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ABSTRACT

Spatially resolved kinematics of nearby galaxies has shown that the ratio of dynamical-
to stellar population-based estimates of the mass of a galaxy (MJAM

∗
/M∗) correlates

with σe, the light-weighted velocity dispersion within its half-light radius, if M∗ is
estimated using the same Initial Mass Function (IMF) for all galaxies and the stellar
mass-to-light ratio within each galaxy is constant. This correlation may indicate that,
in fact, the IMF is more bottom-heavy or dwarf-rich for galaxies with large σ. We use
this correlation to estimate a dynamical or IMF-corrected stellar mass, MαJAM

∗
, from

M∗ and σe for a sample of 6 × 105 SDSS galaxies for which spatially resolved kine-
matics is not available. We also compute the ‘virial’ mass estimate k(n,R)Re σ

2
R/G,

where n is the Sérsic index, in the SDSS and ATLAS3D samples. We show that an
n-dependent correction must be applied to the k(n,R) values provided by Prugniel &
Simien (1997). Our analysis also shows that the shape of the velocity dispersion profile
in the ATLAS3D sample varies weakly with n: (σR/σe) = (R/Re)

−γ(n). The resulting
stellar mass functions, based on MαJAM

∗
and the recalibrated virial mass, are in good

agreement. If the MαJAM
∗

/M∗ − σe correlation is indeed due to the IMF, and stellar
mass-to-light gradients can be ignored, then our φ(MαJAM

∗
) is an estimate of the stel-

lar mass function in which σe-dependent variations in the IMF across the population
have been accounted for. Using a Fundamental Plane based observational proxy for
σe produces comparable results. The use of direct measurements for estimating the
IMF-dependent stellar mass is prohibitively expensive for a large sample of galaxies.
By demonstrating that cheaper proxies are sufficiently accurate, our analysis should
enable a more reliable census of the mass in stars, especially at high redshift, at a
fraction of the cost. Our results are provided in tabular form.

Key words: galaxies: luminosity function, mass function – galaxies: structure –
galaxies: fundamental parameters – galaxies: kinematics and dynamics

1 INTRODUCTION

The comoving number density of galaxies evolves, and this
encodes information about how galaxies formed. Early work
studied the galaxy luminosity function – the comoving den-
sity in bins of luminosity – but because the luminosity de-
pends on waveband, and can evolve even if the mass in stars
does not, the last decade has seen interest shift from the
luminosity function φ(L) to the stellar mass function φ(M∗)
(Bernardi et al. 2017a and references therein).

Stellar masses are typically estimated as the product

⋆ E-mail: bernardm@sas.upenn.edu

of the luminosity L and a stellar mass-to-light ratio M∗/L.
While there are systematics associated with both, a series of
recent papers make the case that systematics associated with
L have been significantly reduced in recent years (Bernardi
et al. 2013; Meert et al. 2015; Fischer et al. 2017; Bernardi
et al. 2017a,b) and are now smaller than those for M∗/L
(Bernardi et al. 2017a).

Current algorithms for determining M∗/L require one
to make a number of assumptions about the age, metallic-
ity, star-formation history, dust content, and so on. How-
ever, one of the largest systematics in the determination of
M∗/L is the shape of the initial stellar mass function (here-
after IMF); the two most popular choices (Salpeter 1955;
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2 Bernardi et al.

Chabrier 2003) differ by ∼ 0.25 dex, with Salpeter being
heavier, i.e., having larger M∗/L, than Chabrier. The dif-
ference between these two is primarily because the Salpeter
IMF includes many more low mass stars, as a result of which
it is often said to be ‘bottom-heavy’ or ‘dwarf-rich’.

Moreover, essentially all estimates of φ(M∗) assume
that the IMF is constant across the population. This as-
sumption is one of convenience – it has no physical motiva-
tion. Indeed, a number of recent observations – some based
on gravity-sensitive features in the spectrum (Conroy & van
Dokkum 2012; La Barbera et al. 2013; Spiniello et al. 2014;
Lyubenova et al. 2016; Lagattuta et al. 2017), others based
on gravitational lensing and stellar dynamics (Auger et al.
2010; Thomas et al. 2011; Spiniello et al. 2012; Cappellari et
al. 2012; Cappellari et al. 2013b; Barnabè et al. 2013; Posacki
et al. 2015) – suggest that the IMF is not constant across the
population. Even more recent work suggests that the IMF is
not even constant within a galaxy (Lyubenova et al. 2016;
van Dokkum et al. 2017; La Barbera et al. 2017). The pri-
mary goal of the present study is to incorporate the first of
these effects into an estimate of φ(M∗) in a sample, the
SDSS DR7, that is two orders of magnitude larger than
those in which IMF-variations have been detected directly.
We leave accounting for IMF gradients within a galaxy for
future work.

A particularly simple estimate of φ(M∗), in which
the IMF was assumed to depend on morphological type –
Salpeter for early types, and more Chabrier-like for later
types – was made by Bernardi et al. (2010). Their Fig-
ure 25 shows that, in contrast to when the IMF is as-
sumed to be the same for all galaxies, the resulting esti-
mate of φ(M∗) is rather similar to φ(Mdyn), where Mdyn =
5Re,deVσ

2/G and Re,deV is the half-light radius from a
de Vaucouleurs profile. They suggested that IMF-variations
may be a reasonable way of reconciling stellar population
and dynamical estimates of the stellar mass function. Subse-
quent work suggests that the IMF may vary with metallicity
(Clauwens et al. 2016). And even more recent work suggests
that the IMF varies across the population even when the
morphological type is fixed (Li et al. 2017). Moreover, the
size estimate Re depends on the model fitted to the light
profile, so there is no compelling reason to use 5Reσ

2/G
whatever the fitted model (Prugniel & Simien 1997). There-
fore, our goal is to present and compare better motivated
estimates of φ(M∗) and φ(Mdyn).

Achieving our goal is complicated by the fact that
we do not have spectra with sufficient signal to noise or
wavelength coverage to see the IMF-related spectroscopic
features directly, so we must use other proxies. Velocity dis-
persion is potentially a good choice, because Conroy & van
Dokkum (2012), using IMF-sensitive features in the spectra
of 38 early-type galaxies, have shown that M∗,IMF/M∗, the
ratio of stellar masses estimated allowing the IMF to vary
to that where it is held fixed, correlates with velocity dis-
persion: the IMF tends to be bottom-heavy (i.e. dwarf-rich)
in galaxies with large velocity dispersions. Other groups
have come to similar conclusions (La Barbera et al. 2013;
Lyubenova et al. 2016; Lagattuta et al. 2017), although
the agreement is not universal (Smith & Lucey 2013;
Smith et al. 2015; Clauwens et al. 2015).

More recently, using spatially resolved photometry and

spectroscopy of 26 galaxies over a range of scales, Lyuben-

ova et al. (2016) used a Jeans-equation analysis of the data
(following methods described in Cappellari et al. 2012) to
estimate what we will refer to as MJAM

∗ for each galaxy.
The JAM estimate is a dynamical estimate which explicitly
models both stellar and dark matter components; MJAM

∗ is
the stellar mass component. Lyubenova et al. found that, for
the 26 galaxies they studied, the ratio MJAM

∗ /M∗ is similar
to M∗,IMF/M∗. Therefore, M

JAM
∗ is another potential proxy

for M∗,IMF. Indeed, in their analysis of ∼ 800 galaxies from
the Mapping Nearby Galaxies at APO survey (MaNGA),
Li et al. (2017) estimated MJAM

∗ /M∗ for their sample and
simply assumed that MJAM

∗ /M∗ = M∗,IMF/M∗. Unfortu-
nately, estimating MJAM

∗ requires spatially resolved kine-
matics, which we do not have. Hence, one of our goals is to
combine the the methodology used by Prugniel & Simien
(1997) with a calibration to the ATLAS3D sample (Cappel-
lari et al. 2011) to estimate MJAM

∗ .
Section 2 describes our SDSS sample, and the observ-

ables available in it which we can use to construct our prox-
ies for the IMF-corrected stellar mass. One of these – the
dynamical mass – is the subject of Section 3. This Section
includes an analysis of the ATLAS3D sample which we use
to calibrate some of our mass estimates. Section 4 defines
a number of estimates of the total, dynamical and/or IMF-
corrected stellar mass; this also includes the use of a Fun-
damental Plane-based photometric proxy for the velocity
dispersion (Section 4.2). Section 5 compares the associated
stellar mass functions. A final section summarizes and places
our results in the wider context of how variations in the IMF
impact estimates of the stellar mass function when IMF-
gradients are ignored. Systematic effects associated with our
fixed IMF M∗ estimates, our sample, and comparison with
previous work are described in Appendix A, and Appendix B
provides some of our results in tabular form.

When necessary, we assume a spatially flat back-
ground cosmology with parameters (Ωm,ΩΛ) = (0.3, 0.7),
and a Hubble constant at the present time of H0 =
70 km s−1Mpc−1, as these are the values adopted in most
studies of the stellar mass function which we reference in our
work. As we will be working at low z, all our conclusions are
robust to small changes in these parameters.

2 THE SAMPLE

This section describes the observables we use to define a
number of estimators of the stellar mass of galaxies in the
SDSS DR7 Main Galaxy Sample (Abazajian et al. 2009).

