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Abstract

Global and semi-global convective dynamo simulations of solar-like stars are known to show a transition from an
antisolar (fast poles, slow equator) to solar-like (fast equator, slow poles) differential rotation (DR) for increasing
rotation rate. The dynamo solutions in the latter regime can exhibit regular cyclic modes, whereas in the former
one, only stationary or temporally irregular solutions have been obtained so far. In this paper we present a semi-
global dynamo simulation in the transition region, exhibiting two coexisting dynamo modes, a cyclic and a
stationary one, both being dynamically significant. We seek to understand how such a dynamo is driven by
analyzing the large-scale flow properties (DR and meridional circulation) together with the turbulent transport
coefficients obtained with the test-field method. Neither an αΩdynamo wave nor an advection-dominated dynamo
are able to explain the cycle period and the propagation direction of the mean magnetic field. Furthermore, we find
that the α effect is comparable or even larger than the Ω effect in generating the toroidal magnetic field, and
therefore, the dynamo seems to be of α2

Ω or α2 type. We further find that the effective large-scale flows are
significantly altered by turbulent pumping.

Key words: dynamo – magnetohydrodynamics (MHD)

1. Introduction

Recently, Brandenburg & Giampapa (2018) reported on an
abrupt increase of the magnetic activity level of solar-like stars
with decreasing values of the Coriolis number in the vicinity of
its solar value, with the Coriolis number quantifying the
rotational influence on convection. Another observational study
(Olspert et al. 2018) found that the degree of magnetic
variability abruptly decreases, indicative of the disappearance
of magnetic cycles, at slightly lower than solar chromospheric
activity index values. Moreover, Metcalfe et al. (2016)
interpreted Kepler data to indicate that the Sun is rotationally
and magnetically in a transitional state, where the global
magnetic dynamo is shutting down. Brandenburg & Giampapa
(2018) proposed a transition in the differential rotation (DR)

from solar-like (for younger stars) to antisolar (at a later age) to
be responsible for some of these phenomena.

This transition (henceforth AS–S transition) has already been
the subject of many numerical studies (see, e.g., Gastine et al.
2014; Käpylä et al. 2014; Featherstone & Miesch 2015;
Mabuchi et al. 2015; Viviani et al. 2018), and they all pinpoint
it in a narrow Coriolis number interval around its solar value.
The latter can be estimated, for example, from mixing-length
models to be around two (e.g., Käpylä et al. 2014). However,
none of these works considered dynamo solutions near the
transition point. They either studied the cyclic modes in the
solar-like rotation regime, or the stationary and temporally
irregular ones (Karak et al. 2015; Warnecke 2018) obtained in
the antisolar regime.

In a previous paper (Viviani et al. 2018), we reported on
dynamo simulations of solar-like stars with varying rotation
rate, two of which showed oscillatory behavior in the AS-S
transition. In these simulations, the poleward migration of the
magnetic field is accompanied by a rotation profile exhibiting a
decelerated equator and faster polar regions (antisolar DR). The

aim of the present paper is to study how such transitional–
regime dynamos operate.
In the regime of solar-like DR, cyclic dynamo solutions

with equatorward dynamo waves are often obtained from
global magneto-convection models (e.g., Käpylä et al. 2012;
Augustson et al. 2015; Strugarek et al. 2017). Most of them can
be explained in terms of Parker waves (see, e.g., Warnecke
et al. 2014, 2016, 2018; Käpylä et al. 2016, 2017; Warnecke
2018). The migration direction and cycle period of such waves
is determined by the product of the α effect and the radial
gradient of the local rotation rate Ω (Parker 1955; Yoshimura
1975). For an equatorward-migrating field in the northern
hemisphere (as observed on the Sun), one needs, for example, a
negative radial gradient of Ω and a positive α effect. However,
simplified dynamo models often invoke an advection-
dominated concept (e.g., Choudhuri et al. 1995; Dikpati &
Charbonneau 1999; Küker et al. 2001) to explain the migration
and cyclic behavior of large-scale stellar magnetic fields. In this
case, the meridional flow speed and direction at the location of
the toroidal field generation determine the cycle period and
latitudinal dynamo wave direction.
Another possible mechanism generating cyclic dynamo

solutions is an α2 dynamo (Baryshnikova & Shukurov 1987;
Rädler & Bräuer 1987; Brandenburg 2017). In this case,
magnetic field generation is due to the α effect alone, and DR is
not needed. Such a dynamo was reproduced in forced
turbulence in a spherical shell (Mitra et al. 2010) and
convection simulations in a box (Masada & Sano 2014), but
global convective dynamo models have not yet yielded a
similar solution.
In this work, we will investigate the properties of one

