
PROCEEDINGS Open Access

STELLAR: fast and exact local alignments
Birte Kehr1,2*, David Weese1, Knut Reinert1

From Ninth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics
Galway, Ireland. 8-10 October 2011

Abstract

Background: Large-scale comparison of genomic sequences requires reliable tools for the search of local
alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches.

Results: We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees
to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two
steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new
verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and
quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local
alignments.

Conclusions: STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for
finding local alignments between genomic sequences under the edit distance model. Binaries are freely available
for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed
with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.

Introduction
Computing good local alignments is a fundamental pro-

blem in bioinformatics. By looking for local alignments

of biological sequences one aims for example at identify-

ing homologous regions, i.e. regions that are assumed to

originate from the same ancestral sequence, or at find-

ing functionally similar sequences. The problem has

been studied for more than 30 years [1,2], but still

remains interesting. In the beginning, local alignments

were used to look for homologous regions in relatively

short protein or nucleic acid sequences. Also, for a long

time, local alignments have been used to identify con-

served, functionally related elements. More recently,

local alignments were applied on a genomic scale as

prerequisite to global genomic alignments. For several

reasons genomic scale alignments are usually not colli-

near and hence one has to resort to computing local

similarities. Now the aim is not anymore to identify

some homologous regions but rather to display all simi-

larities between two or more genomic sequences [3-7].

This requires not only efficiency in computation to pro-

cess very long sequences, but also accuracy regarding

sensitivity, i.e. exact tools that do not miss regions of

significant local similarity.

For the computation of local alignments numerous

tools have been developed: Early tools such as

SSEARCH [2] and FASTA [16] are sensitive but too

slow for large-scale sequence comparison. Then, there

are efficient heuristics, with the BLAST family [17-19]

being the most prominent example. Further develop-

ments for specific large-scale analyzes resulted in tools

like BLAT [20] which was designed for high speed, and

BLASTZ [21] which was designed for higher sensitivity.

The more recently published tool BWT-SW [22] again

focuses on sensitivity and is able to report all local

alignments.

To assess homology of biological sequences by local

alignment, generally some kind of similarity criterion is

necessary. The most widely accepted criterion is the E-

value[18,23], a probabilistic measure that assesses the

* Correspondence: birte.kehr@fu-berlin.de
1Department of Computer Science, Free University Berlin, Takustr. 9, 14195
Berlin, Germany
Full list of author information is available at the end of the article

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

© 2011 Kehr et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.seqan.de/projects/stellar
http://www.seqan.de
mailto:birte.kehr@fu-berlin.de
http://creativecommons.org/licenses/by/2.0

significance of a local alignment. The E-value denotes

the expected number of local alignments with a minimal

score occurring by chance in the input sequences. The

score underlying the E-value is a Smith-Waterman-like

score, most commonly using affine gap costs. All popu-

lar alignment tools that report E-values, e.g. BLAST,

compute such a score, and afterward apply an E-value

threshold on their output. In this paper, we describe a

method that follows an alternative approach to compute

only significant local alignments of nucleic acid

sequences: We compute only high-scoring alignments,

which are guaranteed to have a good (low) E-value. We

use a maximal error rate for local alignments (normal-

ized edit distance) as a score threshold, and additionally

require a minimal alignment length. Our method is spe-

cialized on relatively low error rates, which in turn justi-

fies the use of edit distance instead of affine gap costs.

For a given error rate and a minimal alignment length

our method is exact, i.e. it identifies all local alignments

without loss of sensitivity. We compute an E-value for

all generated local alignments and a minimal E-value for

the input parameters. The method is implemented in

the program STELLAR (SwifT Exact LocaL AligneR)

using the SeqAn C++ library [24,25]. The program

depends only on very few and clearly understandable

parameters. We prove that our algorithm is exact for all

reasonable parameter settings and confirm this experi-

mentally. We compare STELLAR against popular local

alignment programs, namely BLAST, LASTZ, BLAT,

and BWT-SW in terms of speed and sensitivity and

show that some of the tools miss many significant local

alignments that can be detected with STELLAR.

Methods
Definitions and overview of algorithm

A pairwise local alignment of length n is a sequence of

n match, insertion, deletion, and substitution columns.

In our approach deletion, insertion, and substitution col-

umns are all treated equally. Hence, we will call these

columns error columns. The number of error columns

is the edit or Levenshtein distance of a local alignment.

Normalizing this distance by dividing it by the length of

the local alignment, we obtain an error rate. An ε-match

is a local alignment that has an error rate of at most ε >

0 and length n ≥ n0. Fig. 1 shows two examples of

ε-matches as segments of a longer local alignment.

The notion of an X – drop to delineate local align-

ments from each other is well established by Miller and

coworkers in the context of similarity alignments

[18,26,27]. An X-drop within an alignment, where X > 0

is given, is a region of consecutive columns with a total

score of –X or less. In other words, it is a region where

the score drops by X or more. In Fig. 2 we display an

example in which we score error columns by –1. The

X-drop is a very intuitive way to model local dissimilar-

ity and hence we choose to adopt the concept for our

model of local similarity. Since we address the computa-

tion of ε-matches in this paper we propose the following

scoring scheme that depends on the error rate ε: We

score a match by +1 and an error by p = –1/ε + 1. In

addition, we adjust the score drop-off parameter by

multiplying it with the negative of the error penalty –p

such that the user specified parameter X still corre-

sponds to the number of errors in a match-free X-drop

region and is easy to grasp for the user (Fig. 3). To

emphasize the difference from the usual understanding

of an X-drop we call this weighted X-drop an ε-X-drop.

The goal of this work is to find ε-matches of two

sequences without ε-X-drops. Often, ε-matches overlap

to a large extent (see Fig. 1 for an example), or segments

of ε-matches are themselves ε-matches (e.g. we obtain an

ε-match by removing a column from one end of the

ε-matches in Fig. 1). Thus, the number of ε-matches can

be very large with very redundant similarity information.

We handle this issue by only identifying the longest

ε-match of one location: If two ε-matches overlap, we out-

put only the longer one unless the overhanging part of the

shorter ε-match still has a minimal length of n0. In that

case we output both complete ε-matches. Thus, for the

example in Fig. 1 we only output one ε-match. We say

that such an ε-match is maximal.