2.1 Photometry and morphological type

We select the galaxies in the SDSS DR7 with r-band Pet-
rosian magnitude limits 14 ≤ mr ≤ 17.77 mag (see Meert et
al. 2015 for a detailed discussion of the sample selection). As
discussed in a series of papers (Bernardi et al. 2013; Meert
et al. 2015; Fischer et al. 2017; Bernardi et al. 2017b and
references therein) the SDSS pipeline photometry under-
estimates the brightnesses of the most luminous galaxies.
This is mainly because (i) the SDSS overestimates the sky
background and (ii) single or two-component Sérsic-based
models fit the surface brightness profile of galaxies better
than the de Vaucouleurs model used by the SDSS pipeline,
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φ(M∗) and variable-IMF 3

especially at high luminosities. Therefore, rather than the
SDSS pipeline photometry, we use the PyMorph photome-
try of Meert et al. (2015). The differences between PyMorph

and SDSS pipeline photometry are significant for the most
massive galaxies. Bernardi et al. (2017b) show that these
differences are not dominated by intracluster light.

For single Sérsic fits, the relevant PyMorph parameters
are the Sérsic index n, half-light radius Re and total lumi-
nosity L of each of object. The estimated total light L results
from extrapolating the fitted (Sérsic) model to infinity. As
a result, the single Sérsic fits are known to slightly over-
estimate the total light; integrating out to only 8Re yields
a more reliable luminosity estimate (Bernardi et al. 2017a).
For two-component SerExp fits the returned parameters are
nBulge, Re,Bulge and bulge luminosity Lbulge for one compo-
nent, and Re and L for the sum of the two components
(where the second component is forced to have Sérsic index
n = 1). (In this case, the difference between truncating and
extrapolating to infinity matters less. See, e.g., Figures A1
and A2.) We will also consider single component fits in which
PyMorph forced n = 4; we refer to the associated size and
luminosity as Re,deV and LdeV. In this paper we will always
use PyMorph truncated luminosities.

Later in this paper, we will consider E+S0s separately
from the full population. For this, we use the Bayesian Au-
tomated morphological classifications (hereafter BAC) of
Huertas-Company et al. (2011); our results do not depend
strongly on this choice. We use the BAC classifications be-
cause they provide a probability p(type) for each object. We
can either weight by, or implement hard cuts in, this prob-
ability. See Bernardi et al. (2010, 2013, 2014) for discussion
of morphology as a function of galaxy mass.

2.2 Fixed-IMF stellar masses

For each galaxy, stellar masses M∗ are derived by multiply-
ing the Meert et al. (2015) truncated Ltrunc values by M∗/L
values taken from Mendel et al. (2014). These M∗/L were
estimated by fitting the spectral energy distribution (SED)
of synthetic stellar population models to all five SDSS wave-
bands for all objects. Briefly, Mendel et al. compared each
galaxys observed SED to a synthetic stellar population mod-
els grid. This grid was constructed using the flexible stellar
population synthesis code of Conroy et al. (2009) which al-
lows us to generate synthetic SEDs given a range of galaxy
properties. These models span a range of ages, metallici-
ties, star-formation histories, and dust properties observed
in nearby galaxies. A Chabrier IMF was assumed. The rele-
vant parameters of the models grid are summarized in Table
2 of Mendel et al (2014). Appendix A shows the impact on
φ(M∗) of varying a number of assumptions about the stellar
population (e.g. dusty, dust-free, etc.) while always assum-
ing the IMF is constant (Chabrier) across the population.
Appendix A also compares the stellar mass function of this
work with recent estimates (i.e. Bernardi et al. 2013, 2017a).

2.3 Velocity dispersion

The SDSS pipeline provides estimates of the velocity dis-
persion σa measured within a circular aperture of radius
θa = 1.5 arcsec for most but not all objects. Strictly speak-
ing, σa is a complicated combination of rotation, dispersion

and orientation with respect to the line of sight, so treating
it as a pure velocity dispersion is at best correct for ob-
jects which are not rotating; this is usually the case for the
most massive galaxies (e.g. Cappellari et al. 2013a). Since
the fiber typically covers the central regions of a galaxy, it
may be that σa primarily samples the bulge component of
two-component galaxies. Therefore, in what follows, we will
be careful to consider E+S0s separately before extending
our results to all galaxy types. It should be borne in mind
that our methods below are reasonably well motivated only
for E+S0s, even though we go on to apply them to other
types.

The official pipeline, SpecObjAll velDisp, does not
provide estimates if the signal-to-noise of the spectrum was
too low, or if the object was not early-type. In contrast,
galSpecInfo v disp does not implement these cuts. Al-
though our primary interest is in E+S0s, we are also in-
terested in the full range of galaxy types, so we use these
latter values. Hyde & Bernardi (2009) show that, when both
estimates are available, they tend to agree well. In practice,
σa values smaller than ∼ 70 km s−1 are quite unreliable.

Unfortunately, because σa is estimated in an aperture
of fixed angular size, it samples a distance dependent phys-
ical scale in each galaxy. There is general agreement that
it is much better to work with a physical scale which is a
fixed multiple of the half-light radius. In what follows, we
will work with σe and σe/8, which are the light-weighted
projected velocity dispersion within the projected half-light
radius, Re, and within Re/8, respectively. Our first task will
be to estimate σe and σe/8 from σa; later on, we describe
how we treat objects for which not even σa is available.

The first question is: How different are the fiber and
half-light scales? For the E+S0s in our sample, ta ≡ θa/θe ≈
0.6 approximately independent of σa. However, it correlates
weakly with M∗: ta ≈ min[0.6, 0.6−0.33 log10(M∗/10

11M⊙)]
because the more massive galaxies are seen out to larger
distances – where the fixed angular aperture corresponds to
a larger physical size – but this trend is weakened by the
fact that massive galaxies also tend to have larger half-light
radii. The main point is that σa is measured on scales that
are, on average, of order 2× smaller than Re.

Previous work suggests the following empirical relation
for the scale dependence of σ:

log10
σR

σe
= −0.066 log10

R

Re
− 0.013

[

log10
R

Re

]2

(1)

(Jørgensen et al. 1995). In some more recent work
(Mehlert et al. 2003; Cappellari et al. 2006), the sec-
ond order term is dropped. Thus, σe is expected to be
approximately 1.04× smaller than σa; a difference of about
0.019 dex. Of course, we can use this same scaling law
to estimate σe/8 ≈ 1.12 σe. Section 3.4.1 presents a new
empirical scaling relation which depends on the shape of
the light profile (see equation 6).

Section 4.2 addresses the question of how to proceed if
σa is not available or is too expensive to measure (e.g. in
more distant samples). It argues that one should be able to
build a cheaper observational proxy for σe if estimates of the
size and stellar mass are available (i.e. using a ‘Fundamental
Plane’ approach).
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Table 1. Dependence of coefficient k(n, ta = R/Re) in equation (2) which transforms the observed half-light radius and light weighted
projected velocity dispersion measured within an aperture R to a mass.

n ta = 0.1 ta = 0.125 ta = 0.25 ta = 0.5 ta = 0.75 ta = 1

2.00 7.38 7.20 6.80 6.78 6.97 7.30
2.50 6.59 6.46 6.23 6.36 6.63 6.97
3.00 5.84 5.76 5.69 5.96 6.27 6.62
3.50 5.18 5.15 5.21 5.57 5.92 6.27
4.00 4.62 4.62 4.79 5.21 5.58 5.93
4.50 4.14 4.17 4.42 4.88 5.26 5.60
5.00 3.74 3.79 4.09 4.58 4.95 5.29
5.50 3.39 3.46 3.79 4.29 4.67 4.99
6.00 3.10 3.17 3.52 4.03 4.40 4.71
6.50 2.84 2.92 3.28 3.78 4.14 4.44
7.00 2.61 2.70 3.06 3.56 3.91 4.19
7.50 2.41 2.50 2.86 3.35 3.68 3.95
8.00 2.23 2.32 2.68 3.15 3.47 3.73
8.50 2.07 2.16 2.51 2.96 3.27 3.52
9.00 1.92 2.01 2.36 2.79 3.08 3.32
9.50 1.79 1.88 2.21 2.63 2.91 3.13
10.00 1.67 1.75 2.08 2.48 2.74 2.95

3 DYNAMICAL MASS ESTIMATES

3.1 Using the shape of the observed light profile:

MPS

If the contribution of dark matter to σR is negligible, the
galaxy is not rotating and has an isotropic velocity dis-
persion, and the total mass-to-light ratio is constant, then
Jeans’ equation implies that the shape of the luminosity
weighted projected velocity dispersion profile is fully deter-
mined by the shape of the surface-brightness profile. Fig-
ure 14 of (the Jeans equation analysis of) Prugniel & Simien
(1997) shows σR if the surface brightness profile is Sérsic
with index n and projected half-light radius Re. Therefore,
one can estimate the dynamical mass by finding that mass-
to-light ratio which correctly predicts the amplitude of σR

on one scale; if all the assumptions just stated are accu-
rate, then this same value will be returned whatever R one
chooses to match.