particular transitional–regime dynamo solution, and test which
mechanisms can explain the seen cyclic behavior. To achieve
this goal we will use the test-field method (Schrinner et al.
2005, 2007) for extracting the turbulent transport coefficients.
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This is possible due to the dominance of the axisymmetric
magnetic field allowing us to try a description in terms of
mean-field theory. The test-field method has been successfully
used in previous studies to explain planetary dynamos (e.g.,
Schrinner 2011; Schrinner et al. 2011, 2012), cyclic dynamo
solutions of solar-type stars (Warnecke et al. 2018; Warnecke
2018), and the long-term variations of these solutions (Gent
et al. 2017).

2. Setup and Methods

We use the PENCIL CODE
4 to solve the fully compressible

magnetohydrodynamic equations for the velocityU , the density
ρ, the specific entropy s, and the magnetic vector potential A
with the magnetic field = ´B A in a spherical shell
without polar cap, defined in spherical coordinates (r, θ, f) by
0.7R�r�R for the radial extent, with θ0�θ�π−θ0 and
0�f�2π for the extents in colatitude and longitude,
respectively, where θ0=15°. The setup is the same as the
one used in Käpylä et al. (2013) and Viviani et al. (2018). We
impose impenetrable and stress-free boundary conditions at all
radial and latitudinal boundaries for the velocity field U , and a
perfect-conductor boundary condition at the bottom and the
latitudinal boundaries for B, while at the top, the field is forced
to be radial. The temperature follows a blackbody condition at
the top, whereas a constant heat flux is prescribed at the
bottom. At the latitudinal boundaries, zero heat flux is
enforced. We start with an isentropic atmosphere for density
and entropy, see Käpylä et al. (2013) for details. The initial
conditions for the magnetic field and the velocity are weak
Gaussian seeds.

Nondimensional input parameters for the examined run are
the Taylor number, or correspondingly the Ekman number,
defined as

( ( ) ) · ( )n= W D = =-rTa 2 Ek 2.03 10 , 10
2 2 2 7

where Ω0 is the overall rotation rate with Ω0/Ωe=1.8 for the

considered run,Δr=0.3R is the thickness of the shell, and ν is

the constant viscosity. Further, we have the thermal, sub-grid

scale (SGS) thermal and magnetic Prandtl numbers, the latter

two describing the unresolved turbulent effects:

( )
n
c

n
c

n
h

= = = = = =Pr 58, Pr 2.5, Pr 1. 2
m SGS

SGS
m M

Here, χm is the heat diffusivity calculated in the middle of the

convective zone at rm=0.85R as ( ) ( )c r= K r c rP
m m m , cP

being the specific heat at constant pressure. The radiative heat

conductivity K follows an r−15 dependency to mimic the actual

heat flux profile in the Sun. c
SGS
m is the turbulent heat

diffusivity at r=rm (see Käpylä et al. 2013, for details) and η

is the constant magnetic diffusivity.
The nondimensional quantities are scaled to physical units

using the solar radius R=7·108m, solar rotation rate
Ωe= 2.7·10−6s−1, the density at the bottom of the
solar convection zone ρ(0.7R)=ρ0=200kg m−3, and
μ0=4π·10−7Hm−1. The initial density contrast in the
simulation is roughly 30, and the dimensionless luminosity

[ ( ) ] ·r= » - L GM R 3.8 100 0
3 2 1 2 5, where L0 is the

luminosity in the simulation, G is the gravitational constant,
and M the mass of the star. This corresponds to an

approximately 106 times higher luminosity than the solar one,
Le, to avoid the acoustic timestep constraint. The rotation rate
is increased correspondingly in proportion to ( )L L0

1 3, to
obtain a realistic rotational influence on the flow (for further
details see Appendix A of Käpylä et al. 2019).
We indicate by B andU the mean (longitudinally averaged)

fields, and by ¢b , ¢u the corresponding fluctuating fields, so that,
for example, = + ¢B B b .
The need to compute turbulent transport coefficients can be

seen from the induction equation for the mean magnetic field, B :

( ) ( )h  ¶
¶

= ´ ´ + ¢ ´ ¢ - ´ ´
B

U B u b B
t

. 3

The term = ¢ ´ ¢ u b is the turbulent electromotive force

(EMF); it can be expanded in terms of B and its derivatives.