We now present an algorithm to compute exactly all

maximal ε-matches without ε-X-drop. Our algorithm

runs in two phases: filtering and verification. The

Figure 1 Overlapping ε-matches. An alignment of two strings containing two overlapping ε-matches for ε = 0.1 and n0 = 20. The ε-match
indicated by the dashed box has an error rate of 2/22, the ε-match indicated by the box with a continuous line one of 2/25. The union of these
two ε-matches from position 4 to position 31 is not an ε-match: the error rate is 3/28 > 0.1. Furthermore, the intersection of the two ε-matches
is with 19 columns too short to be an ε-match.

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 2 of 12

filtering phase implements the SWIFT algorithm [28], a

very efficient full-sensitivity filter for ε-matches. Note

that SWIFT is a filter algorithm and does not output a

list of ε-matches. While it guarantees not to miss any

maximal ε-match and hugely reduces the search space, a

verification phase is necessary to identify false positive

hits of the filter. Furthermore, verification is needed to

determine the exact start and end positions of maximal

ε-matches. We have developed a verification strategy

that runs in five steps: ε-core identification, ε-X-drop

core filter, ε-X-drop extension, identification of maximal

ε-matches, and filtering of overlapping matches. Verifi-

cation may stop after any of these steps if it is clear that

we will not identify a new ε-match without ε-X-drop.

The strategy guarantees to find all maximal ε-matches

without ε-X-drop.

A similar two-step algorithm that consists of SWIFT

filtering and subsequent verification is implemented in

the read mapper RazerS [14]. The difference to RazerS

is, however, that we are looking for ε-matches that are

local in both sequences whereas read mappers compute

semi-global alignments, i.e align the full read sequence

to a reference. RazerS uses a slightly modified SWIFT

filtering, and the verification is much simpler since the

length of the final alignments is preset by the read

length.

Filtering phase

The SWIFT algorithm proposed by Rasmussen et al. is

an efficient q-gram based filter to detect potential ε-

match regions between two sequences. It is based on

the q-gram lemma [29,30]. This lemma states that every

alignment of length n with k error columns contains at

least T(n, k, q) := n + 1 – q(k + 1) q-hits, substrings of q

consecutive match columns. Considering the dotplot of

two sequences, every q-hit corresponds to a diagonal

stretch of matches with length q. Obviously, all q-hits of

an alignment with k errors can cover at most k + 1 dif-

ferent diagonals in the dotplot.

Rasmussen et al. proved that for any given ε and n0
there exist w, q, e and τ such that every ε-match con-

tains τ q-hits that reside in a w × e parallelogram. A w ×

e parallelogram is the intersection of e + 1 consecutive

diagonals and w + 1 consecutive columns in the dotplot.

To detect w × e parallelograms with τ q-hits in the

dotplot, the SWIFT algorithm slides from left to right

over one sequence and searches overlapping q-grams

in a q-gram index of the other sequence. Found q-hits

are counted in bins of ∆ + e consecutive diagonals

whose first diagonal is a multiple of ∆. As adjacent

bins share e diagonals, every w × e parallelogram is

contained in one bin. Every bin contains a q-hit coun-

ter and represents the parallelogram with columns

bounded by the leftmost and rightmost contained

q-hit. If a q-hit is found that is at most w – q columns

apart from the rightmost q-hit, the parallelogram is

extended. Otherwise it is closed and a new one starting

at the found q-hit is opened as the two hits cannot be

part of the same w × e parallelogram. A closed paralle-

logram whose bin counter has reached τ is output as a

SWIFT hit and verified as described in the following

section.

 !"#
Figure 2 X-drop. An alignment containing an X-drop for X = 3. In this example, an ε-match with ε = 0.1 and n0 = 20 (indicated by the box)
spans the X-drop.

 !"#$
Figure 3 ε-X-drop. An alignment containing an ε-X-drop for X = 3 and ε = 0.1. To reach an ε-X-drop with a score drop-off of at least
3 1

0 1
1 27⋅ −() =

.
, a fourth error column is necessary in this example because of the positively scoring matches in between the errors.

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 3 of 12

Fig. 4 shows examples for SWIFT hits containing

either a subalignment of an ε-match, whole ε-matches,

no ε-match or an ε-match with an X-drop.

Verification phase

Fig. 4 demonstrates that the output of the filtering phase

is not yet a list of ε-matches, although the SWIFT algo-

rithm hugely reduces the search space. SWIFT hits may

contain one or more ε-matches, but may as well be false

positive and contain no ε-match. Some SWIFT hits may

overlap and contain the same or parts of the same ε-

match. Further, they may be much longer than a con-

tained ε-match, or they may cover only parts of an ε-

match. Therefore, we have developed the following veri-

fication strategy.

We start verifying SWIFT hits by identifying a seg-

ment of an ε-match that overlaps with the SWIFT hit.

We call such a segment an ε-core. We guarantee not to

miss any ε-match by identifying all ε-cores contained in

a SWIFT hit. ε-cores will then serve as starting points

for extension, possibly beyond the ends of SWIFT hits.

Finally, we cut the longest ε-matches from extended

ε-cores and remove overlapping ε-matches.

Definition and existence of ε-cores

Under the simple scoring scheme where a match scores

+1 and an error p = –1/ε + 1, we define an ε-core of an

ε-match as a segment with a score of at least:

s
n n

ni

i i

i

min

{ , }
: min=

− ⎢⎣ ⎥⎦
⎢⎣ ⎥⎦ +

⎡

⎢
⎢

⎤

⎥
⎥

∈ 0 1 1

e

e

where n0 is the minimal length of an ε-match and

n n1 0 1= ⎢⎣ ⎥⎦ +()⎡
⎢

⎤
⎥e e/ is the next larger length that

allows one more error than n0.

In the following two lemmata we prove the correct-

ness of our approach that starts verification from

ε-cores.

Lemma 1. Every ε-match contains at least one ε-core.