Namely, the total mass can be estimated using

MPS(R) ≡ k(n,R)Re σ
2
R/G, (2)

where k(n,R) is determined using the Prugniel-Simien
methodology for each R. Table 1 gives these values for
n = [2, 10] and a variety of choices of R/Re. (These values
are consistent with Table 4 of Prugniel & Simien 1997 for
R = Re/10, and equation (20) of Cappellari et al. 2006 for
R = Re. For this we do not use truncated profiles; doing so
would make k about 10 percent smaller.) If the assumptions
above are accurate, then k(n,R)σ2

R, and hence MPS(R), will
be the same for all R. However, if the observed scale depen-
dence of σR is different from that predicted – e.g. if dark
matter contributes to σR – then equation (2) will yield esti-
mates MPS(R) that depend on R.

To illustrate, the ratio of the mass estimates on the
scales Re and Re/8 will satisfy

MPS(e/8)

MPS(e)
=

k(n,Re/8)

k(n,Re)

σ2
e/8

σ2
e

. (3)

If the assumptions above are accurate, then MPS(e/8) =

Figure 1. Proportionality constant k(n, ta) in equation (2) for a
range of choices of ta as labeled. Small grey dots show the values
associated with the velocity dispersion measured within the SDSS
fiber (i.e. 1.5 arcsec) of 5000 randomly selected galaxies; solid
red and dashed curves show the median value, and the range
which encloses 68% of the galaxies at each n. Other colored dots
connected by lines show curves of fixed ta as labeled.

MPS(e). However, if we use equation (1) to relate the two
velocity dispersions, then the expression above becomes

MPS(e/8)

MPS(e)
= 1.25

k(n,Re/8)

k(n,Re)
. (4)

For n = (4, 6, 8) the values in Table 1 imply that
MPS(e/8)/MPS(e) = (0.97, 0.84, 0.78).

The fact that MPS(e/8) 6= MPS(e) implies that the
model is unrealistic: E.g., gradients in the stellar mass-to-
light ratio or the presence of dark matter would both in-
validate the assumption that the total mass-to-light ratio is
constant; stellar orbits may not be isotropic; etc. For large
n, the fact that MPS(e/8) is the smaller of the two is usually
viewed as indicating that dark matter is a smaller fraction of
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φ(M∗) and variable-IMF 5

Table 2. Four determinations of the parameter values for equation (5), the correlation between MJAM
∗ /M∗ − σe from the literature. We

have added 0.25 dex to the values of a because we use a Chabrier IMF as the fiducial value whereas the literature used Salpeter.

Source a b ∆rms

Li et al. 2017 (E pPXF) −1.149 ± 0.005 0.591± 0.030 0.063
Li et al. 2017 (E STARLIGHT) −0.836 ± 0.006 0.457± 0.033 0.082
ATLAS3D (MJAM < 2× 1011 M⊙) −0.621 ± 0.008 0.353± 0.059 0.120
ATLAS3D (All) −0.419 ± 0.008 0.258± 0.052 0.120

Figure 2. Top: Ratio of the mass estimate MPS(a) from equa-
tion (2), which was estimated from the velocity dispersion within
the SDSS fiber σa, to the stellar mass M∗ based on M∗/L values
taken from Mendel et al. (2014) (Chabrier IMF) and truncated
Sérsic luminosities, shown as a function of σe, for SDSS E+S0s.
Red solid and dashed curves show the median value and the range
which encloses 68% of the objects in each bin in σe; grey, blue,
cyan and orange curves show subsamples of fixed n. Green and
magenta lines show the relations reported by Li et al. (2017); pur-
ple and brown curves show ATLAS3D scalings (equation 5 and
Table 2). Filled black symbols show the objects studied by Con-
roy & van Dokkum (2012; see text for details). Bottom: Lines
and symbols as top, except that now residuals with respect to
the green line labeled E STARLIGHT are shown.

the total mass on small scales (i.e., σe is more contaminated
by dark matter than is σe/8).

Figure 3. Same as previous figure, but now when equation (2) is
normalized to match σe/8. The dependence on n is stronger than
in the previous Figure.

3.2 Simple analysis of E+S0s

With this in mind, we have selected the subsample of objects
in the SDSS for which the Sérsic index n ≥ 2 and the BAC
probability p(E+S0) ≥ 0.7, where p(E+S0) is the sum of the
BAC p(E) and p(S0) values. These are the objects for which
MPS

∗ has the best chance of being accurate, and we refer
to them as the SDSS E+S0s. In many of the plots which
follow, smooth (usually red) solid curve shows the median
of the ordinate for narrow bins in the abscissa, and dashed
curves show the range which encloses 68% of the objects.

Following the discussion of the previous subsection, we
produced two simple estimates of the stellar dynamical mass
of these E+S0s: M

PS(a)
∗ and M

PS(e/8)
∗ . The former uses the

measured σa, i.e. the velocity dispersion measured within the
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6 Bernardi et al.

SDSS fiber (1.5 arcsec), and the other uses σe/8, obtained by
extrapolating σa using equation (1). Since Ra/Re is different
for each object, there is a distribution of k(n, ta) values at

each n (which are needed to estimate M
PS(a)
∗ ); the small

dots in Figure 1 show this distribution. The other smooth
curves show the relations given in Table 1; the brown curve
for k(n, ta = 0.125) is what we use when defining M

PS(e/8)
∗ .

Since Ra ≈ 0.6Re on average, we expect that Ma is
more likely to have been contaminated by dark matter; the
literature suggests that the dark matter fraction within Re

is of order 15% (Tiret et al. 2011; Cappellari et al. 2013b;
Chae et al. 2014; Shankar et al. 2017). Within the scale as-
sociated with the SDSS fiber aperture θa ≈ θe/2 this frac-
tion is about 2× smaller (e.g. Figure 9 in Shankar et al.
2017), and it is smaller still within Re/8. (These estimates
depend somewhat on the model for the dark matter, but
there is general agreement that the fraction decreases on
smaller scales.)

The top panel of Figure 2 shows M
PS(a)
∗ /M∗ for E+S0s

as a function of σe. We have chosen this format for ease of
comparison with the work of Li et al. (2017). For M∗, we
have multiplied the truncated Sérsic Ltrunc by M∗/L from
the dust-free, Chabrier IMF models of Mendel et al. (2014,
see Appendix A). The red solid and dashed curves show the

median M
PS(a)
∗ /M∗ in each bin in σe, and the range which

encloses 68% of the objects. The other colored curves, which
are almost superimposed on one another, show the result of
restricting to narrow bins in Sérsic n.

The straight lines show relations of the form

〈

log10
MJAM

∗

M∗

∣

∣

∣
se
〉

= a+ b se, where se ≡ log10
σe

km s−1
,

(5)
and the coefficients a and b, provided in Table 2, are
taken from the recent literature (Cappellari et al. 2013a;
Li et al. 2017). (We have shifted the zero-point a from the
literature, where Salpeter was the fiducial choice, by 0.25 dex
so that it conforms to our choice of a Chabrier IMF as the
fiducial value.) The larger black circles show the objects
studied by Conroy & van Dokkum (2012); in this case the
y-axis shows their estimate of the ratio of the variable and
fixed IMF M∗ values. (We have shifted their M∗ estimate
to account for the fact their Milky Way IMF is based on
Kroupa 2001, which differs by 0.05 dex from Chabrier 2003.)
Neither their quantity nor the straight lines are explicitly
MPS

∗ /M∗, yet the agreement with our SDSS estimates is re-
markably good.

The bottom panel shows residuals with respect to
the line labeled E STARLIGHT: equation (5) with (a, b) =
(−0.836, 0.457). This removes most of the trend with σe

(note the range along the y-axis, is now 2.5× smaller than in
the top panel), and highlights the weak trend with n. Cor-
recting MPS

∗ downwards by ∼ 0.07 dex to account for dark
matter would bring our estimates into quite good agreement
with the E pPXF relation (magenta). On the other hand, the
rms scatter is larger than the values reported in Table 2.

Figure 3 shows a similar analysis, but now from insert-
ing σe/8, which was obtained from the measured σa using
equation (1), in equation (2). Although the median is again
in good agreement with equation (5), the dependence on n
is stronger. This is because Me/8 < Ma at n > 4, whereas
the trend is reversed at smaller n. Although the agreement

Figure 4. Same as bottom panel of Figure 2, but now with k in
equation (2) fixed to 5. Ignoring the n dependence of k biases the
median relation and makes the scatter around it larger.

between these estimates and the literature is already quite
good, the next subsection asks if it can be improved further.

Before we do so, however, it is useful to illustrate the
importance of the k-dependence on n when computing MPS

if the half-light radius Re is from a Sérsic fit to the light
profile. Figure 4 uses 5Reσ

2
a/G in place of MPS (i.e. the

n dependence of k is ignored). This should be reasonably
accurate for galaxies with n ≈ 4.5, but not otherwise (c.f.
Table 1), and indeed, figure shows a strong dependence on
n. Using a different k-independent value for k would shift
all the points up or down, but would not remove the n-
dependence. Using k(n), as was done in the bottom panel
of Figure 2, reduces the n-dependence substantially. For this
reason, and because there is no physical motivation for using
the same k for all n, we do not consider the fixed-k estimate
further.