Further, the tensorial coefficients of the individual contribu-

tions can be divided into symmetric and antisymmetric parts

(see, e.g., Krause & Rädler 1980) such that

· ·

· ( ) ( )( )

a g b d
k

 


= + ´ - ´ - ´ ´
-

 B B B B

B , 4s

where a and b are symmetric tensors of rank two, g and dare
vectors, while k is a tensor of rank three with ( )( )B s being the

symmetric part of the derivative tensor of B . Each of these

coefficients can be related to a physical effect, e.g., a covers

cyclonic generation (α effect), b describes turbulent diffusion, g
represents turbulent pumping. The pumping enters the effective

mean flow, U eff=U +g , (e.g., Kichatinov 1991; Ossendrijver

et al. 2002; Käpylä et al. 2006; Warnecke et al. 2018) and may

thus be crucial in determining the nature of the dynamo.
To determine the turbulent transport coefficients, we

continued one of the transitional–regime dynamo runs from
Viviani et al. (2018), showing a cyclic dynamo solution
(Run C1), with the test-field module of the PENCIL CODE

activated (for its theory, see Schrinner et al. 2005, 2007).

3. Results

The run considered is characterized by the following
nondimensional output parameters: the fluid and magnetic
Reynolds numbers

( )
n h

= = = =
u

k

u

k
Re 41, Re 41, 5

u u

rms
M

rms

and the Coriolis number

( )=
W

=
u k

Co
2

2.8. 6
u

0

rms

Here, ku=2π/Δr≈21/R is an estimate of the wavenumber

of the largest eddies, and the averaged rms velocity is defined

as ( )= á + ñq qfu U U3 2 r r trms
2 2 (see Käpylä et al. 2013).

Angle brackets indicate averaging over the coordinate(s) in the

subscript.

3.1. Mean Magnetic Field

The mean magnetic field is prevailingly symmetric about the
equator (quadrupolar) and shows cyclic behavior with pole-
ward-migrating B f, and polarity reversals at mid to high
latitudes (Figure 1(a)). Detailed inspection of the solution
reveals the presence of a cyclic and a stationary constituent, the4

https://github.com/pencil-code/
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latter being 2–2.5 times stronger (in rms values) than
the former. We interpret these as two different, coexisting
dynamo modes, á ñB t and = - á ñB B B t

cyc , respectively; see

Figures 1(b)–(d) for the toroidal component of B cyc at two
depths, along with its dependence on radius and time at latitude
+50° where it is strongest in rms value. Its topology is similar
throughout the convection zone, and the poleward migration is
present at all depths.

3.2. Mean Flows

We start our analysis by investigating meridional circula-
tion and DR as shown in Figures 2(a)–(c). The former has a
dominant, large, counterclockwise cell, producing a rela-
tively strong (20 m s−1

) poleward flow near the surface at
almost all latitudes. There is a slow equatorward return flow
widely distributed in the bulk of the convection zone at mid
to high latitudes. In the slow rotation regime, antisolar DRis
often accompanied by a single cell counterclockwise
meridional circulation. In contrast, in the regime of fast
rotation, solar-like DRdrives multicellular meridional circu-
lation aligned with the rotation axis. The cell pattern in this
run represents a transitional state between these two regimes
(e.g., Käpylä et al. 2014; Featherstone & Miesch 2015; Karak
et al. 2015).

The DR profile shows a decelerated equator and accelerated
polar regions at the surface; hence, it is broadly speaking
antisolar, despite some regions of weakly solar-like DRat the
bottom of the CZ. The pole-equator difference at the surface is

comparable to runs with similar rotational influence (e.g.,
Karak et al. 2015; Warnecke 2018). However, the energy in the
DR compared to the total kinetic energy, neglecting the rigid
rotation, is smaller than in runs with slightly slower and faster
rotation (Viviani et al. 2018). This is most likely because our
run is very close to the actual AS–S transition. In the DR
profile, we find two distinct features: at midlatitudes, there is a
local minimum of Ω, which has also been found in simulations
with about three times faster rotation. In these, the resulting
shear drives a dynamo wave obeying the Parker–Yoshimura
rule (e.g., Warnecke et al. 2014). Furthermore, we find strong
negative shear in a layer near the surface at low latitudes.