Proof. en⎢⎣ ⎥⎦ is the maximal number of errors in an ε-

match of length n. Thus, the number of matching

Figure 4 Example SWIFT hits. Example SWIFT hits for n0 = 20, ε = 0.1, and q = 6 (= smin). Accordingly, w = 20, τ = 3, and e = 2. SWIFT
searches parallelograms that contain at least τ = 3 q-gram hits by streaming over sequence 1 and searching common q-grams in sequence 2.
Subfigure (a) shows an ε-match that results in two SWIFT hits and the ε-match is longer than both of the two hits. (b) shows a SWIFT hit that
contains two ε-matches and (c) shows a false positive SWIFT hit induced by three separated q-gram hits. (d) shows a SWIFT hit that contains an
ε-match with a 3-drop.

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 4 of 12

positions in an ε-match of length n is at least n n− ⎢⎣ ⎥⎦e .

These n n− ⎢⎣ ⎥⎦e matching positions can be split by the

errors of the ε-match into at most en⎢⎣ ⎥⎦ + 1 error-free

segments. If the errors are spread evenly over the ε-

match, at least one of the error-free segments has length

≥ l(n, ε), where l n
n n

n
(,) :e

e

e

=
− ⎢⎣ ⎥⎦

⎢⎣ ⎥⎦ + 1
. Some thought

reveals that any other distribution of the errors would

result in at least one longer error-free segment. There-

fore, an ε-match of length n contains at least one ε-core

of length ≥ l(n, ε). Unfortunately, l(n, ε) is a sawtooth

function, i.e. l(n, ε) is not monotonically increasing in n

(Fig. 5). Hence, one cannot use l(n0, ε) as a bound for

all n ≥ n0. The function drops to a minimum at each

point i
i

/ e⎡⎢ ⎤⎥{ }
∈

. However, it is easy to confirm that

the minima are strictly increasing, i.e. each successive

minimum of the sawtooth is higher than the previous one.

Therefore, the smallest value of l(n, ε) over all n ≥ n0 is the

minimum of l(n0, ε) and l(n1, ε). This is exactly the defini-

tion of smin, i.e. an ε-match contains at least one error-free

segment of length smin which is an ε-core. □

Lemma 1 settles the existence of an ε-core for every

ε-match. Unfortunately, the SWIFT filter only guaran-

tees to report SWIFT hits that overlap a part of each

ε-match. Hence, in principle, the SWIFT hit could not

contain an ε-core, which in turn could make our

algorithm miss the ε-match. In the next lemma we will

show that for a certain value of the parameter q this is

never the case.

Lemma 2. The intersection of a SWIFT hit with an

ε-match contains at least one ε-core if q := smin.

Proof. By definition, the intersection of a SWIFT hit

with an ε-match contains at least τ q-grams interspersed

by at most e errors. Therefore, every SWIFT hit

contains at least one segment of at least t / ()e +⎡⎢ ⎤⎥1
consecutive q-grams. The length of this segment is at

least t / ()e q+⎡⎢ ⎤⎥ + −1 1 . Because τ > 0 and e ≥ 0 the

first summand t / ()e +⎡⎢ ⎤⎥1 is greater or equal one,

so we obtain t / ()e q q+⎡⎢ ⎤⎥ + − ≥1 1 . Thus, if we set

q := smin every SWIFT hit contains at least one segment

of length smin, which is an ε-core. □

Step 1: ε-core identification

In our verification strategy, we identify ε-cores by apply-

ing a banded version of the Waterman-Eggert local

alignment algorithm [31]. The original algorithm com-

putes all non-overlapping local alignments that reach a

specified minimal score under a certain scoring scheme

by dynamic programming (DP). We use the scoring

scheme that scores matches by +1 and errors by p = –

1/ε + 1 and set the minimal score to smin. In our ver-

sion, we reduce running time and space requirements of

the algorithm by banding the computation of the DP

matrix according to the parallelogram shape of SWIFT

0 20 40 60 80 100

0
5

1
0

1
5

2
0

minimal ε−match length n0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

l(n0, 0.05)
l(n1, 0.05)

●

Figure 5 Sawtoothed function. Plot of the sawtoothed function l n
n n

n
(,)e

e

e

=
− ⎢⎣ ⎥⎦

⎢⎣ ⎥⎦ + 1
for n0 and n

n
1

0 1
=

⎢⎣ ⎥⎦ +⎡

⎢
⎢

⎤

⎥
⎥

e

e

with ε = 0.05.

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 5 of 12

hits (see Fig. 4, only the shaded parts of the alignment

matrix need to be computed). Thus, per ε-core there is

a maximum running time of  ()′w e where w′ is the

length and e the width of the corresponding SWIFT

hit.

Since the Waterman-Eggert algorithm reports only

non-overlapping local alignments one may think that

some ε-cores will not be identified because they are

hidden by longer local alignments that reach beyond

the end of an ε-match. However, this can only be for

non-maximal ε-matches since we have chosen the

scoring parameters such that ε-cores extended by

additional local alignment columns only have higher

scores if the additional columns have themselves an

error rate of at most ε (Fig. 6). This is why all maximal

ε-matches will also include the additional columns, i.

e. no local alignment will reach beyond the end of an

ε-match.

Step 2: ε-X-drop core filter

The second step of our verification strategy is a filter for

ε-X-drops in the ε-cores. In the previous step we

ignored ε-X-drops in ε-cores. If now one of our ε-cores

contains an ε-X-drop, the ε-core should be divided into

two cores in order to remove the ε-X-drop. Similarly, if

an ε-core contains more than one ε-X-drop, the ε-core

should be divided into even more cores.

For this decomposition of the ε-cores, we apply the

post-processing algorithm from Zhang et al. [27] with

the same scores and penalties for matching and error

positions as in our ε-core identification step. The worst-

case running time of this algorithm is linear in the

length of the ε-core.

Possibly, we obtain more than one ε-core after this

step, but in any case the following extension step has to

be conducted only to the left and right of the original

non-decomposed ε-core. If we started with an ε-core

with more than one ε-X-drop, we can skip the following

extension step for the middle parts, since the extension

algorithm would run immediately into the previously

detected ε-X-drops.

