculation also produced

Figure 17. The distributions of separations (semimajor axes) of multiple systems with stellar (left-hand panel) and VLM (right-hand panel) primaries produced

by the main calculation. The solid, double-hashed and single-hashed histograms give the orbital separations of binaries, triples and quadruples, respectively

(each triple contributes two separations and each quadruple contributes three separations). In the stellar graph, the curve gives the G-dwarf separation distribution

(scaled to match the area) from Duquennoy & Mayor (1991). In the VLM systems graph, the open black histogram gives the (scaled to match the number in

the 10–100 au range) separation distribution of the known VLM multiple systems maintained by Nick Siegler at http://vlmbinaries.org/ (last updated on 2008

February 4). The vertical dotted line gives the resolution limit of the calculations as determined by the gravitational softening and accretion radii of the sink

particles.

19 stellar and four VLM triple systems, and 23 stellar and two VLM

quadruple systems.

Observationally, the median separation of binaries is found to

depend on primary mass. Duquennoy & Mayor (1991) found that

the median separation of solar-type binaries was ≈30 au. Fischer

& Marcy (1992) found indications of a smaller median separation

of ≈10 au for M-dwarf binaries. Finally, VLM binaries are found

to have a median separation of � 4 au (Close et al. 2003, 2007;

Siegler et al. 2005), with very few VLM binaries found to have

separations greater than 20 au, particularly in the field (Allen et al.

2007). Most recently, Close et al. (2007) estimated that young VLM

objects have a wide (>100 au) binary frequency of ∼6 ± 3 per cent

for ages less than 10 Myr, but only 0.3 ± 0.1 per cent for field VLM

objects.

Unfortunately, in the main calculation, the gravitational force

between sink particles is softened when they approach within 4 au

with the maximum acceleration, and hence the minimum binary

separation, occurring at 1 au. Furthermore, gas within 5 au of a sink

particle is accreted, meaning that dissipative interactions with the

gas are omitted on these scales. These numerical approximations

necessarily affect the formation of the multiple systems. In the rerun

calculation, no gravitational softening is applied and binaries with

separations as small as 0.02 au could be produced. However, the

sink particles still accrete gas within 0.5 au, which is likely to affect

the binary formation, and smaller numbers of multiple systems are

produced in the rerun calculation giving poorer statistics.

In Fig. 17, we present the separation (semimajor axis) distri-

butions of the stellar (primary masses greater than 0.10 M⊙) and

VLM multiples. These distributions are compared with the sur-

veys of Duquennoy & Mayor (1991), Fischer & Marcy (1992)

and the listing of VLM multiples maintained by Nick Siegler at

http://vlmbinaries.org/, respectively. The filled histograms give the

separations of binary systems, while the double-hashed region adds

the separations from triple systems (two separations for each triple,

determined by subdividing the triple into a binary with a wider
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606 M. R. Bate

companion), and the single-hashed region includes the separations

of quadruple systems (three separations for each quadruple which

may be composed of two binary components or a triple with a wider

companion).

We find that in the main calculation, the median separation (in-

cluding separations from binary, triple and quadruple systems) in-

creases with increasing primary mass. The stellar systems have a

median separation of 26 au, while the VLM systems have a median

separation of 10 au. These values are in reasonable agreement with

the observed values mentioned above, and the shapes of the sepa-

rations distributions for stellar and VLM primaries are satisfactory

(at least beyond 10 au). However, it is also clear from Fig. 17 that

the resolution limits imposed by the sink particle approximations

(vertical dotted lines) almost certainly affect the distributions since

the peaks of both the stellar and the VLM distributions occur in the

1–10 au separation bin.

To investigate the effects of the sink particle approximations

on the distributions, in Fig. 18, we display the stellar and VLM

separation distributions from the rerun calculation (lower pan-

els) and the main calculation at the same time (t = 1.038 tff ;

Figure 18. Same as Fig. 17 but the separation (semimajor axis) distributions are given at t = 1.038 tff for the main calculation (top panels) and the rerun

calculation which uses sink particles with small accretion radii (0.5 au) and without gravitational softening (bottom panels). As expected, reducing the

lengthscales of the sink particle accretion radii and gravitational softening produces a higher fraction of small-separation multiple systems. In addition, the ‘pile

up’ of stellar system separations in the 1–10 au bin (top left-hand panel) disappears when smaller separations are allowed (bottom left-hand panel), recovering

a bell-shaped distribution more similar to the observed Duquennoy & Mayor (1991) distribution for solar-type primaries.

upper panels). As expected, reducing the sink particle accretion

radii and gravitational softening produces closer multiple systems.

The effect on the stellar distribution is particularly pleasing in

that the separation distribution becomes more bell like and the

peak occurs in the 10–100 au bin (rather than the 1–10 au bin)

which is well separated from the resolution limit (vertical dotted

line).