3.3. Turbulent Transport Coefficients

Next, we look at the turbulent transport coefficients, for
which we have used a slightly different definition than in
previous work (Schrinner et al. 2007; Warnecke et al. 2018),
see Appendix A for motivation and details. We begin by
discussing a and g , and compare them with their counterparts
from a more rapidly rotating dynamo run with solar-like DR of
Warnecke et al. (2018) in terms of the ratio of their extremal
values. Regarding a(see Figure 3), both αrr and αff are 20%
smaller than in Warnecke et al. (2018), while the meridional
profiles are similar. Furthermore, αθθ is nearly 30% larger and
shows an opposite sign near the surface close to the equator.
The corresponding ratios for the off-diagonal components αrθ,
αθf, and αrf are 1.9, 1.1, and 0.7, respectively. Moreover, αrθ

and αrf show opposite signs at the equator near the surface. We
associate these differences from Warnecke et al. (2018) with
the milder rotational influence on convection, characterized by
the Coriolis number, being roughly three times smaller in our
run. The usage of the new definition of the turbulent transport
coefficients could also have caused some of these differences,
but this influence was checked to be very small by re-
computing the coefficients for Warnecke et al. (2018) using the
new convention. A detailed comparison is shown in Table 1 of
Appendix A.
Concerning the turbulent pumping (see Figure 3), γr has a

similar magnitude, γθ is 40% weaker and γf is 40% stronger
than in Warnecke et al. (2018). Here, too, the new definition
has no significant effect. Note also the different normalization
we used for g . γr is upward everywhere except in the bulk of
the convection zone at mid and high latitudes. γθ is
equatorward (poleward) in the upper (lower) half of the
convection zone. γf is prograde near the surface and at
midlatitudes near the bottom, and negative everywhere else.
The magnitudes of all three components are around 0.3 ¢urms,

where ( )q¢ = á ¢ ñfuu r, trms
2 1 2 is the local turbulent rms velocity

in the meridional plane. The effective mean velocity resulting
from g is shown by its time average in Figures 2(e)–(g). The

radial component,Ur
eff , is completely dominated by γr, leaving

nearly no trace of the actual flow. γθ changes the sign of U θ

only slightly below the surface and reduces its magnitude by
around 30%. However, the meridional flow cells are com-
pletely destroyed, as shown by the flow lines in Figure 2(f). γf
is accelerating the equator and decelerating the polar region.
The larger change in Ω

eff compared to Warnecke et al.
(2018)is because γf increases with decreasingΩ0.
The reconstruction of the turbulent EMF  based on

Equation (4) shows reasonable agreement with ¢ ´ ¢u b , see
Appendix C. Therefore, we can confidently use the set of

Figure 1. (a): time–latitude diagram for B f near the surface (r=0.98 R).
(b): analogously for = - á ñf f fB B B t

cyc . (c): same as in (b), but at r=0.8R.

(d): time–radius diagram for fB
cyc at latitude 50°.
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turbulent transport coefficients to describe the dynamo
processes in this run.

3.4. Dynamo Cycles and Migration

As a first step in determining the possible dynamo
mechanism, we compare the period of the magnetic field cycle
with theoretical expectations. We compute the magnetic cycle
period by Fourier transforming B f at r=0.98R and then
averaging the spectra over latitude. As a result, we get Pcyc=
(3.2±0.3)yr, where the error is obtained from the width at
half maximum.

The two main dynamo scenarios both make predictions for
the dynamo cycle length Pcyc. The Parker–Yoshimura dynamo
period is locally defined as (Parker 1955; Yoshimura 1975)

( )p
a

q= ¶ Wff q
-

P
k
r2

2
cos , 7rPY

1 2

where kθ=2π/(rΔθ) is the latitudinal wavenumber of the

dynamo wave with Δθ=π/2−θ0. The justification of using

only αff in Equation (7) is that the other contributions to the

poloidal field generation are smaller.
The cycle period of an advection-dominated dynamo is

related to the travel time of the meridional circulation from the
equator to the pole, τMC, such that PMC≈2 τMC (Küker et al.
2001, 2019). Hence, in our notations, the expected cycle period
can be written as