Step 3: ε-X-drop extension

The goal of the extension step is to obtain a region that

spans all ε-matches without ε-X-drop containing the

ε-core. In this region, the extended ε-core, we can then

look for the maximal ε-match. Clearly, we can discard

extended ε-cores that are shorter than n0.

For extension we apply the gapped extension algo-

rithm by Zhang et al. [19] with the ε-adjusted scoring

parameters as before. This algorithm is a score-only

algorithm, i.e. it reports only the score and the sequence

positions of the maximal extension but not the precise

alignment. However, it reports the maximal and mini-

mal diagonal of the alignment matrix (a band) that

needs to be computed when looking for the precise

alignment. We will determine the alignment in the next

step of the verification strategy together with the exact

begin and end positions of the maximal ε-match.

It is hard to do an informative running time analysis

for this step. In theory, the dynamic programming algo-

rithm could fill big parts of the alignment matrix. How-

ever, for very similar sequences only a narrow diagonal

stretch will be filled, and for very distinct sequences we

will soon reach an X-drop and stop. Still, we can esti-

mate the running time by  ()bL where L is the length

of the extension and b is the width of the band.

It is easy to confirm that if an ε-core is part of an ε-

match without ε-X-drop, then the extended ε-core spans

this ε-match without ε-X-drop.

Step 4: identification of maximal ε-matches

The remaining task is to determine the longest align-

ment in the extended ε-core that has an error rate of at

most ε. More precisely, we are looking for the longest

extension to the left and to the right of the ε-core such

that the complete alignment has an error rate of at

most ε. The maximal error rate (i.e. the number of

errors and length) that we can allow for the extension

 !" !!" ! " !! "!!" !"
" ! ! !!" " " !! "!!" !"

#$%%%%#&%%%%'$%%%%'&%%%%($%%%%(&%%%%)$%%%%

Figure 6 Extended ε-core. An ε-match extended by one error column and − =
⎢

⎣⎢
⎥

⎦⎥
−p

1
1

e

match columns, is still an ε-match. Therefore, an

ε-core should include such an extension, since all maximal ε-matches at this location will include it. In this example where ε = 0.1 and n0 = 20

we see an error-free segment of length 7 ≥ 6 = smin that can be extended to an ε-core of length 19 including one error.

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 6 of 12

to the left depends not only on the error rate of the ε-

core but also on the error rate of the extension to the

right, and vice versa. Therefore, we cannot determine

the lengths of the right and left extension separately.

Furthermore, depending on the length of the extension

the optimal trace through the alignment matrix can dif-

fer (Fig. 7). Our suggestion is to compute for all possible

extension lengths the optimal end position of a trace in

the alignment matrix, then to determine the optimal

lengths of the right and left extension, and lastly to

carry out the traceback. The details of these three steps

are described in the following.

The computation of the optimal end position of a

trace for all possible extension lengths can be done

along with the computation of the alignment matrix.

Unfortunately, two traces of different lengths may end

in the same column of the alignment matrix. For this

reason, it is necessary to compute the alignment matrix

using an algorithm for normalized alignment score

[32,33], which in addition iterates over all alignment

lengths. As already mentioned, the alignment matrix can

be banded by the minimal and maximal diagonal from

the seed extension algorithm.

Along with the alignment matrix computation we

check and if necessary update in each iteration step a

list bestEnds with the best alignment matrix entry for

the corresponding extension length. Each entry consists

of the length and score (or number of errors) of the

alignment, and coordinates in the alignment matrix.

This list can afterward be reduced to a smaller set of

possible lengths using the following observation: The

position before the start and the position behind the

end of the sought ε-match is an error, otherwise the ε-

match would not be maximal. Hence, we only need to

keep those list entries for lengths l where the score dif-

ference of bestEnd[l] and bestEnd[l + 1] is smaller than

the score of a match. As a result we obtain two lists

with possible traceback starting points, one for start

positions of the ε-match obtained from the left exten-

sion, and one for end positions obtained from the right

extension.

On these lists we then apply the following exhaustive

search algorithm that iterates over combinations of pos-

sible start and end positions: We start with the leftmost

possible start position and iterate over possible end

positions from right to left. We continue with the next

possible start position and restart with the rightmost

possible end position as soon as the segment between

the current start and end position has an error rate of

at most ε (update currently longest ε-match), or if this

segment is shorter than the minimal ε-match length or

our currently longest ε-match (do not update currently

longest ε-match). The algorithm stops when the seg-

ment between the current start position and the right-

most possible end position is shorter than the minimal

ε-match length or the currently longest ε-match. Using

this strategy we cannot miss the longest ε-match with-

out ε-X-drop if the ε-core is part of one.

In case there is another maximal ε-match containing

the ε-core, we have to recurse this search twice with the

lists reduced by the following entries: All start positions

before the start position of the longest ε-match and all

end positions that are smaller than n0 added to the end

position of the longest ε-match; and all start positions

before the start position of the longest ε-match minus

n0 and all end positions behind the end position of the

longest ε-match.

As a last step, we have to look up the coordinates for

the optimal extensions in the bestEnd lists and start tra-

ceback from these positions in the alignment matrices.

The ε-core extended by the resulting alignments is a

maximal ε-match that contains the ε-core.

The running time for computing the alignment matrix

using a normalized alignment score is in  ()bL2 where

b is again the width of the band and L is the length of

the extension. Dropping the normalization of the align-

ment score reduces running time by a factor of L.

Determining the optimal start end end position in the

left extension of length L1 and right extension of length

L2 takes  ()L L1 2 time per ε-match, and finally, the tra-

ceback takes time linear in the length of the final ε-

match.

Step 5: removal of largely overlapping ε-matches

An ε-match identified during the verification phase is

the longest that contains one specific ε-core but it is not

necessarily maximal in that it does not overlap with a

longer ε-match. In addition, an ε-match containing two

Figure 7 Extension traces of an ε-core. Alignment matrix with
two possible traces of the extension of an ε-core. Depending on
the length of the extension (red numbers), we obtain the lowest
error rates by aligning different sequence positions to each other.
For an extension length of 5, 7, and 9 it is better to follow the
upper trace, whereas for a length of 11 the lower trace has fewer
errors. For all other lengths there is a longer trace with the same
number of errors, and therefore it is not necessary to consider those
lengths while looking for maximal ε-matches.