3.3 Calibration using MJAM
∗ of ATLAS3D

Most of this subsection is devoted to using the ATLAS3D

dataset (Cappellari et al. 2011) to calibrate our mass esti-
mates for SDSS galaxies. This considerably smaller sample
has considerably richer data – spatially resolved spectra –
for each object in it. This enabled modelling which allows
for anisotropic velocity dispersions as well as a dark mat-
ter component. On the basis of such models, Cappellari et
al. (2013b) argue that MPS(e) over-estimates their best es-
timate of the total mass, which they call MJAM. This total
mass is the sum of the mass in stars MJAM

∗ , gas and dark
matter. The bottom right panel of their Figure 14 shows
that MJAM ≈ 0.7MPS(e). Their estimate of the red stellar
component, MJAM

∗ , is smaller by a factor of (1− fDM) with
fDM ≈ 0.12 estimated within a sphere of radius r = ReMGE

(Cappellari et al. 2013b). Figure 5 shows the ratio of their
total and stellar mass estimates for a subsample of 86 galax-
ies which have n > 2 and bulge disk decompositions with
bulge-to-total ratios B/T > 0.5, which should better rep-
resent our SDSS E+S0s sample. Our results do not change
significantly if we change this selection.

The analysis of Section 3.1 suggests that at least some of
this difference is because they chose to normalize the simple
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Figure 5. Ratio of the total to stellar mass estimate from JAM
(Cappellari et al. 2013b).

PS model to σe, the velocity dispersion observed on the scale
Re. Had they chosen to work with MPS(e/8) rather than
MPS(e), then the required correction factor – which accounts
for at least some of the contribution from dark matter –
would have been closer to unity, at least when n ≥ 4.

Figure 6 shows the result of re-analysing their data in
this way: the black line shows the median value of their
estimate of the stellar mass within their estimate of the
projected half light radius, ReMGE (the parameters were
taken from Table 1 of Cappellari et al. 2013a and Cappel-
lari et al. 2013b, i.e. ATLAS3D Papers XV and XX), di-
vided by the fraction of the Sérsic-based estimate MeMGE =
k(n,ReMGE)ReSer σ

2
eMGE/G within the same radius, plot-

ted as a function of n. The Sérsic-based quantities are taken
from Table C1 of Krajnovic et al. 2013 (ATLAS3D Paper
XVII; when transforming their apparent to absolute magni-
tudes, we multiply their L estimate by their bulge-flattening
parameter qB). Note that ReMGE < ReSer because LSer is
larger than their fiducial L, so the relevant value for k is not
quite that for ta = 1.

The black line should be compared with the red solid
curve, for which the Sérsic-based estimate uses σeMGE/8 and
k(n,ReMGE/8) (so k is close to, but not quite that for ta =
1/8). The figure shows that the MeMGE/8-based estimate is
closer to MJAM

∗ , presumably because normalizing the model
to σ on a smaller scale has provided an estimate which is
less contaminated by dark matter. We have checked that
repeating the analysis within a sphere of radius r1/2 (a scale
which they also provide), yields similar results.

The remaining discrepancy depends on n. While this
may indicate that dark matter or anisotropic velocity dis-
persions still matter on the scale ReMGE/8 (but note that the
median value of ReMGE/8 for n ≥ 4 is of order 500 pc), some
of it may be due to systematics. To motivate this suggestion,
the grey symbols show a similar analysis of their estimates
of the projected light within the same radius (from their Pa-
pers XV and XVII). Clearly, the MGE and Sérsic estimates
of the light within ReMGE are not the same. Therefore, it is
the difference from the grey curve in Figure 6 that is likely
to be a better measure of the discrepancy between the sim-
pler PS and more sophisticated JAM estimates. For the red
curve, this difference is small at large n, but is larger as

Figure 6. Ratio of MJAM
∗ /2, the stellar mass estimate within the

projected half-light radius ReMGE from JAM, to that from the
Sérsic-profile based equation (2), shown as a function of Sérsic
index n. Results for two choices of the scale R on which MPS(R)

was normalized are shown: R = ReMGE (black) and ReMGE/8
(red). Grey symbols show a corresponding analysis of the light
within ReMGE. The MPS(R) estimate with R = ReMGE/8 is in
better agreement with the JAM estimate, and even more so once
accounting for the difference in luminosity.

n decreases. For the black, the dependence on n is much
weaker.

3.4 Final calibrated estimate: MPS−JAM
∗

If we assume that the JAM estimates of the stellar mass are
accurate, then we must correct the Sérsic-based estimates
(e.g. Figure 6) before using them. Our goal is to define cor-
rection factors which can be applied to the SDSS dataset.

With this in mind, we note that, at n ≥ 4, the typi-
cal value of ReMGE/Re in the bulge dominated ATLAS3D

sample is ∼ 0.8. In the SDSS, Ra ∼ 0.6Re, where Ra is the
aperture radius of the fiber within which σa was estimated.
This makes ReMGE/8 ≈ 0.8Re/8 = 0.1Re. So, to apply our
ReMGE/8 results to the SDSS, we must extrapolate the mea-
sured SDSS σa to ∼ Re/10. In practice, the difference be-
tween ∼ Re/10 and ∼ Re/8 is negligible (see Figure 1), so
we use ∼ Re/8. We describe this aperture correction before
moving on to describe our correction factors.

3.4.1 Calibrating the velocity dispersion profiles

We noted above that, if we would like to work with σe/8, then
we must apply an aperture correction to the measured SDSS
values. (In contrast, in ATLAS3D, σeMGE/8 was measured,
not extrapolated.) Whereas correcting using equation (1) is
standard, it assumes that the profile shape is the same for
all galaxies. However, the observed scatter in σ profiles is
large (Cappellari et al. 2006), so using an average scaling to
aperture correct to different scales may introduce systematic
errors. Moreover, the mean correction may, in fact, depend
on the shape of the light profile. Therefore, we have consid-
ered the possibility that

log10
σR

σe
= −γ(n,R,Re) log10

R

Re
, (6)
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Figure 7. Ratio of the velocity dispersion measured within an
aperture of size on ReMGE/8 to that within ReMGE, as a function
of Sérsic index n, for all galaxies in the ATLAS3D survey (black)
and the subset that have n > 2 and B/T> 0.5 (red). This ratio
is usually assumed to equal −0.066 for all n. Dashed and solid
lines show equation (6) with the n-dependence of equations (7)
and (8).

where n is the Sérsic index.
Figure 7 shows −γ(n,ReMGE/8, ReMGE) for the galaxies

in the ATLAS3D survey, taken from Table 1 of Cappellari
et al. (2013a) and Cappellari et al. (2013b), plotted as a
function of n (taken from Table C1 of Krajnovic et al. 2013).
Filled black circles show all objects (‘All’ in the expression
below) and red show the subset with n > 2 and B/T> 0.5
(recall that these are most like the E+S0 SDSS sample). We
refer to these as ‘All’ and ’Sub’ in the expressions below.
In both cases there is a wide range of slopes γ at each n,
and there is a weak tendency for γ to be closer to zero as n
decreases. Lines show quadratic fits to these samples:

γAll = aAll + bAll (n− 4) + cAll (n− 4)2; (7)

γSub = aSub + bSub (n− 4) + cSub (n− 4)2, (8)

with (aAll, bAll, cAll) = (0.0431 ± 0.0042, 0.0106 ± 0.0021,
−0.0011±0.0005) and (aSub, bSub, cSub) = (0.0392±0.0045,
0.0132 ± 0.0035, −0.0014 ± 0.0007).

The relatively small size of the ATLAS3D sample means
that while this trend with n is clear, quantifying it precisely
requires a bigger sample. Nevertheless, we have found that
if we wish to predict the red curve shown in Figure 6 by
aperture correcting the measured σeMGE to σeMGE/8 (rather
than measuring it directly), then this n-dependent correc-
tion is slightly more accurate than is equation (1). To see
why, note that if we aperture correct using equation (6),
then

MPS(e/8)

MPS(e)
= 82γ(n) k(n,Re/8)

k(n,Re)
, (9)

making MPS(e/8)/MPS(e) differ from equation (4) by more
than 10% at n ≤ 4. This is relevant because, in the SDSS,
we only have velocity dispersion measurements on the scale
of the SDSS fiber. So if we wish to work with MPS(e/8) in
the SDSS, then estimating σe/8 from the measured σa is an
important step.

3.4.2 Correcting PS to JAM

When we return to work with the SDSS dataset, we will
actually work with

MPS−JAM
∗ ≡ (1− fgas)CR(n)M

PS(R)

= (1− fgas)κ(n,R)Reσ
2
R/G. (10)

Here fgas corrects for the gas fraction, CR(n) corrects for
the analog of the difference between the red and grey curves
in Figure 6, and we have defined κ(n,R) ≡ CR(n) k(n,R)
as an overall n- and R-dependent correction factor.