( )
( )

q
q

=
D

P
r

U r

2

,
8MC

MC

where UMC is the temporal rms5 of the meridional flow at the

location of the dynamo wave. Traditionally, advection-

dominated dynamo models assume the meridional flow and

the resulting migration to be significant near the bottom of the

convection zone, which would correspond to setting r=0.7R,
but in the present case it is not so straightforward to determine

the location of the dynamo wave.
We start by using the measured radial DR in Equation (7), and

meridional flow in Equation (8), and obtain for the averages over
the convection zone á ñ =qP 2.2 yrrPY and á ñ =qP 8.2 yrrMC .
Using the meridional circulation in the lower quarter of the
convection zone only, we obtain, instead, á ñ =d qP 63.8 yr,rMC

where δr goes from 0.7R to R/4. Considering the relevant role of
the turbulent pumping, especially in U r, we also calculated the
periods using the effective velocity, that is adding the
contributions of turbulent pumping to the measured large-scale

flows, obtaining á ñ =qP 2.0 yrrPY
eff , á ñ =qP 5.6 yrrMC

eff , and

á ñ =d qP 22.0 yr.rMC
eff The Parker–Yoshimura periods are less

affected than those from meridional circulation, as the g
contribution is more significant for the meridional circulation
than for the DR. In conclusion, the Parker–Yoshimura periods
are consistent with the measured magnetic cycle, while
advection by meridional flow cannot explain it.
If the mean magnetic field was advected by the meridional

flow or its effective counterpart, one would not be able to
explain poleward migration virtually everywhere within the
convection zone. This becomes evident from Figures 2(b) and

Figure 2. Time-averaged radial (a) and latitudinal (b) components of the meridional circulation (U r,U θ, 0), (c) mean angular velocity Ω=U f/r sin θ+Ω0 and (d)
temporal rms value of the azimuthal component of the cyclic magnetic field B f

cyc. (e)–(h): same as (a)–(d), but using the effective mean velocity. Flow lines in (b), (f):
meridional and effective meridional circulation, respectively. Black lines in (c) and (g): Ω/Ω0=1 and Ω

eff/Ω0=1, respectively. Arrows in (d), (h): direction of the
Parker–Yoshimura dynamo wave propagation, see Equation (10).

5
We define the temporal rms for a quantity f as á ñf t

2 .
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(f), where equatorward flows are present. Whether the
meridional circulation is able to overcome diffusion, can be
assessed by help of the corresponding dynamo number (or
turbulent magnetic Reynolds number)

{ } ( )b= D á ñ á ñq qC r U Tr , 9U r rMC

where Tr {·} indicates the trace. The time-averaged value for

the measured mean and the effective mean flow are 0.2 and 0.6,

respectively. Values below unity imply that the (effective) flow

cannot overcome diffusion, not even with g included; there-

fore, the advection-dominated dynamo scenario is not applic-

able here. However, the obtained values indicate that the

meridional circulation may not be completely negligible in the

magnetic evolution.
The prediction for the Parker–Yoshimura wave propagation

direction given by (Yoshimura 1975)

( ) ˆ ( )x q a = - ´ Wff fer, , 10

is depicted in Figures 2(d) and (h) for the shear from Ω and

Ω
eff, respectively. Near the bottom of the convection zone,

where also the cyclic field is strongest, x is poleward at almost

all latitudes, which would agree with the actual field

propagation. In the bulk of the convection zone, however, the

predicted direction is equatorward, failing to explain the actual

migration. Hence, neither the Parker–Yoshimura dynamo wave

nor the advection-dominated dynamo alone can be responsible

for the oscillating poleward-migrating magnetic field through-

out the convection zone.

3.5. Dynamo Drivers

To understand the failure of the simple dynamo scenarios in
explaining cycles and migration of the field, we finally turn to
computing the terms contributing to the magnetic field
generation in detail. We present the contributions of the Ω

and α effects, that is, of B ·Ω and×(a·B ), in terms of
their temporal rms values in Figure 4 employing the total
magnetic field (upper row), and show the corresponding
temporal rms magnetic fields in the lower row. The two
leftmost (rightmost) columns show the generators for the
poloidal (toroidal) magnetic field. From the magnitudes of the
toroidal generators, it is evident that the α effect is equally
important, or even dominant over the Ω effect. Hence, the
generation of the toroidal field by the α effect is more efficient
than by the Ω effect, suggesting an α2

Ω or even an α2 dynamo
mechanism for the observed dynamo.
The Ω effect generates toroidal field efficiently at low

latitudes near the surface and at midlatitudes in the bulk of the
convection zone, coinciding with the surroundings of the local
minimum of Ω. The α effect is strongest near the surface, but
shows also toroidal field generation around the local minimum
of Ω. The patches of strong rms toroidal field, however, overlap
only partially with its generators, and its profile is clearly offset
deeper into the convection zone. One reason might be the
radial-field boundary condition, which suppresses any toroidal
field near the surface. The α effect generates poloidal field
mostly at high latitudes at all depths of the convection zone,
although there are also regions of strong field generation close
to the surface near the equator. The high-latitude field generator
profiles match qualitatively better to the rms poloidal field
distribution than to that of the toroidal field, but still the match
is very incomplete.
The mismatch between the generators and the actual field

distribution indicates that our conclusion of the generating
mechanism being a simple α2