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 7 of 12

ε-cores will be identified twice. To ensure that we out-

put each ε-match only once and also only maximal ε-

matches, this last step is necessary.

We remove overlapping ε-matches by sorting the ε-

matches by their begin position in one sequence and

pairwisely comparing here overlapping matches further.

If two ε-matches are found to be identical, one is dis-

carded. Also, if the shorter of the two ε-matches has no

unique part of length n0, this ε-match is discarded. The

running time of this last step is dominated by sorting

the ε-matches, i.e. it is in  (log)M M , where M is the

number of ε-matches before removal.

Theorem.Let M be the set of maximal ε-matches with-

out ε-X-drop between two sequences. Then the algorithm

that uses SWIFT for filtering and the described strategy

for verification will detect exactly all ε-matches in M.

Proof. The SWIFT filter algorithm guarantees to

report at least one overlapping SWIFT hit for every ε-

match of the input sequences. The first step of the veri-

fication strategy detects all ε-cores in SWIFT hits. Apply

Lemma 1 to prove that every ε-match contains an ε-

core. According to Lemma 2, one of the ε-cores of every

ε-match is contained in a SWIFT hit. Thus, for every ε-

match in M the first verification step identifies at least

one ε-core.

Let C′ be the set of ε-cores identified during the first

step, and let C ⊆ C′ be the subset of ε-cores that are

part of an ε-match in M. Since none of the ε-matches in

M contain an ε-X-drop, the local alignment obtained

after ε-X-drop extension (Step 3) of an ε-core c Î C

spans the corresponding ε-match.

By cutting the extended ε-cores as described in Step 4,

we eventually end up with a set of ε-matches M′ that

each contains a certain ε-core. Step 4 also guarantees

that per ε-core no longer ε-match exists than the ε-

match in M′. Therefore, after removal of overlapping ε-

matches (Step 5), our set of ε-matches contains exactly

all maximal ε-matches without ε-X-drop. □

Results and discussion
We have implemented the algorithmic pipeline in the

program STELLAR following exactly the above

described steps with one exception: To improve running

time, STELLAR computes the alignment matrix during

the identification of the longest ε-match with unnorma-

lized alignment score. The following results show that

this has in practice no effect on the sensitivity.

We tested STELLAR on simulated and on real geno-

mic data and compared its performance to BLAST [18],

LASTZ as the replacement of BLASTZ [21], BLAT [20],

BWT-SW [22], and Smith-Waterman alignments

obtained with SSEARCH from the FASTA package [16].

In addition, we ran BLAST with a more sensitive para-

meter setting: According to Lemma 1, every ε-match

contains a seed of length smin, and therefore, we set

BLAST’s word-size parameter to the corresponding smin

computed in STELLAR. To demonstrate the differences

between the programs we compared speed and sensitiv-

ity on all data sets. Running times were measured on a

2.66 GHz Intel Xeon X5550 with 72 GB of RAM run-

ning Linux. Running times of BWT-SW include pre-

processing of the database sequence. In all test runs

STELLAR needed less than 1 GB of RAM, so we omit

further details of memory usage. As a measurement for

sensitivity we computed the percentage of matches from

a reference set that were sufficiently covered by matches

from the respective program. We say that matches that

are covered by less than 10% are missed (Fig. 8). This is

a very loose criterion which is in favor of the compared

programs.

Simulated sequences

To demonstrate STELLAR’s gain of sensitivity in com-

parison to other programs, we used simulated data sets.

The advantage here is that the reference set of local

alignments for the computation of the sensitivity is

given. We simulated random sequences with uniformly

distributed characters from the alphabet {A, C, G, T}. In

addition, we simulated random local alignments of

length 50-200 bp and inserted errors at different rates

into the alignments. In order to see at what error rates

the programs start missing local alignments, we created

a first data set where 500 such local alignments with an

error rate of 0%, 2.5%, 5%, 7.5%, or 10% were inserted

into a sequence of length 1 Mb at random positions. A

second simulation was conducted to assess the effect of

the sequence length. Here, sequences of lengths 1 kb, 10

kb, 100 kb, 1 Mb, and 10 Mb were simulated containing

Figure 8 Match coverage. A set of matches A = {A1, …, A8} that
are to be compared to a set of reference matches {B1, …, B7}. We
say that a match Bi is covered by the matches from A if at least
10% of the alignment columns agree between Bi and any match
from A.

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 8 of 12

local alignments with error rates between 0 and 10%.

On these data sets we ran the above mentioned pro-

grams, with STELLAR’s error rate parameter set accord-

ingly and the minimal match length set to 50. The

results are shown in Tables 1 and 2. Table 1 demon-

strates that STELLAR, in particular for the higher error

rates, outperforms the other programs. SSEARCH has

full sensitivity as expected but is very slow. We con-

firmed that with an E-value cutoff of 0.01 it does not

detect any other than the inserted local alignments.

BWT-SW reports all local alignments, too, but is still

much slower than STELLAR. For BLAST and LASTZ

the number of missed matches is low for very low error

rates but increases with higher error rates. This implies

that one can benefit the most from STELLAR when

comparing closely related sequences that still have sig-

nificant differences. As an example, Fig. 9 displays one

ε-match that only STELLAR, BWT-SW, and SSEARCH

identify. BLAST is the fastest of all programs, though

only with default parameters and lower sensitivity.

BLAT constantly misses around 30% of all matches. We

assume that the reason for BLAT’s bad performance is

that it was originally designed for the comparison of

many short sequences (ESTs or reads) against one long

sequence and not for the comparison of two long

sequences. Table 2 supports this assumption, as the

number of matches missed by BLAT is low for the 1 kb

– 100 kb sequences but increases up to almost 70% for

sequences of length 10 Mb. In contrast, the sensitivity

of BLAST and LASTZ seems not to be affected by dif-

ferent sequence lengths. STELLAR is in general faster

than BWT-SW, BLAT, and LASTZ with one exception

– the 10 Mb sequences. This indicates already a limita-

tion of STELLAR on very long sequences with high

error rates. The SWIFT filter has a lower specificity for

high error rates and generates very many SWIFT hits.