The first term, 1− fgas, is necessary because it is com-
mon to quote M∗ estimates which ignore the contribution
from gas (which is usually implicitly assumed to have the
same spatial distribution as the stars). For E+S0s, we set
fgas = 0, since this was done by Li et al. (2017), with whose
work we compare in the next section. For spirals, their Fig-
ure 2 suggests that fgas ≈ exp[−(M∗/10

9 M⊙)], which we
use in what follows.

The other correction factor, CR(n), depends on the scale
R on which the σ used for estimating MPS(R) was measured
(because the black and red curves in Figure 6 are different
from one another). For Re/8 ≈ ReMGE/8, the correction re-
quired to bring the red curve to the grey is reasonably well
approximated by

Ce/8 =
MJAM

∗

MeMGE/8

≈ 10−0.054(±0.011)+0.022(±0.008) (n−4)

(11)
over the range 2 ≤ n ≤ 6. For n < 2 and n > 6 we
set C equal to its value at n = 2 and n = 6 respectively.
(While this is formally not the best-fitting linear relation, it
is within 1σ of the best-fit, chosen because it gives slightly
cleaner, i.e., less n-dependent, results in Figures 8 and 9.)

For other R, we use the fact that

CR = Ce/8
MPS(Re/8)

MPS(R)
= Ce/8

k(n,Re/8)

k(n,R)

σ2
e/8

σ2
R

, (12)

with equation (6) to aperture correct the velocity disper-
sion from one scale to another if direct measurements are
not available. This ensures that MPS−JAM

∗ estimated from
σa will be the same as that estimated from σe/8. Thus, to
compute the ‘virial’ mass, one can simply replace the factor
k(n,R) in equation (2) with κ(n,R) (equation 10):

κ(n,R) = Ce/8 k(n,Re/8)

(

R

Re/8

)2γ(n)

(13)

where Ce/8 is given by equation (11), k(n,Re/8) is from Ta-
ble 1 (third column, i.e. ta = 0.125), and γ(n) is given by
equation (6).

We are finally ready to return to the comparison shown
in the bottom panels of Figures 2 and 3. As we noted there,
although the median log10(M

PS
∗ /M∗) − σe relation was in

reasonable agreement with previous JAM-work, there was a
strong dependence on n. The colored symbols in Figure 8
show

log10(M
PS−JAM
∗ /M∗)− 0.457 se + 0.836

as a function of σe for the SDSS E+S0s when MPS−JAM
∗

was estimated from σe/8 and equation (11), with σe/8 being
aperture corrected from σa using equation (6). The other
(black) symbols and lines are the same as in the bottom
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Figure 8. Same as bottom panels of Figures 2 and 3 (i.e. differ-
ence with respect to the E STARLIGHT fit of Table 2), except
that the numerator is from equation (10). The magenta, brown
and purple lines are the same as in Figure 2. Calibrating to JAM
(using equations 11 and 12) has removed the n-dependence (com-
pare Figures 2 and 3).

panels of Figures 2 and 3. In contrast to those previous fig-
ures, now subsamples of different n superimpose. In addi-
tion, with the dependence on n removed, the scatter around
the median relation is smaller (compare Figures 2 and 3).

The median relation defined by the SDSS sample now
happens to be in very good agreement with the E pPXF curve
of Li et al. (2017), but this is probably just a coincidence
given the uncertainty in the equations we used to calibrate
MPS−JAM

∗ (due to the relatively small size of the ATLAS3D

sample) and the fact that our M∗ was computed using dif-
ferent stellar population models. Note that we do not match
the ATLAS3D line exactly because our correction factor was
calibrated at fixed n (see Figure 6) rather than σe.

For completeness, and because deVaucouleurs photom-
etry (i.e. Sérsic index n is set to 4) remains a popular choice,
Figure 9 shows the result of using deVaucouleurs photo-
metric parameters when estimating MPS−JAM

∗ /M∗. Com-
parison with the bottom panel of Figure 8 shows that
the deVaucouleurs estimate is very similar (it is only ∼
0.02 dex smaller). This implies that (MPS−JAM

∗ /L)deV ≈
(MPS−JAM

∗ /L)Ser. This is because the estimated mass is
the product of three terms: κ(n,R), Re and σR (equa-
tion 10). If we ignore the n-dependence of the aperture
correction, then the ratio of deVaucouleur and Sérsic mass
estimates equals [κ(4, e/8)/κ(n, e/8)] (RedeV/ReSer)

1+2aSub .
The n-dependence of κ is primarily because k decreases with
n (Table 1). SinceRe typically increases, and aSub ≪ 1, what
matters is the product κRe, which is a weaker function of
n. The net result is that κ(4, e/8)RedeV/k(n, e/8)ReSer < 1.
However, LdeV/LSer < 1 also, making (MPS−JAM

∗ /L)deV ≈
(MPS−JAM

∗ /L)Ser. These cancellations show that one should
not mix and match parameters from different fits: the simple
virial estimator 5Reσ

2
e/G we mentioned in the Introduction

(see also Figure 4 and related discussion at the end of Sec-
tion 3.2) is only well-motivated if the fitting procedure re-
turns a size estimate that is close to RdeV (for which κ ∼ 5).

Figure 9. Same as Figure 8, except that now MPS
∗ and Ltrunc

are determined from de Vaucouleurs fits to the light profiles. The
magenta, brown and purple lines are the same as in the previous
Figure.

4 STELLAR MASS PROXIES

This section compares three proxies for the dynamical stellar
mass in the SDSS dataset. These proxies use various com-
binations of M∗, Re and σa. The first proxy is motivated
by the fact that the ratio of dynamical and stellar popula-
tion masses correlates with velocity dispersion (e.g. Figures 2
and 3, and equation 5). It uses M∗ and σa aperture corrected
to σe (Section 4.1) to estimate Mdyn

∗ . The second is closely
related, since it simply replaces σe with sFP(M∗, Re) (equa-
tion 15), the Fundamental Plane approximation to it. Hence,
the proxy depends on M∗ and Re (Section 4.2). The third
uses Re and σa aperture corrected to σe/8: this follows from
the calibrations to JAM described in Section 4.3. All three
are expected to be good approximations to the total stel-
lar mass estimated using stellar population modelling which
allow for a variable-IMF (Lyubenova et al. 2016).

4.1 MαJAM
∗

Equation (5) suggests that one can combine a fixed-IMF
estimate of M∗ (in our case, Chabrier), with the value of σe

we estimate from the measured σa (for this, the choice of
aperture correction makes little difference), to build a proxy
for MJAM

∗ ≈ M∗,IMF. We call this proxy MαJAM
∗ , where

log10
MαJAM

∗

M⊙

≡ log10

M∗

M⊙

+ a+ b se +∆rms, (14)

where (a, b) can be any of the pairs in our Table 2, and ∆rms

is a Gaussian number with rms ∼ 0.1 dex (Table 2). (Recall
that we have added 0.25 dex to the values of a from the liter-
ature so that they conform to our choice of a Chabrier rather
than Salpeter IMF as the fiducial value.) Normalized as we
do, the correction to Chabrier is small at σe ∼ 100 km s−1,
but grows at larger σ. In addition, low mass rotators (those
for which σa may be contaminated by rotation) are objects
for which MαJAM

∗ ≈ M∗, so the correction is small. In ad-
dition, as we will see shortly, at low masses φ(M∗) is flat,
so the correction is unimportant. That is to say, the objects
for which our correction is least well-motivated are those for
which the correction matters little. (Note that equation 5
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Figure 10. Fundamental Plane proxy for σe has an rms scatter
of 0.075 dex.

was calibrated on a sample which had few objects below
109.5−10 M⊙ – hence few low σ objects anyway).

Recall that σa, and hence se, is not available for some
objects. Figure A4 shows that they tend to have M∗ ≤
1010M⊙. Since the IMF for these objects is expected to
be close to Chabrier anyway (Li et al. 2017), we simply as-
sume that MαJAM

∗ = M∗ for these objects. (Equation 14
does allow some objects with low but reliable se to have
MαJAM

∗ < M∗; if the missing se objects are like these, then
we are slightly overestimating their MαJAM

∗ values.) In any
case, as we will see later, φ(M∗) is relatively flat at low
masses, so changing M∗ makes little difference.

4.2 MαJAMFP
∗

Our second proxy is motivated by the fact that, especially
at high redshifts, σ is expensive to estimate directly for
large samples. So it may be necessary to use an observ-
able proxy for σe. In samples where Re, fixed-IMF M∗ and
σe are all available, σe is seen to be strongly correlated
with both Re and stellar surface brightness (M∗/2)/(πR

2
e).

This is expected if galaxies are virialized systems, and is
sometimes referred to as a Fundamental Plane correlation
(Djorgovski & Davis 1987).

In our SDSS sample of E+S0s, at fixed Re and stel-
lar surface brightness (M∗/2)/(πR

2
e), the velocity dispersion

distribution is strongly peaked around a mean value of

sFP ≡ 〈se|r, i〉 = ar + bi+ c, (15)

where s ≡ log10(σ/km s−1), r ≡ log10(Re/kpc), i ≡
log10[(M∗/2M⊙)/π(Re/kpc)

2], and

(a, b, c) = (0.511 ± 0.010, 0.380 ± 0.008,−1.467 ± 0.073).

These coefficients are those values for which the scatter
around this mean relation is minimized. (We used the
method described in Sheth & Bernardi 2012 to account for
selection effects and measurement errors.) Figure 10 shows
this projection of the Fundamental Plane. The ‘thickness’
of the plane – the rms scatter around equation (15) – is
0.075 dex. This is the precision with which Re and fixed-
IMF M∗ predict σe.