More VLM multiple systems are formed in the rerun calculation,

and there are more with separations of <10 au. Of even more

interest is the fact that, at t = 1.038 tff , the median separations of the

VLM multiples in the main calculation and the rerun calculation are

similar to each other and to the stellar multiples, but much larger

than at the end of the main calculation (≈30 au at early times,

but ≈10 au at the end of the main calculation). Admittedly, the

smaller numbers of VLM multiples at early times means that the

uncertainties are large. However, this indicates that VLM systems

may form with reasonably wide separations and evolve to smaller

separations. We note that at t = 1.038tff , two-thirds of the VLM

multiples in the main calculation and more than 80 per cent of

those in the rerun calculation are still accreting (and, thus, still
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Stellar and multiple star properties from simulations 607

evolving), whereas at the end of the main calculation, all but one

VLM multiple has ceased accreting. Bate et al. (2002b) discuss

how close binaries (separations less than 10 au) are formed from

wider systems in the BBB2003 calculation through a combination of

dynamical encounters with other protostars, their interactions with

circumbinary and circumtriple discs and accretion. Since the main

calculation is simply a larger version of BBB2003’s calculation, it is

probable that such evolution is also occurring here. The possibility

of VLM binaries undergoing evolution has also been suggested

observationally. Close et al. (2007) and Burgasser et al. (2007)

suggest that young, wide, VLM binaries are disrupted, leading to

the observed paucity of old, wide, VLM systems. They also find

evidence that a higher proportion of young VLM systems may have

unequal-mass components than for older systems (see also the next

section).

3.6 Mass ratio distributions of binaries

Along with the separation distributions of the multiple systems, we

can investigate the mass ratio distributions. In this section, we only

consider binaries, but we include binaries that are components of

triple and quadruple systems. A triple system composed of a binary

with a wider companion contributes the mass ratio from the binary,

as does a quadruple composed of a triple with a wider companion. A

quadruple composed of two binaries orbiting each other contributes

two mass ratios – one from each of the binaries.

Observationally, the mass ratio distribution of binaries is also

found to depend on primary mass. Duquennoy & Mayor (1991)

found that the mass ratio distribution of solar-type binaries peaked at

M2/M1 ≈ 0.2. Halbwachs et al. (2003) found a bimodal distribution

for spectroscopic binaries with primary masses in the mass range

0.6–1.9 M⊙ and periods � 10 yr with a broad peak in the range

M2/M1 = 0.2–0.7 and a peak for equal-mass systems (so-called

twins; Tokovinin 2000b). They also noted that the frequency of

twins was higher for periods <100 d, though this is not relevant for

the calculations presented here since they do not probe such short

periods. Mazeh et al. (2003) found a flat mass ratio distribution

for spectroscopic binaries with primaries in the mass range 0.6–

0.85 M⊙. Fischer & Marcy (1992) also found a flat mass ratio

distribution in the range M2/M1 = 0.4–1.0 for M-dwarf binaries

Figure 19. The mass ratio distributions of binary systems with stellar primaries in the mass ranges M1 > 0.5 M⊙ (left-hand panel) and M1 = 0.1–0.5 M⊙
(centre) and VLM primaries (right-hand panel; M1 < 0.1 M⊙) produced by the main calculation. The solid black lines give the observed mass ratio distributions

of Duquennoy & Mayor (1991) for G dwarfs (left-hand panel), Fischer & Marcy (1992) for M1 = 0.3–0.57 M⊙ (centre, solid line) and M1 = 0.2–0.57 M⊙
(centre, dashed line) and of the known VLM binary systems maintained by Nick Siegler at http://vlmbinaries.org/ (right-hand panel). The observed mass ratio

distributions have been scaled so that the areas under the distributions (M2/M1 = 0.4–1.0 only for the centre panel) match those from the simulation results.

The VLM binaries produced by the simulation are biased towards equal masses when compared with M-dwarf binaries (primary masses in the range M1 =

0.1–0.5 M⊙). 71 per cent of the VLM binaries have M2/M1 > 0.6 while for the M-dwarf binaries the fraction is only 51 per cent.

with all periods. Finally, VLM binaries are found to have a strong

preference for equal-mass systems (Close et al. 2003; Siegler et al.

2005; Reid et al. 2006).

In Fig. 19, we present the mass ratio distributions of the stars

with masses ≥0.5 M⊙ (left-hand panel), M dwarfs with masses

0.1 ≤ M < 0.5 M⊙ (centre panel) and VLM objects (right-hand

panel). We compare the M-dwarf mass ratio distribution to that

of Fischer & Marcy (1992), and the higher-mass stars to the

mass ratio distribution of solar-type stars obtained by Duquennoy

& Mayor (1991). The VLM mass ratio distribution is compared

with the listing of VLM multiples maintained by Nick Siegler at

http://vlmbinaries.org/.

We find that in the main calculation, the ratio of near-equal-

mass systems to systems with dissimilar masses decreases going

from VLM objects to M dwarfs in a similar way to the observed

mass ratio distributions, but that the trend is not as strong as in the

observed systems. Specifically, 71 per cent of the VLM binaries have

M2/M1 > 0.6 while for primary masses 0.1–0.5 M⊙, the fraction

is only 51 per cent. The stellar mass ratio distribution is consistent

with Fischer & Marcy’s distribution. The VLM binaries, although

biased towards equal-mass systems, are not as strongly biased as

is observed. However, currently there is no volume-limited sample

for VLM systems, and systems with more equal-mass components

are easier to detect, so the degree to which the observed mass ratio

distribution might be affected by selection effects is not yet clear.