As a result, many verification steps are necessary, which

leads to an increase in running time. However, STEL-

LAR is faster than the sensitive BLAST for the 10 Mb

sequences and also for high error rates. The sudden

increase in running time for the sensitive BLAST at

higher error rates (Table 1) is due to a much lower smin

for ε = 10%.

Genomic sequences

We downloaded the assembled genomes of Drosophíla

melanogaster (release 5.26) and Drosophíla pseudoobs-

cura (release 2.14) from FlyBase [34]. We selected

Table 1 Running times and sensitivity on simulated sequences containing local alignments of different error rates

error rate 0% 2.5% 5% 7.5% 10%

time missed time missed time missed time missed time missed

SSEARCH 133:17 h 0.00% 132:55 h 0.00% 133:24 h 0.00% 132:25 h 0.00% 132:52 h 0.00%

STELLAR 2.96 s 0.00% 3.30 s 0.00% 3.61 s 0.00% 3.91 s 0.00% 4.44 s 0.00%

BWT-SW 16.59 s 0.00% 16.63 s 0.00% 16.53 s 0.00% 16.29 s 0.00% 16.24 s 0.00%

BLAST 0.25 s 0.00% 0.26 s 0.16% 0.26 s 5.36% 0.25 s 17.00% 0.24 s 38.80%

BLAST* 0.25 s 0.16% 0.26 s 0.00% 0.28 s 0.04% 0.51 s 0.28% 14.99 s 2.60%

LASTZ 6.49 s 0.00% 6.48 s 0.72% 6.22 s 5.56% 5.86 s 12.68% 5.23 s 24.92%

BLAT 14.30 s 29.36% 11.52 s 29.64% 14.06 s 28.88% 14.71 s 31.44% 14.66 s 34.32%

Sequences have a length of 1 Mb and contain local alignments of lengths between 50 and 200 bp. The simulations were repeated five times, the displayed

values are the average of all runs except for SSEARCH which was run only once. Sensitivity is measured by the percentage of missed local alignments (Fig. 8).

BWT-SW, BLAST, BLAT, and LASTZ were run with default parameter settings. BLAST* stands for a more sensitive run of BLAST with the word size parameter set to

smin, i.e. the minimal length of an ε-core (see text for details).

Table 2 Running times and sensitivity on simulated sequences of different lengths

seq length 1 kb 10 kb 100 kb 1 Mb 10 Mb

time missed time missed time missed time missed time missed

SSEARCH 2.45 s 0.00% 259.5 s 0.00% 7:16 h 0.00% 136:16 h 0.00% – –

STELLAR 1 ms 0.00% 5 ms 0.00% 0.07 s 0.00% 4.36 s 0.00% 782.46 s 0.00%

BWT-SW – – 787 ms 0.00% 1.40 s 0.00% 16.33 s 0.00% 508.45 s 0.00%

BLAST 4 ms 14.00% 8 ms 6.00% 0.03 s 11.40% 0.25 s 13.40% 3.34 s 12.64%

BLAST* 6 ms 0.00% 13 ms 0.00% 0.16 s 0.00% 14.75 s 0.60% 2266.64 s 1.46%

LASTZ 9 ms 10.00% 59 ms 2.00% 0.56 s 7.80% 5.99 s 9.40% 116.26 s 9.12%

BLAT 25 ms 0.00% 39 ms 0.00% 0.40 s 1.00% 15.24 s 33.00% 384.79 s 69.30%

Sequences contain a = [length/2000] local alignments with a maximal error rate of 10% and lengths between 50 and 200 bp. The simulation of the 1 kb

sequences was repeated 50 times, the simulation of the 10 kb and 100 kb sequences ten times. The displayed values are the average of all runs except for

SSEARCH which was run only once. Sensitivity is measured by the percentage of missed local alignments (Fig. 8). BWT-SW, BLAST, BLAT, and LASTZ were run

with default parameter settings. BLAST* stands for a more sensitive run of BLAST with the word size parameter set to smin, i.e. the minimal length of an ε-core

(see text for details).

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 9 of 12

chromosome arm 2L from D. melanogaster (~23.5 Mb)

and group 3 from the chromosome 4 assembly of D.

pseudoobscura (~11.7 Mb) for our test runs. Unfortu-

nately, this data set is too big to compute local align-

ments with SSEARCH, and since BLAST performs

better than BLAT and LASTZ on the simulated data

we chose to compare STELLAR on the genomic data

only to BLAST. We expect BLAST to compute very

short alignments with low error rates and some long

alignments with higher error rates that do not fulfill

the minimal length or error rate criterion for ε-

matches, and hence STELLAR will not find them.

Therefore, to double-check STELLAR’s sensitivity, we

filter all ε-matches from the set of BLAST hits. Addi-

tonally, some of the longer BLAST hits may contain

valid ε-matches that we extract and add to the set of

filtered BLAST hits.

Results for STELLAR are shown in Table 3 and results

for BLAST in Table 4. STELLAR identifies for example

345 ε-matches with an error rate of 10% and a minimal

match length of 200. As expected, these cover all of the

ε-matches filtered from the set of BLAST hits. In con-

trast to the simulated sequences, the running time

increases significantly with a higher error rate or lower

minimal length. This can be explained with the filter

algorithm being more specific for higher minimal

lengths and low error rates as already mentioned above.

With less specific filtering, many more SWIFT hits need

to be verified resulting in a higher running time. In the

future we might be able to reduce this effect by

parallelization.

BLAST with default settings is again the faster pro-

gram, but misses 17 ε-matches of minimal length 200.

One of these matches is displayed in Fig. 10. When we

change the word size parameter such that BLAST is

able to identify all ε-matches of minimal length 200, it is

slower than STELLAR. STELLAR with minimal length

100 and error rate 10% is slowest in all tested settings,

but identifies 408 ε-matches that BLAST with default

parameters does not find, and 13 ε-matches that even

the more sensitive setting of BLAST does not find

though these ε-matches have an E-value of 6.1 x 10–23

or lower.