The result of replacing se in equation (14) with this

Figure 11. Ratio M
αJAM
∗ /M

αJAMFP
∗ as a function of M∗ (fixed

to Chabrier IMF). This ratio is unity, and the scatter around it
is small, so using a Fundamental Plane motivated proxy in place
of the true σe will not lead to a bias in the estimated M

αJAM
∗ .

Fundamental Plane estimate sFP is

log10
MαJAMFP

∗

M⊙

≡ log10
M∗

M⊙

+ a+ b (sFP +∆FP) +∆rms.

(16)
Whereas equation (14) uses M∗ and σe, equation (16) uses
M∗ and Re. Note that M∗ itself uses L (which is output
by the same analysis of the photometry which returns Re),
and M∗/L (which is returned by fitting to stellar-population
models). Figure 11 shows thatMαJAM

∗ /MαJAMFP
∗ ≈ 1 for the

majority of the objects. Evidently, one can use a Fundamen-
tal Plane motivated proxy in place of the true σe.

4.3 MPS−JAM
∗

Our final proxy is MPS−JAM
∗ of equation (10), which

is motivated by the fact that M∗,IMF ≈ MJAM
∗

(Lyubenova et al. 2016) andMJAM
∗ ≈ MPS−JAM

∗ (Figure 8),
and to which we add a Gaussian random number ∆PS−JAM

with rms 0.05 dex to account for the intrinsic scatter which
must contribute to Figure 6. This proxy uses Re and σa

(aperture corrected to σe/8); in this respect, it uses the third
of the three possible pairwise combinations of M∗, σ and Re.

Whereas this estimate does not make use of L, the over-
all normalization of the surface brightness profile, it does
make explicit use of the shape: both the Sérsic index n and
Re matter. Therefore, as part of our study of this proxy, we
also consider the deVaucouleur estimate (Figure 9), which
sets n = 4 in equation (2) before inserting in equation (10).

5 MASS FUNCTIONS

In effect, Figures 8 and 9 demonstrate that our (truncated)
MPS

∗ estimates are similar to MαJAM
∗ , at least for E+S0s.

Therefore, we are finally ready to consider the implications
for population statistics. In all cases, we determine comov-
ing abundances by weighting each object by the comoving
volume out to which it could have been observed. In prac-
tice, we account for systematic uncertainties in these M∗
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Figure 12. Comparison of φ(M∗) (Chabrier IMF), φ(M
αJAM
∗ )

and φ(MPS−JAM
∗ ) for E+S0s. Blue, red and black solid regions

are based on single Sérsic photometry (truncated luminosities);
cyan, magenta and black dotted curves on de Vaucouleurs (trun-
cated luminosities). Top panel shows the mass functions them-
selves, and bottom panel shows the ratio of the other curves to
the top of the red solid region. Blue (cyan) shaded region shows
the range bracketed by the dusty and dust-free models of Mendel
et al. (2014). Red (magenta) region uses M

αJAM
∗ values (equa-

tion 14) obtained from the top three choices of (a, b) in Table 2;
this range of values transforms the blue (cyan) shaded region to
the red (magenta). The black shaded regions show the system-
atic uncertainty associated with the calibrated MPS−JAM

∗ values
(equation 11).

estimates by showing a band of allowed values as we de-
scribe below. We do not correct for the broadening due to
measurement errors as these are small (Bernardi et al. 2013,
2017a).

5.1 Truncated Sérsic and de Vaucouleurs

photometry: E+S0s

As we did in the previous section, we first limit the com-
parison to objects for which equation (2) is most likely to
be accurate: E+S0s. We select the subsample of objects for
which n ≥ 2 and p(E+S0) ≥ 0.7, and we then weight each
object by p(E+S0)/Vmax when computing the mass func-
tion.

Figure 12 compares φ(M∗) (blue), φ(M
αJAM
∗ ) (red) and

φ(MPS−JAM
∗ ) (black) for E+S0s. The M∗ values were ob-

tained by combining truncated Sérsic luminosity with a
range of estimates of M∗/L. The blue shaded region shows

Figure 13. Comparison of φ(M∗) (Chabrier IMF), φ(M
αJAM
∗ )

and φ(M
αJAMFP
∗ ) (blue, red and green shaded regions) of all

galaxies from single Sérsic photometry (truncated luminosities).
Black solid line shows φ(MPS−JAM

∗ ) limited to 1010.5M⊙, since
the measured σ is not the appropriate quantity to insert in equa-
tion (2) for the rotationally supported objects which begin to
dominate the population at low masses. Table B1 provides φ(M∗)
and φ(M

αJAM
∗ ) in tabular form.

the range bracketed by the Mendel et al. dusty and dust-
free models (shown in Figure A1 below). The MαJAM

∗ values
were obtained from M∗ using the top three choices in Ta-
ble 2 for (a, b,∆rms) in equation (14); this range of values
transforms the blue shaded region to the red. (Including the
scatter ∆rms reduces the dependence on the exact choice of
(a, b).)

The black shaded region shows φ(MPS−JAM
∗ ). The

width of this region is given by propagating the uncertainty
in CR(n) (equation 11) as a systematic when we insert it
in equation (10). The agreement between the black and red
regions is rather good down to masses of order 1010M⊙,
and should not be surprising given the agreement between
MPS−JAM

∗ and MαJAM
∗ shown in Figure 8.

For comparison, the cyan, magenta and dotted black
regions show the corresponding results based on de Vau-
couleurs photometry. Since de Vaucouleurs fits yield system-
atically lower L (Meert et al. 2015; Bernardi et al. 2017b),
both M∗ and MαJAM

∗ are smaller, so the cyan and magenta
curves lie below the corresponding blue and red ones. But
the important point is that this difference is much smaller
than that between the cyan and blue, or the magenta and
red, which are shifted with respect to one another by ap-
proximately 0.25 dex in log10(M∗/M⊙). Moreover, the black
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Figure 14. Comparison of φ(M∗) (Chabrier IMF) and
φ(M

αJAM
∗ ) computed with truncated Sérsic and SerExp lumi-

nosities. Sérsic photometry is slightly brighter, and this leads to
slightly larger φ(M∗).

dotted region, which shows the corresponding MPS−JAM
∗ es-

timate, is in good agreement with the magenta, as expected
from the agreement shown in Figure 9.

5.2 Truncated Sérsic photometry: All types

Figure 13 shows that φ(MαJAM
∗ ) (red) and φ(MPS−JAM

∗ )
(black) are in good agreement, and lie systematically above
φ(M∗) (blue), even when we extend our analysis to all
galaxy types. Here, we only show results for truncated Sérsic
photometry, since non-E+S0s are not well-fit by a deVau-
couleurs profiles. In addition, Li et al. (2017) show that the
MJAM

∗ /M∗−σ relation which we use to estimate MαJAM
∗ de-

pends slightly on morphological type; although we include
this dependence in our estimates, ignoring it makes negligi-
ble difference to our results. This is, in part, because spirals
contribute mainly at lower masses where φ(M∗) is flat, so
the correction makes little difference anyway.

We have added a green hashed region, which shows the
result of using MαJAMFP

∗ in place of MαJAM
∗ . The agree-

ment between it and the red region shows that the scat-
ter in Figure 11 is small enough that it does not bias the
number counts significantly. Therefore, accounting for IMF-
variations when estimating the total stellar mass budget in
future surveys of more distant objects may be cheaper than
it might otherwise have been.

We only show MPS−JAM
∗ down to 1010.5M⊙, as below

this value neither Re nor σe (nor the Fundamental Plane
proxy for σe) are the appropriate quantities to insert in
equation (10). But above this mass, the agreement with
φ(MαJAM

∗ ), φ(MαJAMFP
∗ ) and φ(MPS−JAM

∗ ) is rather good.
Table B1 provides these Sérsic-based φ(M∗) and φ(MαJAM

∗ )
in tabular form.

5.3 Truncated SerExp photometry: Morphology-

or component-dependent IMF

The previous subsection showed that stellar dynamics-based
estimates of the stellar mass function are in good agree-
ment, and predict substantially more mass than a stellar
population-based estimate when the IMF is assumed to be
Chabrier for all objects. In this subsection, we will explore a
number of other stellar population-based estimates. For one

Figure 15. Comparison of φ(M
αJAM
∗ ) with a variety of stellar

population based estimates, now from SerExp photometry (trun-
cated luminosities). Blue curve uses a Chabrier IMF for all ob-
jects, as in the previous Figure; magenta uses a Salpeter IMF
instead; cyan uses Salpeter for E+S0s but Chabrier for the rest;
and purple uses Salpeter for the bulge component of each galaxy
but Chabrier for the other component.

of them, we would like to allow for the possibility that the
bulge and disk components have different IMFs. Therefore,
in this section we use SerExp rather than Sérsic photometry.
This analysis is useful anyway, since Meert et al. (2013, 2015)
and Bernardi et al. (2014) argue that SerExp photometry is
the most reliable of the PyMorph outputs.

