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ABSTRACT

We calculate stellar masses for ∼ 400, 000 massive luminous galaxies at redshift ∼

0.2 − 0.7 using the first two years of data from the Baryon Oscillation Spectroscopic Sur-
vey (BOSS). Stellar masses are obtained by fitting model spectral energy distributions to
u, g, r, i, z magnitudes. Accurate BOSS spectroscopic redshifts are used to constrain the fits.
We find that the distribution of stellar masses in BOSS is narrow (∆ logM ∼ 0.5 dex) and
peaks at about log M/M⊙ ∼ 11.3 (for a Kroupa initial stellar mass function), and that the
mass sampling is uniform over the redshift range 0.2 to 0.6, in agreement with the intended
BOSS target selection. The galaxy masses probed by BOSS extend over ∼ 1012M⊙, provid-
ing unprecedented measurements of the high-mass end of the galaxy mass function. We find
that the galaxy number density above ∼ 2.5 · 1011M⊙ agrees with previous determinations
within 2σ, but there is a slight offset towards lower number densities in BOSS. This alleviates
a tension between the z

∼
< 0.1 and the high-redshift mass function. We perform a comparison

with semi-analytic galaxy formation models tailored to the BOSS target selection and vol-
ume, in order to contain incompleteness. The abundance of massive galaxies in the models
compare well with the BOSS data. However, no evolution is detected from redshift ∼ 0.6 to
0 in the data, whereas the abundance of massive galaxies in the models increases to redshift
zero. BOSS data display colour-magnitude (mass) relations similar to those found in the lo-
cal Universe, where the most massive galaxies are the reddest. On the other hand, the model
colours do not display a dependence on stellar mass, span a narrower range and are typically
bluer than the observations. We argue that the lack of a colour-mass relation in the models is
mostly due to metallicity, which is too low in the models.
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1 INTRODUCTION

In the cold dark matter hierarchical Universe model (White & Rees

1978), galaxies grow from primordial density fluctuations in

the power spectrum (Blumenthal et al. 1984; Davis et al. 1985)

and assemble their mass over cosmic time through a variety of

processes, such as star formation, merging and accretion (e.g.

Kauffmann et al. 1993; Somerville & Primack 1999; Cole et al.

2000; Hatton et al. 2003; Menci et al. 2004; Monaco et al. 2007;

Henriques & Thomas 2010; Guo et al. 2011; Henriques et al.

2012). The observational tracing of the galaxy mass growth as a

function of redshift is a powerful diagnostic of the galaxy for-

mation process, which has been investigated by many groups,

through large galaxy surveys (e.g. the Sloan Digital Sky Survey,

SDSS, York et al. 2000; COMBO-17, Wolf et al. 2001; MUNICS,

Drory et al. 2001; DEEP2, Davis et al. 2003; GOODS, Dickin-

son et al. 2003; VVDS, Le Févre et al. 2005; 2SLAQ, Cannon

et al. 2006; COSMOS, Scoville et al. 2007; GMASS, Kurk et al.

2008; GAMA, Driver et al. 2011; CANDELS, Grogin et al. 2011;

SERVS, Mauduit et al. 2012. See also the review by Renzini 2006).

The massive (M∼
> 5 · 1010 M⊙) component of the galaxy

population is particularly interesting in the context of galaxy

formation and cosmology because the stellar population proper-

ties, such as stellar ages and chemical abundances, of massive

galaxies are notoriously challenging to models, e.g. the high-

fraction of α-elements over iron and the [α/Fe] versus galaxy

stellar mass relation (Worthey et al. 1992; Davies et al. 1993;

Carollo & Danziger 1994; Rose et al. 1994; Bender & Paquet

1995; Jorgensen et al. 1995; Greggio 1997; Trager et al. 2000;

Kuntschner 2000; Proctor & Sansom 2002; Smith et al. 2009;

Thomas et al. 2005, 2010), the uniformly old stellar ages with little

evidence of star formation (Bower et al. 1992, 1998; Thomas et al.

2005; Bernardi et al. 2006), the independence of the stellar popula-

tion properties of the environment (Peng et al. 2010; Thomas et al.

2010). There are still many unknowns in the process of galaxy for-

mation and evolution, both at the high and low mass end of the

galaxy distribution (see reviews by Silk 2011 and White 2011),

which are thought to be mostly related to the baryonic component

of galaxies, especially to the poorly known processes involving

gas physics, such as star formation and feedback from stars and

AGN (e.g. Governato et al. 1998; Kauffmann & Haehnelt 2000;

Croton et al. 2006; Bower et al. 2006; Ciotti & Ostriker 2007;

Oppenheimer & Davé 2008; Johansson et al. 2012), and their in-

terplay with the mass assembly over cosmic time (e.g., Bower et al.

2012).

An efficient way to probe the galaxy formation process is

to study the galaxy luminosity and stellar mass functions and

their evolution with redshift. In the local universe, recent results

on the stellar mass function of galaxies include Blanton et al.

(2003), Bell et al. (2003), Baldry et al. (2004), Baldry et al. (2006),

Baldry et al. (2008), Li & White (2009), Baldry et al. (2012).

At larger look-back times, several authors studied the stellar

mass function as a function of redshift (Brinchmann & Ellis 2000;

Drory et al. 2001, 2004, 2005; Cohen 2002; Dickinson et al. 2003;

Fontana et al. 2003, 2006; Rudnick et al. 2003; Glazebrook et al.

2004; Bundy et al. 2005; Conselice et al. 2005; Borch et al.

2006; Cimatti et al. 2006; Bundy et al. 2006; Pozzetti et al. 2007;

Pérez-González et al. 2008; Marchesini et al. 2009; Ilbert et al.