Ω or α2 dynamo is not a very
solid one, and that other dynamo effects might be at play. For
example, we find that the δ (Rädler) effect may also redound to
the driving of the dynamo. Its contribution, shown in Figure 6
in Appendix A, is significant at midlatitudes near the surface
for the poloidal field (panels a–b) and at the surface at all
latitudes for the toroidal field (panel c). Particularly in the latter
case, the contribution of dis strong in the same regions as the
α and Ω effects and with roughly the same magnitude.
However, this effect, in its simplest form in a shear flow, is
known to lead to stationary solutions (Brandenburg &
Subramanian 2005). Hence, its role for the oscillatory dynamo
mode is likely to be negligible. How the δ effect contributes to
the magnetic field generation needs to be analyzed in detail
using mean-field simulations.
The study of Warnecke (2018) covers parameter regimes

very close to the one explored here, but all of these solutions
appear to exhibit only stationary or temporally irregular modes.
This draws attention to the role of the wedge assumption used
in that study. There, the computational domain covers only π/2
in azimuth, instead of the full 2πinterval here, being virtually
the only difference between these two studies. Our interpreta-
tion is that there are various dynamo modes excited with very
similar critical dynamo numbers. In terms of dynamo theory,

Figure 3. Independent components of time-averaged a, normalized by

α0= ¢u 3rms , and g , normalized by ¢urms.
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the coexistence of a steady and an oscillating field constituent
can be understood as follows: sufficiently overcritical flows
enable the growth of more than one dynamo mode. Under the
assumption of steady mean flows and statistically stationary
turbulence, the time dependence of these eigenmodes is
exponential with an, in general, complex increment. It is well
conceivable that a nonoscillating and an oscillating mode are
both excited and even continue to coexist in their nonlinear
stage, although their kinematic growth rates were different.

4. Conclusions

We presented and analyzed a spherical convective dynamo
simulation located in the transitional regime between S and AS
rotation profiles. Unlike the oscillatory or stationary/irregular
dynamos, of the S and AS regimes, the dynamo consists of
coexisting cyclic and stationary modes. Metcalfe et al. (2016)
suggested that the drop in the variability level of stars slightly
less active than the Sun could be the result of a shutdown of the
dynamo. Motivated by our finding of coexisting cyclic and
stationary modes, we rather interpret this drop to be due to a
change in the dynamo type. We tried to explain the oscillating
magnetic field as a Parker–Yoshimura-rule-obeying dynamo
wave or within the advection-dominated framework. Neither of
the two approaches alone can explain the results in terms of
cycle period and migration direction, even if we take the
turbulent contributions to the effective mean flow into account.
One reason might be that the α effect plays here a more
dominant role than in a simple αΩdynamo. Our claim is

validated by the analysis of the field generators shown in

Figure 4: the mean field is generated by cyclonic convection

and DR together, suggestive of an α2
Ω or α2 dynamo.

However, the spatial distributions of the generators do not

match very well with those of the mean fields. This likely

indicates that other dynamo effects may also play important
roles, and we find evidence of a significant contribution from

the δ effect. However, mean-field models that take into account

all turbulent effects are needed to address this issue.
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Figure 4. (a)–(d): temporal rms of the components of the α and Ω effect terms. (a), (b): poloidal field generators; (c), (d): toroidal field generators. (e)–(g): temporal
rms values of the components of B .
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Appendix A
Redefinition of the Turbulent Transport Coefficients

A.1. Motivation

As mentioned in Schrinner et al. (2007) and Warnecke et al.
(2018), there is some arbitrariness in deriving the transport
coefficients (see Equation (4)) from the (noncovariant) tensors
ã and b̃ defined by

˜ ˜ ˜ ( )k l q f= + ¶ + ¶ =k kl l kl l klq q l a B b B b B r, , , , , 11r r

which form the immediate outcome of the test-field method.

Here, we specify a choice, different from the one employed

earlier (see Schrinner et al. 2007; Warnecke et al. 2018;

Warnecke 2018), and characterized by a maximum of

vanishing components in k. As a consequence, the role of k
in the turbulent EMF  is reduced, while mainly that of b is

enhanced. This is motivated by the difficulty to interpret k
physically, whereas b clearly stands for turbulent dissipation.