Figure 14, which is similar in format to the bottom pan-
els of the previous two figures, shows that our mass function
determinations based on truncated SerExp parameters are
systematically smaller than those based on truncated Sérsic
photometry at the high mass end: the differences are smaller
than 0.15 dex except at log10(M∗/M⊙) > 11.8 where the
differences are ∼ 0.2 dex. This is consistent with previous
work on truncated Sérsic photometry (Fischer et al. 2017).
Table B2 provides our SerExp-based φ(M∗) and φ(MαJAM

∗ )
in tabular form.

Figure 15 compares the SerExp-based φ(MαJAM
∗ ) (red

region) with a variety of stellar population based estimates.
The blue region uses a Chabrier IMF for all objects, as in
the previous Figures; it lies below all the others at large
masses. The magenta region uses a Salpeter IMF instead;
this boils down to simply shifting the blue curve horizon-
tally by 0.25 dex. While it provides a good description at
high masses, it results in a slight but statistically significant
overestimate at all but the largest masses. This is consis-
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tent with the fact that the IMF is closer to Chabrier at low
masses.

The cyan region is a crude attempt to allow for IMF
variations across the population: it uses a Salpeter IMF for
E+S0s but Chabrier for the rest. At the highest masses it lies
slightly below the red region. Presumably, the mismatch is
because this estimate does not include the fact that the IMF
correlates with σ even at fixed morphology (Li et al. 2017).

The purple region shows a simple attempt to account
for IMF gradients within each galaxy: it uses Salpeter for
the bulge component but Chabrier for the other. It is rather
similar to the cyan region, but still lies noticably below the
red. Of course, in this case the comparison is not quite fair,
since the appropriate dynamical-mass estimate should really
include the fact that the mass-to-light ratio is not constant
in this case. But we leave this additional complication for
future work.

6 DISCUSSION

We compared a number of estimates of the dynamical stellar
mass in SDSS DR7 galaxies, which were based on Sérsic fits
to the light profile. One, MαJAM

∗ , was based on applying a
velocity dispersion dependent correction factor to the fixed-
IMF stellar mass estimate M∗ (equation 14). This correction
was calibrated from a number of previous studies in the lit-
erature (Table 2). Our second estimate is closely related:
it simply replaces the velocity dispersion in equation (14)
with a Fundamental Plane derived proxy (equation 15). We
showed that doing so does not lead to significant biases (Fig-
ure 11).

We also studied a rather different estimate which was
based on estimating a dynamical mass using the measured
velocity dispersion in the SDSS fiber, the fitted half-light
radius and Sérsic index n. In its simplest form (equation 2),
this estimate assumes that the mass-to-light ratio is con-
stant (i.e., the stellar mass-to-light ratio is constant and dark
matter, if present, is assumed to have the same spatial dis-
tribution as the stars) and the velocity dispersion isotropic.
These simplifications lead to small biases (Figures 2 and 3)
which we correct by calibrating to the ATLAS3D sample
(equations 10 and 13). Our κ(n,R) values (equation 13)
are a modified version of k(n,R) provided by Prugniel &
Simien (1997) (equation 2 and Table 1). As part of this
process, we considered the possibility that the shape of the
velocity dispersion profile correlates with Sérsic index (i.e.
(σR/σe) = (R/Re)

−γ(n); equation 6 and Figure 7).
Our final calibrated dynamical mass estimates,

MPS−JAM
∗ , are rather similar to MαJAM

∗ (Figure 8). Differ-
ences between MPS−JAM

∗ and MαJAM
∗ are like those which

arise from using different relations from Table 2 when esti-
mating MαJAM

∗ in the first place. The associated stellar mass
functions are also similar (Figures 12 and 13).

When M∗ is estimated assuming a fixed IMF, then
the ratios MPS−JAM

∗ /M∗ and MαJAM
∗ /M∗ correlate strongly

with σe. Recent work ascribes the MαJAM
∗ /M∗ − σe corre-

lation to the fact that objects with large σ tend to have
bottom-heavy, dwarf-rich IMFs. If this is correct, then our
φ(MPS−JAM

∗ ) or φ(MαJAM
∗ ) estimates represent determina-

tions of the stellar mass function which account for the
fact that objects with large σ tend to have bottom-heavy

IMFs. Doing so dramatically increases the abundance of ob-
jects having stellar masses in excess of 1011.2M⊙ compared
to when the IMF is fixed to Chabrier for all objects (Fig-
ures 12 and 13). This increase is qualitatively similar to that
which follows from assuming that E+S0s have a Salpeter
IMF, whereas other galaxy types are more Chabrier-like
(Figure 15). However, the IMF variation appears to be
more closely tied to velocity dispersion than morphol-
ogy (Conroy & van Dokkum 2012; Lyubenova et al. 2016;
Li et al. 2017). This suggests a close connection to the po-
tential well in which a galaxy’s stars formed, so our σ- rather
than morphology-based methodology may be closer to the
physics which determines the total stellar masses.

Estimating the IMF-dependent stellar mass from de-
tailed spectroscopic features, or from spatially resolved spec-
troscopy, is prohibitively expensive for a large sample of
galaxies such as ours. However, large samples are necessary
to accurately probe the highest masses. Thus, our methodol-
ogy has allowed an estimate of ‘IMF-corrected’ stellar mass
functions at a fraction of the cost. In particular, our analysis
suggests that future variable-IMF estimates of the total stel-
lar mass could be made as follows. First, obtain good enough
spectra to measure the IMF features for a small subset of
the total sample. Typically, these spectra will also allow a
measurement of σ, from which a correction factor like equa-
tion (14) can be calibrated. Assuming that the photometry
is good enough to estimate a Sérsic-based n,Re and L, one
could use this subset to also calibrate a correction factor
like equation (16) using a Fundamental Plane proxy for σ.
This calibration could then be applied to all the other ob-
jects for which high signal-to-noise spectra are not available.
Since detailed spectra are only required for a small subset
of the objects, this vastly reduces the cost of accounting for
IMF-variations.

We end with a note of caution. When Bernardi et al.
(2010) first argued for an increase in φ(M∗) at high masses,
they made the point that this increases the mass scale and
weakens the role that must have been played by feedback in
regulating star formation. That was before accounting for
IMF-variations. If the high mass end of φ(M∗) must be in-
creased further because of IMF effects, then the need for
feedback will be shifted to even higher masses. It is not ob-
vious that this is reasonable. The increase in M∗ is driven
by the fact that stellar dynamical masses Mdyn

∗ tend to be
larger than those from stellar population modeling (with
IMF fixed to Chabrier). However, these Mdyn

∗ estimates all
ignore gradients in the stellar mass-to-light ratio. We are
currently studying if M∗ and Mdyn

∗ can be reconciled not by
increasing M∗ (as was done here) but by decreasing Mdyn

(because of gradients). If gradients can be ignored, then our
measurements serve as a benchmark for the z ≈ 0 census
of stellar mass. We provide them in tabular form for Sérsic
(Table B1) and SerExp (Table B2) photometric reductions,
and hope that this will facilitate comparison of our results
with galaxy formation models and simulations.
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A1 Systematic effects when the IMF is fixed
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Figure A2. Systematic effects on the stellar mass function. The
luminosity L is from the SerExp fit of Meert et al. (2015) and
the M∗/L estimates are from Mendel et al. (2014). The two low-
est curves use M∗/L estimates from dusty models; they show
the effect of truncating the luminosity estimate (solid magenta)
or not (dashed magenta). Dashed black curve uses M∗/L from a
dust-free model with truncated luminosity (solid) or not (dashed),
and dashed blue curve shows the estimate from Bernardi et al.
(2017a). Top panel shows the mass functions themselves, and bot-
tom panel shows the ratio with respect to the dust-free M∗/L and
SerExp L (black dashed line).

these estimates. These have two sources: those from L and
others from M∗/L. Bernardi et al. (2017a) make the case
that there is now general agreement that the L estimates
based on single component Sérsic or two component Ser-
Exp photometry are reliable. Compared to these more re-
cent analyses, previous work based on the SDSS pipeline
photometry leads to underestimates of ρ∗(≥ M∗) by fac-
tors of 3 − 10 in the mass range 1011 − 1011.6M⊙, but up
to a factor of 100 at higher stellar masses. Bernardi et al.
(2017a) show that systematics in photometry now amount
to only about 0.1 dex in the stellar mass density – this is a
significant improvement with respect to a decade ago.

There is on-going discussion on whether one should as-
sume the profile extends to infinity when estimating the to-
tal L, and if not, how the profile should be truncated (for
details see Bernardi et al. 2017a and Fischer et al. 2017).
However, this only leads to small differences in φ(M∗). The
solid and dashed curves in Figures A1 and A2 show the ef-
fect of truncating or not the Sérsic and SerExp estimates of
the total luminosity. These differences are comparable to or
smaller than those arising from different assumptions about

Figure A3. Systematic differences with respect to Bernardi et
al. (2013). The SerExp differences (compare dashed curves) are
because the full DR7 sample we use in this work is larger than
the subsample used in Bernardi et al. 2013 (which was the same
as that in Bernardi et al. 2010). Sampling errors give rise to the
differences at the lowest masses. The Sérsic differences have an
additional effect: whereas we eliminate objects which Meert et al.
(2015) flag as being bad fits, Bernardi et al. (2013) used a prelim-
inary version of the flags. Removing the objects with published
(rather than preliminary) flags reduces the difference between the
Sérsic- and SerExp-based mass functions.

the nature of the stellar population – which give rise to sys-
tematic changes in M∗/L – and matter most at the high
mass end. We illustrate this by contrasting dusty and dust
free models from Mendel et al. (2014). In the main text we
always work with truncated luminosities, and we use the
range between the dashed magenta and dashed black curves
to represent the systematic uncertainty on M∗/L when the
IMF is fixed. Note that this is actually an underestimate of
the uncertainty in stellar population model-basedM∗ values;
for the full range of SP-related systematic uncertainties, see
Bernardi et al. (2017a).