What is clear, however, is that the mass ratios of binaries with

primary masses greater than 0.5 M⊙ do not agree with Duquennoy

& Mayor’s mass ratio distribution. Of the 34 binaries, only 10 have

mass ratios less than M2/M1 = 0.5.

In Fig. 20, we display the stellar (primary masses >0.1 M⊙) and

VLM mass ratio distributions from the rerun calculation (lower pan-

els) and the main calculation at the same time (t = 1.038tff ; upper

panels). The stellar mass ratio distributions are not significantly dif-

ferent from each other or from Fig. 19. However, the VLM binary

mass ratio distributions at early times (for both the main and rerun

calculations) are flatter than that obtained at the end of the main

calculation. Again, this implies that the properties of the VLM bina-

ries evolve. Both the apparent evolution of VLM binary separations

and mass ratios are consistent with the evolution discussed by Bate

et al. (2002b). Dynamical exchange interactions between binaries
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608 M. R. Bate

Figure 20. The mass ratio distributions of binary systems with stellar (M1 > 0.1 M⊙; left-hand panels) and VLM (right-hand panels) primaries produced by

the main calculation (upper panels) and rerun calculation (lower panels), both at t = 1.038tff . In the VLM graphs, the open black histogram gives the mass

ratio distribution of the known VLM multiple systems maintained by Nick Siegler at http://vlmbinaries.org/ (scaled to match the total number) . The frequency

of VLM binaries is higher in the rerun calculation, but the mass ratio distributions of both stars and VLM objects are indistinguishable given the small number

statistics. Comparing the VLM panels with that in Fig. 19, there is evidence that the VLM binaries begin with more uniform mass ratio distributions and evolve

towards equal masses as the main calculation proceeds.

and single objects tend to produce more equal-mass components,

as does accretion of gas from circumbinary discs or the accretion

of infalling gas with high specific angular momentum. Thus, the

apparent evolution of both the VLM binary separations and mass

ratios may be due to evolution during their formation.

3.6.1 Mass ratio versus separation

In Fig. 21, we plot mass ratios against separation (semimajor axis)

for the binaries, triples and quadruples at the end of the main cal-

culation. Note that for this figure we include systems that are sub-

components of higher-order systems. Thus, the closest two objects

in a triple also appear in the plot as a binary. Similarly, for quadru-

ples consisting of two binary subcomponents, each of the binaries

appears in the plot and for each of the quadruples that involves a

triple system, the triple appears in the plot.

There is clearly a relation between mass ratio and separation

for the binaries with closer systems having a preference for equal

masses. The median mass ratios for binary separations in the ranges

1–10, 10–100, 100–1000 and 1000–104 au are M2/M1 = 0.74, 0.57,

0.68 and 0.17, respectively. Including the mass ratios of triples and

quadruples (as defined in the caption of Fig. 21), these median

values become 0.74, 0.41, 0.15 and 0.07, respectively. The median

mass ratio for triples is 0.11 and for quadruples is 0.07. However,

the quadruples include those composed of two binaries and those

composed of a triple and a fourth wide component. The mass ratios

of the latter tend to be much lower than those of the former. There

are eight quadruples composed of two binaries and 16 composed of

triples and a fourth component. The median mass ratios for these

two subsamples are 0.45 and 0.03, respectively. There are also

only 11 (out of 40) triples composed only of stars (as opposed to

containing VLM objects). For these, the median mass ratio is 0.48.

All but one of the quadruple systems contain at least one VLM

object.

A trend of more unequal-mass binaries with increasing separation

is expected from the evolution of protobinary systems accreting gas

from an envelope (Bate 2000). Furthermore, dynamical interactions

between binaries and single stars tend to tighten binaries at the
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Stellar and multiple star properties from simulations 609

Figure 21. The mass ratios of binaries (filled circles), triples (open triangles)

and quadruples (open squares) as a function of semimajor axis for the main

calculation. For triples, the mass ratio compares the mass of the widest

component to the sum of the masses of the two closest components. For

quadruples involving a two binary components, the mass ratio is between

the two binaries, and for quadruples involving a triple, the mass ratio is

between the mass of the fourth component and the triple. All mass ratios

are defined to be ≤1. There is a clear relationship between mass ratio and

separation with closer binaries having a greater fraction of near equal-mass

systems.

same time as increasing the binary mass ratio through exchange

interactions.

Observationally, closer binaries are found to have a higher frac-

tion of ‘twins’ (Soderhjelm 1997; Tokovinin 2000b; Halbwachs

et al. 2003). Tokovinin (2000b) found evidence for the frequency

of twins falling off for orbital periods greater than 40 d, but

Halbwachs et al. (2003) found that the fraction of near equal-mass

systems (M2/M1 > 0.8) is always larger for shorter period binaries

than longer period binaries regardless of the dividing value of the

period (from just a few days up to 10 yr). However, despite the

fact that the fraction of twins decreases with increasing separation,

the mass ratio distributions of both the short- and long-period bi-

naries appear to have a peak at M2/M1 = 1 (e.g. Tokovinin 2000b;

Halbwachs et al. 2003; Söderhjelm 2007). These observed relations

are in qualitative agreement with the decreasing median mass ratio

with increasing separation discussed above. In Fig. 21, we also note

that although there is a higher fraction of twins at small separations,

there are still some wide twins (separations 30–300 au).