Conclusions
We presented STELLAR, an algorithm to compute all

local alignments of a minimal length according to a clear

quality definition using the established measures error

rate and X-drop. STELLAR brings exact local alignments

to the community at the speed of heuristic state-of-the-

art tools like BLAST, BLAT, or LASTZ. In addition, our

experiments show that our effort is worthwhile since the

heuristic tools miss up to about a third of the matches

using simulated and real genomic data. Compared to its

closest competitor, BWT-SW, it is in most benchmarks

faster and offers with the X-drop parameter a possibility

to exclude local alignments with bad regions. A limita-

tion of STELLAR is that only ε-matches up to a certain

error rate can be computed since the filtering phase loses

specificity with increasing error rate. Therefore, for

longer and less similar though significant local align-

ments BLAST remains more appropriate.

!""#"$ %%%&'%%%''&%&&'&'(%)%&'&'(&''%%&%&'('(&'%'%%%'&&&'

**** ************** ********* ************ *******
+,+-"$ %%%&)%%%''&%&&'&'(%'%&'&'(&'')%&%&'('(&'%')%%'&&&'

!""./$ &&''%%%%%'&%%'%&((&&%''&%&(%'%((&%''&(&&&%%'%&

**** *********** *** ***************** *******
+,+!/$ &&'')%%%%'&%%'%&)(&&)''&%&(%'%((&%''&()&&%%'%&

Figure 9 ε-match in simulated data. An example ε-match from the simulated sequences of length 1 Mb and ε = 10%. This ε-match with an E-
value of 7 × 10–26 is only found by STELLAR, BWT-SW, and SSEARCH, but by none of the other programs.

Table 3 Results of STELLAR on drosophila chromosomes

error
rate

min.
length

running
time

num. of
ε-matches

overlap
BLASTa

10% 100 7777 s 3911 100%

10% 200 1566 s 345 100%

5% 200 21 s 44 100%

We used chromosome arm 2L from D. melanogaster (~23.5 Mb) and group 3

of chromosome 4 from D.pseudoobscura (~11.7Mb). STELLAR was run with the

X-drop parameter set to 20.
a Percentage of covered local alignments from accordingly filtered BLAST

output.

Table 4 Results of BLAST on drosophila chromosomes

word
size

running
time

num. of
hits

overlap STELLAR
200b

overlap STELLAR
100b

default 9 s 9504 95.1% 89.6%

8 2175 s 29597 100.0% 99.7%

We used chromosome arm 2L from D. melanogaster (~23.5 Mb) and group 3

of chromosome 4 from D.pseudoobscura (~11.7Mb).
a Percentage of covered STELLAR matches (error rate 10%, minimal length

200 or 100).

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 10 of 12

As an outlook another relatively new application for

local alignments that has emerged with the advent of

cheap next-generation sequencing should be mentioned.

Standard read mapping programs [8-14] usually can

only map entire reads to the reference. With the

increasing read length, there will be more reads that

span breakage points, e.g. translocations, gene fusions,

or splice junctions. The application of an efficient and

exact local alignment program could be one way to suc-

cessfully map such reads and detect variation [15].

Application of STELLAR is especially promising in that

it uses the error rate for sensitivity control, an estab-

lished criterion for read mappers. With a downstream

chaining procedure of the partial read matches detected

by STELLAR, it may then be possible to detect even

multiple splits of reads. Hence, for finding local align-

ments in the tested range of error rates STELLAR could

replace the heuristic tools.

Acknowledgements

This article has been published as part of BMC Bioinformatics Volume 12
Supplement 9, 2011: Proceedings of the Ninth Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/1471-2105/12?issue=S9.

Author details
1Department of Computer Science, Free University Berlin, Takustr. 9, 14195
Berlin, Germany. 2International Max Planck Research School for
Computational Biology and Scientific Computing, Ihnestr. 63-73, 14195
Berlin, Germany.

Competing interests

The authors declare that they have no competing interests.

Published: 5 October 2011

References

1. Sellers PH: The theory and computation of evolutionary distances:

Pattern recognition. Journal of Algorithms 1980, 1(4):359-373.
2. Smith TF, Waterman MS: Identification of common molecular

subsequences. J Mol Biol 1981, 147:195-197.
3. Paten B, Herrero J, Beal K, Birney E: Sequence progressive alignment, a

framework for practical large-scale probabilistic consistency alignment.

Bioinformatics 2009, 25(3):295-301.
4. Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment

with gene gain, loss and rearrangement. PLoS One 2010, 5(6):e11147.
5. Dubchak I, Poliakov A, Kislyuk A, Brudno M: Multiple whole-genome

alignments without a reference organism. Genome Res 2009,
19(4):682-689.

6. Raphael B, Zhi D, Tang H, Pevzner P: A novel method for multiple

alignment of sequences with repeated and shuffled elements. Genome

Res 2004, 14(11):2336-2346.
7. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, Roskin KM,

Baertsch R, Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W:
Aligning multiple genomic sequences with the threaded blockset

aligner. Genome Res 2004, 14(4):708-715.
8. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome.

Genome Biol 2009, 10(3):R25.
9. Li H, Durbin R: Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
10. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling

variants using mapping quality scores. Genome Res 2008,
18(11):1851-1858.

11. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment

program. Bioinformatics 2008, 24(5):713-714.
12. Rumble S, Brudno M: Shrimp – short read mapping package. 2008 [http://

compbio.cs.toronto.edu/shrimp/].
13. Jiang H, Wong WH: SeqMap: mapping massive amount of

oligonucleotides to the genome. Bioinformatics 2008, 24(20):2395-2396.
14. Weese D, Emde AK, Rausch T, Döring A, Reinert K: RazerS–fast read

mapping with sensitivity control. Genome Res 2009, 19(9):1646-1654.
15. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008,
5(7):621-628.

16. Pearson WR, Lipman DJ: Improved tools for biological sequence

comparison. Proc Natl Acad Sci U S A 1988, 85(8):2444-2448.
17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. J Mol Biol 1990, 215(3):403-410.