For completeness, the dashed blue curve in Figure A2
shows the counts reported by Bernardi et al. (2017a; they
used the total luminosity, not truncated). We expect small
differences because we use the full DR7 (∼ 8000 deg2),
whereas they only used a subset (∼ 4700 deg2) – the same
subset used in Bernardi et al. (2010; 2013). The difference is
slightly more than the increased area, since galaxies which
were missed to fiber collisions in earlier runs have since been
observed with SDSS plates, so the survey completeness has
increased. As a result, whereas Bernardi et al. (2010; 2013;
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Figure A4. Stellar mass function of the full SDSS Main Galaxy
Sample (solid, same as black solid curve in Figure A2) and the
subset with measured velocity dispersions (dashed). Differences
only appear below 1010M⊙.

2017a) multiplied their V −1
max estimates of the measured co-

moving densities by a factor of 0.93−1, we now only use
0.98−1 (see discussion in Section 2.6 in Thanjavur et al.
2016). Comparison with the blue curve shows there is little
difference in the SerExp counts.

Finally, we compare with Bernardi et al. (2013). In this
case, in addition to the sample size, there are differences in
M∗/L as well as in how bad fits are identified. We eliminate
objects which were flagged as being bad fits in the published
version of Meert et al. (2015), whereas Bernardi et al. (2013)
eliminated objects based on a preliminary version of the
flags. Figure A3 shows the SerExp and Sérsic-based mass
functions from Bernardi et al. (2013), based on their smaller
sample, and our results from the full DR7 sample used in
the main text. Here we use the same M∗/L as Bernardi et
al. (2013; i.e. the M∗/L defined in Bernardi et al. 2010)
instead of the M∗/L estimates from Mendel et al. (2014).
The SerExp counts are similar: the difference between the
dashed lines is small, and similar to the difference between
the blue and black dashed curves in Figure A2. However, the
same is not true for Sérsic-based counts. Since the SerExp
analysis indicates that the M∗/L differences are not large,
this difference is driven by how bad fits were flagged. Using
the published flags, as we do in the main text, reduces the
Sérsic counts at the highest masses (compare solid lines),
bringing them closer to the SerExp counts.

A2 Effect of missing σ

The main text uses equation (14) to transform fixed-IMF
M∗ values to MαJAM

∗ values which are expected to account
for variations in the IMF. This requires an estimate of the
velocity dispersion σe, which we determine by applying a
small correction to σa. However, σa is not available for a
small subset of the DR7 Main Galaxy Sample. Figure A4
shows that these objects are primarily at small M∗, so we
expect them to have small σa, as a result of which we expect
MαJAM

∗ ≈ M∗ for these objects (c.f. Figure 2 in the main
text). Therefore, we simply assume that MαJAM

∗ = M∗ for
these objects. (As we said in the main text, equation 14

does allow some objects with low but reliable σ to have
MαJAM

∗ < M∗; if the missing σ objects are like these, then we
are slightly overestimating their MαJAM

∗ values. It is worth
bearing in mind, however, that equation 14 was calibrated
on a sample in which there were few objects with M∗ <
109M⊙.) Moreover, at low masses, φ(M∗) is relatively flat,
so changing M∗ makes little difference to φ(M∗). Thus, this
figure shows that although some objects do not have σa they
are not the massive galaxies which are of most interest in
the main text.

APPENDIX B: MASS FUNCTIONS IN

TABULAR FORM

This Appendix provides the mass functions shown in Fig-
ures 13 and 15 in tabular form.
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Table B1. Table of observed stellar mass functions Φ ≡

log10[ln(10)M∗φ(M∗)], in units of Mpc−3dex−1, as a function
of M∗ ≡ log10(M∗/M⊙) with truncated Sérsic photometry from
Meert et al. (2015) and M∗/L from Mendel et al. (2014; M14).
M14d and M14df are the values associated with dusty and dust-
free models (the bottom and top boundaries of the blue region
in Figure 13). αJAM−M14 values were obtained by transforming
these M14 stellar masses using the top three choices in Table 2
for (a, b) in equation (14). Here we report the bottom and top
boundaries (red region in Figure 13).

M∗ Φ
M14d
Ser Φ

M14df
Ser Φ

αJAM−M14bot
Ser Φ

αJAM−M14top
Ser

9.05 −1.955 −1.922 −1.960 −1.914
9.15 −1.993 −1.946 −1.971 −1.931
9.25 −1.999 −1.982 −2.021 −1.985
9.35 −2.043 −2.011 −2.062 −2.020
9.45 −2.092 −2.058 −2.122 −2.072
9.55 −2.121 −2.098 −2.163 −2.124
9.65 −2.150 −2.131 −2.206 −2.167
9.75 −2.196 −2.157 −2.241 −2.192
9.85 −2.229 −2.183 −2.284 −2.229
9.95 −2.250 −2.209 −2.306 −2.259
10.05 −2.262 −2.214 −2.328 −2.276
10.15 −2.269 −2.231 −2.337 −2.290
10.25 −2.279 −2.232 −2.345 −2.305
10.35 −2.282 −2.247 −2.349 −2.310
10.45 −2.301 −2.274 −2.364 −2.331
10.55 −2.339 −2.308 −2.382 −2.350
10.65 −2.385 −2.356 −2.406 −2.378
10.75 −2.442 −2.411 −2.445 −2.416
10.85 −2.514 −2.484 −2.495 −2.466
10.95 −2.603 −2.578 −2.547 −2.515
11.05 −2.714 −2.689 −2.627 −2.588
11.15 −2.864 −2.837 −2.714 −2.674
11.25 −3.037 −3.003 −2.825 −2.778
11.35 −3.236 −3.200 −2.960 −2.904
11.45 −3.461 −3.416 −3.126 −3.062
11.55 −3.721 −3.658 −3.306 −3.227

11.65 −3.996 −3.909 −3.508 −3.422
11.75 −4.317 −4.209 −3.742 −3.635
11.85 −4.690 −4.527 −4.002 −3.878
11.95 −5.103 −4.883 −4.296 −4.135
12.05 −5.587 −5.285 −4.615 −4.418
12.15 −6.261 −5.754 −4.964 −4.744
12.25 −6.810 −6.327 −5.366 −5.076
12.35 −− −− −5.869 −5.436
12.45 −− −− −6.523 −5.970
12.55 −− −− −7.030 −6.486

Table B2. Same as Table B1, but for truncated SerExp photom-
etry from Meert et al. (2015) (blue and red regions in Figure 15).

M∗ Φ
M14d
SerExp Φ

M14df
SerExp Φ

αJAM−M14bot
SerExp Φ

αJAM−M14top
SerExp

9.05 −1.944 −1.911 −1.948 −1.914
9.15 −1.986 −1.942 −1.985 −1.931
9.25 −2.002 −1.983 −2.016 −1.987
9.35 −2.043 −2.009 −2.055 −2.009
9.45 −2.093 −2.062 −2.127 −2.082
9.55 −2.125 −2.096 −2.166 −2.123
9.65 −2.148 −2.125 −2.207 −2.166
9.75 −2.193 −2.162 −2.247 −2.196
9.85 −2.225 −2.176 −2.276 −2.233
9.95 −2.247 −2.209 −2.306 −2.252
10.05 −2.261 −2.219 −2.324 −2.278
10.15 −2.255 −2.217 −2.336 −2.285
10.25 −2.267 −2.228 −2.337 −2.298
10.35 −2.265 −2.228 −2.348 −2.310
10.45 −2.298 −2.272 −2.357 −2.326
10.55 −2.332 −2.299 −2.371 −2.340
10.65 −2.379 −2.346 −2.408 −2.374
10.75 −2.451 −2.420 −2.444 −2.418
10.85 −2.523 −2.489 −2.496 −2.462
10.95 −2.632 −2.602 −2.557 −2.519
11.05 −2.760 −2.732 −2.633 −2.597
11.15 −2.923 −2.894 −2.729 −2.685
11.25 −3.128 −3.088 −2.844 −2.792
11.35 −3.340 −3.298 −2.994 −2.933
11.45 −3.601 −3.547 −3.154 −3.088
11.55 −3.888 −3.804 −3.341 −3.263
11.65 −4.185 −4.081 −3.550 −3.457
11.75 −4.550 −4.395 −3.777 −3.679
11.85 −4.909 −4.717 −4.047 −3.903
11.95 −5.382 −5.096 −4.338 −4.174
12.05 −5.884 −5.526 −4.665 −4.461
12.15 −6.510 −5.985 −5.005 −4.766
12.25 −7.159 −6.674 −5.449 −5.101
12.35 −− −− −5.930 −5.484
12.45 −− −− −6.533 −6.019
12.55 −− −− −7.020 −6.504
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