For stellar triple and quadruple systems, Tokovinin (2008) re-

ports that triples are observed to have a median mass ratio of 0.39

independent of the outer orbital period, while quadruples involv-

ing two binary subcomponents have a similar median mass ratio

of ≈0.45, but there may be a dependence on the outer orbital pe-

riod. The median mass ratio of the triple systems from the main

calculation is in agreement with the observations, as long as we

only consider the triples containing stellar components (no VLM

components). This is consistent with the observational sample, but

it does raise the question of how many triple systems containing

VLM components exist in reality. Similarly, the median mass ratio

of quadruples containing two binary subsystems is in good agree-

ment with observations, but all but one of the systems from the

main calculation include a VLM object, whereas the observational

sample is dominated by stellar-only systems. It is also interesting to

note that quadruples composed of a triple and a wide fourth compo-

nent outnumber quadruples composed of two binaries by 2:1 in the

main calculation. Tokovinin (2000a) finds roughly equal numbers

of such quadruples. However, if the wide components of quadru-

ples containing triples as subcomponents typically have low masses,

this could be attributed to observational bias.

For the binaries, the clear trend of decreasing mass ratio with

separation may go some way to explain the apparent deficit of

unequal-mass binaries with primary masses greater than 0.5 M⊙ in

the main calculation (left-hand panel of Fig. 19). It is clear from

Figs 17 and 21 that the main calculation does not produce many wide

pure binaries – most of the wide systems are triples or quadruples,

and the binary components within them necessarily have smaller

separations than the wide tertiary or quartic components. Since

the mass ratio distributions in Fig. 19 only contain binary mass

ratios an unequal-mass visual binary may in fact be composed of

an undetected close binary and a wider companion. However, while

an observer of the system would include the unequal-mass ratio of

the wide system, only the mass ratio of the close binary component

would be included in a mass ratio distribution like Fig. 19.

Therefore, one way to reconcile the main calculation with ob-

servations may be to include the mass ratios of tertiary and quartic

components. The problem with this is that there is no unique way to

do this – should the mass ratio of a triple be simply the ratio of the

total mass of the binary to the third component? Should an attempt

be made to model the luminosities of the two stars in the binary?

What if the ratio of the two separations is small so that if an observer

identified it as a binary, they would also have been likely to separate

it into a triple? Furthermore, Duquennoy & Mayor (1991) actually

found a rather low frequency of triple and higher-order systems

anyway, so perhaps the question of how to treat these higher-order

systems is not important. On the other hand, discussion continues as

to how many triples and quadruples were missed by this and other

surveys.

For the moment, we conclude that the main calculation appears

to underproduce unequal-mass solar-type binaries compared with

observations. However, this may at least be partially reconciled if

many of the observed binaries are in fact higher-order systems or, al-

ternately, if the mass ratios of tertiary and quartic components from

the main calculation are included in the statistics. There is much less

of a difference between observations and the main calculation for

binaries with M-dwarf primaries or VLM binaries simply because

(a) the frequency of higher-order systems decreases rapidly with de-

creasing primary mass (Section 3.4.3), so the issue of how to treat

higher-order systems does not arise and (b) the typical separation of

binaries decreases with decreasing primary mass (Section 3.5), so

the wider systems that tend to have more unequal masses are much

less frequent for low primary masses.

3.7 Orbital eccentricities

Observationally, there is observed to be an upper envelope to bi-

nary eccentricities at periods less than a few years (Duquennoy &

Mayor 1991; Halbwachs et al. 2003). However, the main calcula-

tion does not allow us to probe such small separations. Observations

also indicate that eccentricities e < 0.1 are rare for periods greater

than ≈100 d (separations �1 au). Finally, Halbwachs et al. (2003)

find that the eccentricities of so-called ‘twins’ (binaries with mass

ratios M2/M1 > 0.8) with periods greater than ≈10 d (the tidal
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610 M. R. Bate

circularisation radius) are lower than for more extreme mass ratio

systems.

In the upper panel of Fig. 22, we plot the eccentricities versus

semimajor axes of the orbits of the binaries, triples and quadruples

from the main calculation. The distribution of eccentricities looks

reasonable for separations greater than 10 au. In particular, of the

122 orbits with separations greater than 10 au, there are only seven

orbits with e < 0.1, and all these have separations between 10 and

100 au.

However, there appears to be a strong excess of systems with

e > 0.7 and separations less than 10 au. This is almost certainly an

artefact introduced by the sink particle approximation. The absence

of gas closer than 5 au from a sink particle means that the dissipative

interactions between binary stars and the gas orbiting them are

absent. In Fig. 22, we also plot eccentricity versus semimajor axis

for the orbits of binaries, triples and quadruples from the main

calculation (middle panel) and rerun calculation (lower panel) at

t = 1.038tff . The rerun calculation has no indication of the excess

population at separations less than 10 au and e > 0.7, whereas even at

this early time the main calculation has five binaries with separations

less than 10 au and e > 0.8. Thus, as expected, reducing the sink

particle accretion radii allows dissipative interactions between sink

particles on smaller scales and brings the calculations into better

agreement with the observed eccentricity distributions. The mean

eccentricity of the systems in the rerun calculation is 〈e〉 = 0.44

for the binaries only, and 〈e〉 = 0.45 if the orbits of the triples and

quadruples are also taken into account. The mean binary eccentricity

is in good agreement with the observed mean eccentricities of long-

period binaries (periods P � 300 d; Duquennoy & Mayor 1991;

Halbwachs et al. 2003).