As a meaningful side effect, the diagonal elements of the latter

become equal for isotropic turbulence. Furthermore, localized

appearances of negative definite b, which are destructive to

mean-field modeling, become more visible as less of the

diffusive contributions (ideally none) are “hidden” in k. Thus,
removing the negative definiteness in the redefined b has better

prospects to render the mean-field model feasible.

A.2. Decomposition

In Equation (11), the components k̃lfb do not appear as all f
derivatives vanish. They show up in the definitions ofa, b, etc.
though, but setting them arbitrarily cannot change  . Here, we
choose ˜ ˜= -klf kflb b , in contrast to Schrinner et al. (2007)

who set ˜ =klfb 0. Then we arrive at the following expressions
for the transport coefficients, where underlines indicate new or
altered terms in comparison to Schrinner et al. (2007):

˜ ˜ ( )a = - qqa b r 12rr rr r

( ˜ ˜ ( ˜ ˜ ) ) ( )a a= = + + -q q q q q qqqa a b b r
1

2
13r r r r rr

( ˜ ˜ ( ˜ ˜ ˜ ) )

( )

a a q= = + - + +f f f f f fq fqqa a b b b r
1

2
cot

14

r r r r r r r

˜ ˜ ( )a = +qq qq q qa b r 15r

( ˜ ˜ ( ˜ ˜ ˜ ) )

( )

a a q= = + - + -qf fq qf fq qf qfq f qa a b b b r
1

2
cot

16

r r

˜ ( ˜ ˜ ) ( )a q= - +ff ff ff ffqa b b rcot 17r

( ˜ ˜ ( ˜ ˜ ˜ ) ) ( )g q= - + + +fq qf qf qfq f qa a b b b r
1

2
cot 18r r r

( ˜ ˜ ( ˜ ˜ ˜ ) ) ( )g q= - + - -q f f fqq f fqa a b b b r
1

2
cot 19r r r r r

( ˜ ˜ ( ˜ ˜ ) ) ( )g = - - +f q q q qqqa a b b r
1

2
20r r rr

· ˜ ( )b = - fqb1 21rr r

( ˜ ˜ ) ( )b b= = -q q f qfqb b
1

2
22r r r r

( ˜ ˜ ˜ ) ( )b b= = - + -f f ffq q qb b b
1

4
2 23r r rr r r

· ˜ ( )b =qq qfb1 24r

( ˜ ˜ ˜ ) ( )b b= = + -qf fq ff q q qqb b b
1

4
2 25r r r

( ˜ ˜ ) ( )b = -ff f q fqb b
1

2
26r r

( ˜ ˜ ˜ ) ( )d = - +qq q q ffb b b
1

4
2 27r r r r

( ˜ ˜ ˜ ) ( )d = - +q q q ffqb b b
1

4
2 28rr r r

( ˜ ˜ ) ( )d = - +f f qfqb b
1

2
29r r

˜ ( )k = -b 30irr irr

( ˜ ˜ ) ( )k k= = - +q q q qb b
1

2
31ir i r ir i r

( )k k= =f f 0 32ir i r

˜ ( )k = -qq qqb 33i i

( )k k= =qf fq 0 34i i

( )k =ff 0. 35i

The results from the new definition are shown in Figure 3 for
a and g and in Figure 5 for the six independent components of
b, the vector d(first three columns), and for the nine
independent nonzero components of k(last three columns).
b, d, and k are normalized by ηt0= ¢urmsαMLTHp/3, where
αMLT=5/3 is the mixing-length parameter and Hp=−1/∂r
ln p is the pressure scale height. The terms contributing to the
magnetic field evolution from the δ (Rädler) effect, using the
new definition, are shown in Figure 6.
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Appendix B
Comparison of the Turbulent Transport Coefficients to

Warnecke et al. (2018)

We summarize the ratios of the turbulent transport
coefficients from this study and their corresponding values
from Warnecke et al. (2018)in Table 1. Note that all

coefficients except βff and the nonvanishing components of
k are affected by the redefinition explained in Appendix A, and

βrr and βθθ are now twice as large as with the old definition.

The extrema of the βij are between 2.4 and 5 times larger than

the ones in Warnecke et al. (2018), with only βff having the

same order of magnitude, while all the components of dare

Figure 5. Independent components of time-averaged b and d(first three columns), and the nine independent nonzero components of time-averaged k (last three

columns), normalized by ηt0= ¢urmsαMLTHp/3.