!""#$"%& '''()*''*()*(*)***'(*()'()'*'(('(**)()(())***)'*'*'**)((*())(*)*'*(('**)(('*(()'

++++++++++++++++++ +++++++++++ ++++++++++++++ +++++ ++ ++++++++ ++++++++ +++++ +
!&,&&%%# '''()*''*()*(*)***)(*()'()'*'(*'(**)()(())***('*'*'(*)'(*())(*))'*(('**)'('*((('

!""#$"&& *'('*))(**)*(()(('*()'())'('**)*((((**('*(**')((*)'*()'''*(((**)***(')('****(*))

+ ++++++++ +++++ ++++++++++++++++++++ ++++++++ ++ +++++ +++++++++++++++++++++++
!&,&&-&# *(('*))(****(()(*'*()'())'('**)*((((*'('*(**')'(*('*()'('*(((**)***(')('****(*)*

!""#$./&))('*(*)*('**'*()**)***)()*(*(('*))*('*)*()'***(*((('*****(()')''(*'''*(('*)'')'

++++++++++++++ ++++++++ +++++++++++++++++++++++ +++++ ++ +++++++++++++++++++++++
!&,&&-/#))('*(*)*('**'(()**)***(()*(*(('*))*('*)*()'*****((('(**(*(()')''(*'''*(('*)'')'

!""#$.,& ()')('*)*'))*')0*0)*'*)'**

++++ ++++++++++ + + ++ +++
!&,&&$,# ()')''*)*'))*')(*)))'*0'**

Figure 10 ε-match between drosophila sequences. An example ε-match from the drosophila sequences with ε = 10% and n0 = 200. This ε-
match with an E-value of 6 × 10–84 is not found by BLAST with default parameters.

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 11 of 12

http://www.biomedcentral.com/1471-2105/12?issue=S9
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19056777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19056777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20593022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20593022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15520295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15520295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18714091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18714091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227114?dopt=Abstract
http://compbio.cs.toronto.edu/shrimp/
http://compbio.cs.toronto.edu/shrimp/
http://www.ncbi.nlm.nih.gov/pubmed/18697769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18697769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19592482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19592482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract

18. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
19. Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning

DNA sequences. J Comput Biol 2000, 7(1-2):203-214.
20. Kent WJ: BLAT-the BLAST-like alignment tool. Genome Res 2002,

12(4):656-664.
21. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D,

Miller W: Human-mouse alignments with BLASTZ. Genome Res 2003,
13:103-107.

22. Lam TW, Sung WK, Tam SL, Wong CK, Yiu SM: Compressed indexing and

local alignment of DNA. Bioinformatics 2008, 24(6):791-797.
23. Karlin S, Altschul SF: Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. Proc

Natl Acad Sci U S A 1990, 87(6):2264-2268.
24. Döring A, Weese D, Rausch T, Reinert K: SeqAn an efficient, generic C++

library for sequence analysis. BMC Bioinformatics 2008, 9:11.
25. Gogol-Döring A, Reinert K: Biological Sequence Analysis Using the SeqAn

C++ Library. Chapman & Hall/CRC Mathematical & Computational Biology,
CRC Press, Boca Raton, USA; 2009 [http://www.crcpress.com/
ecommerce_product/product_detail.jsf?isbn=9781420076233].

26. Zhang Z, Berman P, Miller W: Alignments without low-scoring regions. J

Comput Biol 1998, 5(2):197-210.
27. Zhang Z, Berman P, Wiehe T, Miller W: Post-processing long pairwise

alignments. Bioinformatics 1999, 15(12):1012-1019.
28. Rasmussen KR, Stoye J, Myers EW: Efficient q-gram filters for finding all ε-

matches over a given length. J Comput Biol 2006, 13(2):296-308.
29. Burkhardt S, Crauser A, Ferragina P, Lenhof HP, Rivals E, Vingron M: q-gram

based database searching using a suffix array (QUASAR). J Comput Biol,

RECOMB ’99 1999, 77-83.
30. Jokinen P, Ukkonen E: Two algorithms for approxmate string matching in

static texts. Mathematical Foundations of Computer Science 1991, Volume

520 of Lect Notes Comput Sc 1991, 240-248[http://www.springerlink.com/
content/p58155n8012x0477/].

31. Waterman MS, Eggert M: A new algorithm for best subsequence

alignments with application to tRNA-rRNA comparisons. J Mol Biol 1987,
197(4):723-728.

32. Marzal A, Vidal E: Computation of normalized edit distance and

applications. IEEE T Pattern Anal 1993, 15:926-932.
33. Arslan AN, Eǧecioǧlu Ö: Efficient algorithms for normalized edit distance.

Journal of Discrete Algorithms 2000, 1:3-20.
34. Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S,

Millburn G, Osumi-Sutherland D, Schroeder A, Seal R, Zhang H,
Consortium F: FlyBase: enhancing drosophila gene ontology annotations.

Nucleic Acids Res 2009, 37(Database issue):D555-D559.

doi:10.1186/1471-2105-12-S9-S15
Cite this article as: Kehr et al.: STELLAR: fast and exact local alignments.
BMC Bioinformatics 2011 12(Suppl 9):S15.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Kehr et al. BMC Bioinformatics 2011, 12(Suppl 9):S15

http://www.biomedcentral.com/1471-2105/12/S9/S15

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11932250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12529312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2315319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2315319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18184432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18184432?dopt=Abstract
http://www.crcpress.com/ecommerce_product/product_detail.jsf?isbn=9781420076233
http://www.crcpress.com/ecommerce_product/product_detail.jsf?isbn=9781420076233
http://www.ncbi.nlm.nih.gov/pubmed/9672828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10745991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10745991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16597241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16597241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899412?dopt=Abstract
http://www.springerlink.com/content/p58155n8012x0477/
http://www.springerlink.com/content/p58155n8012x0477/
http://www.ncbi.nlm.nih.gov/pubmed/2448477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2448477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18948289?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Methods
	Definitions and overview of algorithm
	Filtering phase
	Verification phase
	Definition and existence of ε-cores
	Step 1: ε-core identification
	Step 2: ε-X-drop core filter
	Step 3: ε-X-drop extension
	Step 4: identification of maximal ε-matches
	Step 5: removal of largely overlapping ε-matches

	Results and discussion
	Simulated sequences
	Genomic sequences

	Conclusions
	Acknowledgements
	Author details
	Competing interests
	References