We have also examined the dependence of the eccentricity on

the mass ratio (for binary orbits only, but including binaries that are

also components of higher-order system) to see whether there is any

sign of the tentative correlation between mass ratio and eccentricity

found by Halbwachs et al. (2003). For the main calculation, the

median eccentricity of binaries with mass ratios M2/M1 < 0.8 is

e = 0.74 (100 orbits), while for M2/M1 > 0.8, the median is

e = 0.55 (46 orbits). Excluding orbits with separations less 10 au

(since they likely have high eccentricities due to the absence of

dissipation on small scales), the median eccentricity of binaries

with mass ratios M2/M1 < 0.8 is e = 0.47 (47 orbits), while for

M2/M1 > 0.8, the median is e = 0.37 (10 orbits). For M2/M1 >

0.9, the median is only e = 0.34 (seven orbits). For the rerun calcu-

lation, the statistics are that the median binary eccentricity for mass

ratios M2/M1 < 0.8 is e = 0.45 (33 orbits), while for M2/M1 >

0.8, the median is e = 0.39 (10 orbits) and e = 0.36 for M2/M1 >

0.9 (only five orbits). Thus, in all cases, we find evidence for a link

between mass ratio and eccentricity such that ‘twins’ have lower

eccentricities, as is observed, though the effect is quite weak.

3.8 Relative alignment of orbital planes for triples

For a hierarchical triple system there are two orbital planes, one

corresponding to the short-period orbit and one to the long-period

orbit. There are many reasons why the inclinations of the orbital

planes may not be randomly distributed relative to one another.

For example, if the triple system forms from the fragmentation of

a disc around an initially single object, the orbital planes would

be expected to be nearly coplanar. If a triple system forms from a

flatten core, it may have preferentially aligned orbital planes. If a

triple system forms with initially non-coplanar orbital planes and

Figure 22. The eccentricity distribution of binary (filled circles), triple

(open triangles) and quadruple orbits (open squares) as a function of semi-

major axis for the main calculation at the end (top panel) and at t = 1.038tff
(centre) and for the rerun calculation (lower panel). The distribution at the

end of the main calculation looks reasonable except for the group of bina-

ries with semimajor axes less than ∼10 au and eccentricities e � 0.7. These

systems would presumably have smaller eccentricities if the gas dynamics

inside 5 au of each sink particle were modelled. This is tested by comparing

the main calculation with the rerun calculation at t = 1.038tff (the lower

two panels). As expected, although the main calculation still has a group

of highly eccentric close binaries, these systems are absent in the rerun

calculation.
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Stellar and multiple star properties from simulations 611

subsequently accretes a lot of mass, this may drive its orbital planes

into closer alignment. On the other hand, if a triple system forms

from capture of a single object by a binary, the orbital planes may be

very misaligned. Similarly, the wide tertiary in an initially aligned

triple system may be perturbed by a passing object resulting in

misaligned orbits.

Observationally, it is difficult to determine the relative orienta-

tions of the two orbits of a triple system due to the number of

quantities that must be measured to fully characterize the orbits.

In particular, the relative angle between the two orbital angular

momentum vectors is given by

cos 	 = cos i1 cos i2 + sin i1 sin i2 cos(
1 − 
2), (3)

where i1 and i2 are the orbital inclinations and 
1 and 
2 are the

position angles of the lines of nodes. The latter are only known with

180◦ ambiguity unless the ascending node is identified by radial

velocities. Because for most observed triple systems the sign of the

cos (
1 − 
2) term is not known, there are two possible values of 	.

On the other hand, the mean value of 	 can be measured simply from

the knowledge of the number of corotating and counter-rotating

systems (Worley 1967; Tokovinin 1993; Sterzik & Tokovinin 2002).

These facts are important when we come to compare our results with

observations below.

The first studies (Worley 1967; van Albada 1968) of the relative

orbital orientations of triple systems found a small tendency towards

alignment of the angular momentum vectors of the orbits. Of 54

systems with known directions of the relative motions, 39 showed

corevolution and 15 counter-revolution resulting in a mean relative

inclination angle of 〈	〉 ≈ 50◦. For 10 visual systems with known

orbits, five systems were found to have 	 < 90◦, two had 	 > 90◦

and three were ambiguous. Fekel (1981) examined 20 systems with

known orbits and periods of less than 100 yr (for the wide orbit).

He found that one-third had non-coplanar orbits. Finally, Sterzik &

Tokovinin (2002) performed the most detailed study to date. From

135 visual triple systems for which the relative directions of the

orbital motions are known, they found 〈φ〉 = 67◦ ± 9◦, and this

result was also consistent with 22 systems for which the orbits were

known. They also found a tendency for the mean relative orbital

angular momentum angle to increase with increasing orbital period

ratio (i.e. systems with more similar orbital periods tend to be more

closely aligned).

At the end of the main calculation, there are 40 triple systems

(17 of these are subcomponents of quadruple systems). The mean

relative orientation angle of these systems is 〈	〉 = 65◦ ± 6◦, in

very good agreement with the observed value mentioned above.