Figure 6. Temporal rms of the components of the δ (Rädler) effect, ×d××B , see Equation (4).
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between 2.4 and 4 times larger. The diagonal components of b
all show positive values throughout the domain, except for a

thin layer near the surface for βθθ. βrθ is positive at high
latitudes and shows a sign reversal at the bottom of the

convection zone at low latitudes. βθf is symmetric about the

equator and changes sign in depth. βrf has a positive layer
outside the tangent cylinder and is near zero everywhere else.

δr changes sign at high latitudes and, with respect to δr in
Warnecke et al. (2018), has the opposite sign at low latitudes

near the surface. Like βrf, δθ has also a positive layer outside

the tangent cylinder, and two negative patches are present,

roughly at the same location as the minimum in Ω. δf is 1.5
times larger than by the old definition.

The k components look, in general, smoother than in
Warnecke et al. (2018). Most of the κijk are now zero, leaving

just nine independent nonzero components. κrrr, κrrθ, κθrθ, and
κrθθ are roughly three times larger, κfθθ and κfrθ have similar
magnitudes, while κθrr and κθθθ are 7 and 6.5 times larger in

the current study, respectively. κrrθ shows sign reversal near the
surface, and κrθθ does not show any particular structure in the

bulk of the convection zone, as was the case in Warnecke et al.
(2018), too. κθrr has strong positive values near the equator in

the upper part of the convection zone, extending to mid-

latitudes, while κθrθ is antisymmetric with respect to the
equator, and has the opposite sign near the surface with respect

to Warnecke et al. (2018). Two sign reversals in depth are

visible in κfrr, and also κfrθ shows three layers in depth: two
narrow negative ones at the top and bottom of the convection

zone and a weakly positive one in the bulk.
Whilea and g do not differ markedly between the compared

runs, the other tensors show variations by up to a factor of

seven compared to Warnecke et al. (2018). Given that the

roughly three-times-higher Coriolis number of their run is
virtually the only relevant difference to our present run, we
have to assign these changes to the effect of rotational
quenching (see, e.g., Kitchatinov et al. 1994). This is supported
by the findings of Brandenburg et al. (2012) for rotating
homogeneous turbulence who report on a reduction of b and d
by a factor of approximately three when Co is increased from
two to eight, with an even stronger reduction in k.

Appendix C
Reconstruction of the Turbulent Electromotive Force

We show in Figure 7 the turbulent EMF, computed directly
via ¢ ´ ¢u b and its reconstruction using Equation (4) with the
time-averaged transport coefficients and the full B during
roughly five typical dynamo cycles. In the reconstructed and
directly computed EMFs, we have filtered out the time average
and all time-scales shorter than one year to highlight the
oscillating pattern. The spatial and temporal structures of all
components of the reconstructed EMF match the measured
ones reasonably well. In Warnecke et al. (2018), a good match
was found in the mid and high latitudes, while the near-equator
behavior was captured less accurately. However, the time
average was not removed there. Now we find good
correspondence also at the equatorial regions. As in Warnecke
et al. (2018), the magnitudes of the reconstructed EMF
components tend to be overestimated. Here, this effect is most
pronounced for the azimuthal component of the EMF, which is
by a factor of 2.5 larger than the measured one. This can be
interpreted as a consequence of nonlocalities in turbulent
convection, and calls for the application of scale dependent test
fields to the problem.

Table 1

Comparison with Warnecke et al. (2018)

Coeff q Comments Coeff q Comments Coeff q Comments

αrr 0.8 βrr 2.4 κrrr 2.9

αrθ 1.9 opposite sign βrθ 2.5 opposite sign κrrθ 2.3

below surface in deep CZ

αrf 0.7 opposite sign near βrf 2.9 κrθθ 3.5 negative near

equator in upper CZ surface

αθθ 1.2 opposite sign βθθ 4.5 weakly negative layer κθrr 7.0

at surface

αθf 1.1 βθf 5.0 opposite sign κθrθ 3.7 opposite sign

near surface near surface

αff 0.8 βff 1.1 κθθθ 6.5

γr 1.0 δr 4 opposite sign κfrr 1.1 opposite sign

at surface

γθ 0.6 δθ 2.4 κfrθ 1.0 negative layer

at surface

γf 1.4 δf 3.3 κfθθ 1.4

Note. q is the ratio of the respective extremal value from the present study to that of Warnecke et al. (2018).
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