This indicates that both the observed and simulated triple systems

have a small tendency towards orbital coplanarity. The rerun and

the main calculations at t = 1.038tff formed 20 and 14 triples with

〈	〉 = 53◦ ± 7◦ and 69◦ ± 13◦, respectively. In Fig. 23, we compare

the cumulative distributions of the orbital orientation angles for the

triple systems of Sterzik & Tokovinin (2002) with those formed

by the main calculation at the end and at t = 1.038tff , and by the

rerun calculation. The observational results (solid lines) include

two angles for each observed triple system due to the ambiguity

described above. For the simulation results, we plot two cumulative

distributions, one with the actual angles (dot–dashed lines) and one

with two angles (dashed lines) for each triple (the true angle and

the other possible angle allowed by reversing the rotation of one of

the orbits). The observed and simulated distributions are in good

agreement when the angle ambiguity is included, but even without

including the angle ambiguity, the simulations are consistent with

the observations.

Figure 23. The cumulative fraction of triples as a function of their relative

orbital orientation angles at the end of the main calculation (top panel) and

at t = 1.038tff for the main calculation (centre) and the rerun calculation

(bottom panel). In each case, the solid line gives the observed distribu-

tion of orientation angles including the cos (
1 − 
2) ambiguity (Sterzik &

Tokovinin 2002), the dot–dashed line gives the actual result from the simula-

tion, and the dashed line gives the simulation result including the ambiguity

present in the observed values. All simulated distributions are consistent

with the observed distribution. When the simulated distributions include the

angle ambiguity, the probabilities that they are drawn from the same popu-

lation as the observed systems are 54, 72 and 66 per cent, respectively. Even

when the actual simulated distributions are compared with the observed

distribution the probabilities are 14, 88 and 3.5 per cent, respectively.
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612 M. R. Bate

Figure 24. The relative inclinations of the two orbital planes for the 40 triple systems produced by the main calculation (including those that are subcomponents

of quadruples). We give plots of the relative orbital orientation angle versus the semimajor axis of the third component (left) and versus the period ratio of the

long and short-period orbits (right). There are no triples with relative orbital angles >140◦. There is also the hint of an excess of systems with relative orbital

angles less than ≈20◦ for systems with period ratios less than 100. Note that the two systems with period ratios PL/PS < 5 are still dynamically unstable and

would certainly undergo further evolution.

In Fig. 24, we plot the relative orbital orientation angle of the 40

triple systems as functions of the semimajor axis of the wide orbit

and the ratio of the two orbital periods. There is no clear correlation

between the orbital orientation angle and the semimajor axis or

period ratio, or indeed on other quantities such as primary mass

or the eccentricity of the long-period orbit. However, although the

triples are formed with a wide range of relative orbital inclinations,

the absence of any angle greater than 140◦ seems to be significant.

This implies that the triple systems are not formed purely by the

capture of a third component. We also note that there appears to be a

small collection of four nearly coplanar triples with wide semimajor

axes less than 100 au, or six nearly coplanar triples with period ratios

of less than 100. This is intriguing, but unfortunately not statistically

significant.

As mentioned above, Sterzik & Tokovinin (2002) found a ten-

dency for the mean relative orbital orientation angle to increase with

increasing period ratio. In Fig. 25, we reproduce their observed re-

sults and plot our results from the main and the re-run calculations.

Here, we have performed averages over four groups of 10 (five for

the rerun calculation) triples, sorted by period ratio. Our results

are consistent with the observed values and there may be a hint of

a dependency on the period ratio, but our results are also consis-

tent with no dependence. Better statistics are required for both the

simulations and observations to validate this trend.

3.9 Relative alignment of discs and orbits

Finally, we consider the relative alignment of the spins of the sink

particles in binary systems. Unfortunately, there is not a direct anal-

ogy with real binary systems in this case because the sink particles

are larger than stars and yet smaller than a typical disc. The ori-

entation of the sink particle spin thus represents the orientation of

the total angular momentum of the star and the inner part of its

surrounding disc. This distinction is important because during the

formation of an object the angular momentum usually varies with

time as gas falls on to it from the turbulent cloud. Thus, the orien-

tation of the sink particle frequently differs substantially from the

Figure 25. The mean relative orbital orientation angle for triple systems.

The blue filled circles give the results at the end of the main calculation

with their statistical uncertainties. The red open circles give the results from

the rerun calculation. The main calculation has not formed enough triple

systems at t = 1.038tff to enable meaningful data to be plotted at the earlier

time. The black crosses give the observed mean angles from the Mulitple Star

Catalogue as calculated by Sterzik & Tokovinin (2002). The calculations are

consistent with the observations and hint at an increasing mean orientation

angle with increasing period ratio, but they are also consistent with a mean

orientation angle that is independent of the period ratio.

orientation of its resolved disc (if one exists) and, furthermore, the

orientations of both the sink particles and their discs change with

time while the object continues to accrete gas.

Observationally, Weis (1974) found a tendency for alignment be-

tween the stellar equatorial and orbital planes among primaries in

F-star binaries, but not A-star binaries. The orbital separations were

mainly in the 10–100 au range. Similarly, Guthrie (1985) found

no correlation for 23 A-star binaries with separations 10–70 au.

Most recently, Hale (1994) considered 73 binary and multiple sys-

tems containing solar-type stars and found evidence for approximate

coplanarity between the orbital and the stellar equatorial planes for
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Stellar and multiple star properties from simulations 613

binary systems with separations less than ≈30 au and apparently

uncorrelated stellar rotation and orbital axes for wider systems. For

higher-order multiple systems, however, non-coplanar systems were

found to exist for both wide and close orbits. Hale found no evidence

to support a difference dependent on spectral type, eccentricity or

age. In terms of circumstellar discs, there is evidence for misaligned

discs from observations of misaligned jets from protostellar objects

(Davis, Mundt & Eisloeffel 1994), inferred jet precession (Eisloffel

et al. 1996; Davis et al. 1997) and direct observations (Koresko

1998; Stapelfeldt et al. 1998). However, these are not statistically

useful samples. Finally, Monin, Menard & Duchene (1998), Jensen

et al. (2004), Wolf, Stecklum & Henning (2001) and Monin, Ménard

& Peretto (2006) used polarimetry to study the relative disc align-

ment in T-Tauri wide binary and multiple systems. They all found

a preference for disc alignment for binaries. However, Jensen et al.

(2004) also found that the wide components of triples and quadru-

ples appear to have random orientations.

For the main calculation (either at the end or at t = 1.038tff), we

find no significant dependence of the relative orientation of the two

sink particle spins on mass ratio, semimajor axis, period or eccen-

tricity. The relative orientations appear to be random. We do not

explicitly consider the relative orientation of the sink particle spins

and the orbital plane since if the sink particle spins are uncorrelated

with each other, then by definition they cannot (both) be closely cor-

related with the orbital axis. The mean relative orientation angle for

the 146 binaries (including those that are components of triple and

quadruple systems) is 88◦ ± 3◦ at the end of the main calculation

and 79◦ ± 7◦ at t = 1.038tff (37 binaries). For the rerun calculation,

with smaller accretion radii and orbital periods, the mean angle is

73◦ ± 7◦ (43 binaries) and there is a hint that short-period bina-

ries (periods less than a few years) may have preferentially aligned

spins but it is not statistically significant (see Fig. 26). For all of

the calculations, there is also a hint that the most massive binaries

have preferentially aligned spins, but only for the rerun calculation

is the reduction in the mean relative angle statistically significant.

In this case, the mean angle for most massive quartile of binaries

(11 out of 43, having total binary masses greater than ≈0.6 M⊙) is

38◦ ± 12◦ which differs from a random value of 90◦ by more than

4σ , while the mean angle for the other three quartiles is each within

Figure 26. The relative inclinations of the rotation axes of the sink particles (modelling stars and their inner discs) of the binary systems produced by the

rerun calculation (including those that are subcomponents of triples and quadruples). There is an excess of nearly aligned systems with a high total mass

and/or orbital periods less than a few years. The main calculation also shows a slight tendency for high-mass binaries to have aligned rotation axes, but it is not

statistically significant (see the main text).

0.5σ of 90◦ (see the left-hand panel of Fig. 26). Within the compet-

itive accretion paradigm, the reason that the most massive binaries

tend to have aligned rotation axes is presumably that they have both

accreted a lot of gas from a common reservoir in order to become

massive binaries and that any initial variation in their rotation axes

has been decreased by the long period of accretion. The compo-

nents of less massive binaries, on the other hand, still largely retain

their initial (randomly orientated) rotation axes. Unfortunately, the

observational surveys mentioned above are somewhat ambiguous

on whether or not there is a dependence of alignment of the stellar

rotation axes on the total binary mass.

4 C O N C L U S I O N S

We have presented results from the largest hydrodynamical sim-

ulation of star cluster formation to date that resolves the opacity

limit for fragmentation. It also resolves protoplanetary discs (radii

≥10 au) and binaries with separations as small as 1 au. The calcu-

lation produced 1254 stars and brown dwarfs. This large number

of objects allows detailed comparison of the statistical properties

of the stars, brown dwarfs and multiple systems with the results

of observational surveys. We also reran part of the simulation with

smaller sink particles and no gravitational softening between sink

particles allowing discs with radii ≥1 au to be resolved and binaries

as close as 0.02 au to test the dependence of the results on the sink

particle approximation. Our conclusions are as follows.

(i) The calculations produce an IMF with a similar form to the

observed IMF, including a Salpeter-type slope at the high-mass

end, but they overproduce brown dwarfs. The brown dwarf to

star ratio is 3:2 from the main calculation, whereas observation-

ally it is estimated to be more like 1:3. This does not appear

to be a result of using sink particles. Rather, it is likely due to

the absence of radiative feedback and/or magnetic fields in the

calculations.

(ii) As in previous, smaller calculations, the IMF originates

from competition between accretion and ejection, which termi-

nates the accretion and sets an object’s final mass. Stars and brown

dwarfs form in the same way, with similar accretion rates from the
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614 M. R. Bate

molecular cloud, but stars accrete for longer than brown dwarfs

before undergoing the dynamical interactions that terminate their

accretion.

(iii) We examine the dependence of binarity, velocity dispersion

and the IMF on the distance from the centre of the resulting stellar

cluster. We find that the binarity and velocity dispersion are constant

throughout the bulk of the cluster, but beyond three half-mass radii

(the outer 20 per cent of the stellar mass), the binarity decreases

and the velocity dispersion increases because these objects have

been ejected. We find that stars have a slightly higher velocity

dispersion than VLM objects, and binaries have a significantly lower

velocity dispersion than single objects. Contrary to the expectations

of competitive accretion, we find no evidence of mass segregation.

This may be because the stellar cluster was formed from the merger

of five subclusters shortly before the calculation was stopped.

(iv) We examine the potential effect of dynamical interactions on

protoplanetary disc sizes. We find that the typical truncation radius

decreases with increasing stellar mass (i.e. more massive stars have

had closer encounters). It is difficult to directly associate the closest

encounter with the radii of protostellar discs because many stars

accrete new discs after suffering a close encounter. This is partic-

ularly true for the more massive stars. However, for VLM objects,

dynamical encounters usually occur soon after their formation and

terminate their accretion so their truncation radii may more closely

reflect their disc radii. Under this assumption, we find that at least

10 per cent of the VLM objects should have disc radii >40 au.

In lower density star-forming environments, this fraction may be

expected to be larger. More massive stars that undergo close en-

counters and do not subsequently accrete new discs may be the

source of WTTS with very young ages (�1 Myr).

(v) We find that multiplicity strongly increases with primary

mass. The results from the main calculation are in good agree-

ment with the observed multiplicities of G, K and M dwarfs. For

VLM objects with primary masses 0.03–0.10 M⊙, the multiplicity

fraction is 0.10 ± 0.03 which is lower than the observations by

a factor of 2. However, when smaller accretion radii are used the

VLM multiplicity rises to 0.19 ± 0.05, in good agreement with

observations. Therefore, we conclude that hydrodynamical simula-

tions are able to match the observed multiplicities if the resolution

is adequate. We also predict that the multiplicity continues to drop

below 30 Jupiter masses. We expect a multiplicity no more than

≈7 per cent for objects with masses 10–30 Jupiter masses, and less

than 3 per cent for primaries of less than 10 Jupiter masses.

(vi) We find very low frequencies of VLM companions to stars,

and we find that the frequency does not depend strongly on primary

mass. However, the median star–VLM separation strongly increases

as primary mass increases from less than 10 au for 0.1–0.2 M⊙
primaries to ∼50 au for masses ≈0.4 M⊙ and >100 au for solar-

type stars.

(vii) We examine the separation distributions of binaries, triples

and quadruples. We find that the median separation decreases with

decreasing primary mass with stellar systems having a median sep-

aration of ≈26 au and VLM systems ≈10 au. This trend is in

agreement with observed systems, but is not as strong. At small

separations, the distributions are dependent on the sink particle pa-

rameters. Better agreement is obtained with smaller sink particle

accretion radii and gravitational softening.

(viii) The mass ratio distribution of M-dwarf binaries is roughly

flat and consistent with observations. VLM systems have a strong

preference for equal masses, but not as strong as it appears to

be the case for observed systems. However, for K- and G-type

primaries, the calculations underproduce unequal-mass systems. We

find that closer binaries tend to have a higher proportion of equal-

mass components in broad agreement with observed trends. We also

find reasonable agreement with observations on the mass ratios of

triples and quadruples, but with relatively large uncertainties from

both the simulation and observations.

(ix) We find that the separations and mass ratios of VLM bina-

ries evolve during their formation from wide systems with unequal

masses towards close, equal-mass systems.

(x) The main calculation produces a strong excess of short-period

highly eccentric binaries. However, when smaller sink particle ac-

cretion radii and gravitational softening are used, this excess dis-

appears leaving a reasonable eccentricity distribution with a mean

eccentricity that is in agreement with observations. We also find

a weak link between mass ratio and eccentricity such that ‘twins’

have lower eccentricities, as is observed.

(xi) We investigate the relative orientation of the orbital planes of

triple systems. We obtain a mean orientation angle of 〈	〉 = 65◦ ±

6◦ from the main calculation in excellent agreement with the ob-

served value. Thus, triples have a small tendency for orbital align-

ment. The distribution of orientation angles is also in agreement

with observations. There is an absence of relative angles greater

than ≈ 140◦ in the simulated triples.

(xii) Finally, we study the relative orientations of sink particle

angular momentum vectors in binaries (analogous to the rotation

axes of stars and their inner discs). We find no significant tendency

towards alignment. However, there is weak evidence that the most

massive binaries and/or the shorter period systems may have a

tendency for alignment. Observations suggest that shorter period

binaries have a tendency towards alignment.

Overall, the hydrodynamical star cluster formation simulations

display good agreement with a wide range of the observed statistical

properties of stellar systems. There are only two areas of poor

agreement: the overproduction of brown dwarfs relative to stars

and the lack of unequal-mass K- and G-dwarf binaries. The former

of these is likely due to the absence of radiative feedback and/or

magnetic fields in the simulations, but the reason for the latter is

unclear.

Finally, we note that from this point forward, numerical sim-

ulations of star formation should be capable of producing precise

predictions for the statistical properties stars. The precision of obser-

vational surveys will soon become the limiting factor in comparing

the results of numerical simulations with observations. The results

of large observational surveys of stellar properties will be needed

in the near future.
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