2010; Pozzetti et al. 2010), reaching redshifts of about 4. At z < 1,

which is the focus of this work, the galaxy stellar mass function

appears to evolve slowly, with about half of the total stellar mass

density at z ∼ 0 already in place at z ∼ 1. Moreover, little if no

evolution is detected at the high-mass end (M ∼
> 1011 M⊙), which

is one of the manifestations of the downsizing scenario for galaxy

formation in both star formation and mass assembly (Cimatti et al.

2006; Renzini 2006, 2009; Peng et al. 2010). Such limited evolu-

tion for the most massive galaxies below z ∼ 1 is also supported

by luminosity function studies (Wake et al. 2006; Cool et al. 2008)

as well as by the lack of evolution of galaxy clustering (Wake et al.

2008; Tojeiro & Percival 2010).

In this work we exploit the Baryon Oscillation Spectro-

scopic survey (BOSS; Schlegel et al. 2009; Dawson et al. 2012,

submitted), which is part of the Sloan Digital Sky Survey III

(Eisenstein et al. 2011), for calculating galaxy stellar masses and

the galaxy stellar mass function at z ∼ 0.5. The advantage of-

fered by BOSS is the unprecedented survey area - 10,000 deg in

total, and roughly 1/3 complete at the time of writing - and a selec-

tion cut favouring the most massive galaxies (M ∼
> 1011 M⊙). The

huge area coverage, and the redshift range, which lies in the middle

of the theoretical late-time mass-assembly epoch (De Lucia et al.

2006), renders BOSS an excellent survey for galaxy evolution stud-

ies.

In this first study we do not apply completeness corrections

and focus on a light-coned mass function. The comparison with

galaxy formation models will be performed with simulations tai-

lored to the BOSS target selection and volume. The global stel-

lar mass and luminosity function for the BOSS survey, includ-

ing completeness, will be published in subsequent papers. As we

will see from the comparison with other published mass func-

tions, BOSS may be essentially complete at the high-mass end

(M∼
> 5 · 1011 M⊙).

The aim of this publication is twofold. First, we describe the

stellar mass calculation and discuss the results. We also compare

photometric masses with spectroscopic ones that were obtained us-

ing PCA algorithm applied to BOSS spectra (Chen et al. 2012). We

then calculate the mass function over the redshift range 0.45 to

0.7 and compare the resulting stellar mass density and the galaxy

colours with semi-analytic models of galaxy formation and evolu-

tion, to obtain clues to the late-time evolution of massive galax-

ies. In particular, given the unprecedented statistics offered by the

BOSS sample at the massive end, we can study whether the main

body of passive galaxies in the models has the correct mass distri-

bution and the right colours.

There have been several examples of such an approach in the

literature. Benson et al. (2003) extensively studied the constraints

to the theoretical galaxy luminosity function that are posed by data

in the local Universe. Almeida et al. (2008) focus on luminous, red

galaxies at z∼< 0.5 and compare the observed luminosity func-

tion with galaxy formation models - by Bower et al. (2006) and

Baugh et al. (2005) - which adopt different feedback mechanisms

for quenching star formation. Fontanot et al. (2009) study the com-

parison of the stellar mass function in various semi-analytic mod-

els with data over a wide redshift range. Neistein & Weinmann

(2010) discuss degeneracies of semi-analytic models including dif-

ferent prescriptions for cooling and feedback, and their ability

to match several observational constraints, including the galaxy

mass function. The task of comparing galaxy formation models

to quantities derived from data, especially at high look-back time,

is not an easy one, as modelled data rather than pure observables

need to be used. Some works have concentrated on the observed-

frame which avoids the extra-assumptions involved in translat-

ing the observed colours and luminosities into physical quantities

(Tonini et al. 2009), while others support the use of the derived-

property plane in any case (Conroy et al. 2010). Here we consider

c© 2012 RAS, MNRAS 000, 1–21
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the comparisons in both systems of reference, by comparing galaxy

colours in the observed frame, and the galaxy mass function using

data-modelled stellar masses.

Finally, we compare the light-coned BOSS mass function with

mass functions from the literature.

The paper is organised as follows. In Section 2 we introduce

the BOSS data, in Section 3 we detail the stellar mass calculation

and in Section 4 we present and discuss the results relative to the

stellar masses of BOSS galaxies. In Section 5 we perform the com-

parison with semi-analytic models and in Section 6 we summarise

the work and draw conclusions.

Throughout the paper the cosmology from WMAP1, i.e.

ΩM = 0.25, H0 = 0.73 km s−1Mpc−1, ΩT = 1, is assumed

for consistency with the galaxy evolution models (Guo et al. 2011;

Henriques et al. 2012)1.

2 BOSS GALAXY DATA

The BOSS survey (Schlegel et al. 2009) aims at constraining the

late time acceleration in the Universe via Baryon Acoustic Oscilla-

tions (Eisenstein et al. 2005; see also Anderson et al. 2012 for the

first results on BOSS), with an observational effort of galaxy spec-

troscopy and photometry over five years, that started in Fall 2009.

An overview of BOSS is given in Dawson et al. (2012, submit-

ted). Below we summarise the key aspects that are relevant to this

paper. BOSS is one of four surveys of the SDSS-III collaboration

(Eisenstein et al. 2011) using an upgrade of the multi-object spec-

trograph (Smee et al. 2012, submitted) on the 2.5m SDSS telescope

(Gunn et al. 2006) located at Apache Point Observatory in New

Mexico. BOSS obtains medium resolution (R = 2000) spectra for

galaxies, QSOs and stars in the wavelength range 3750−10000 Å.

Standard SDSS imaging using a drift-scanning mosaic CCD cam-

era (Gunn et al. 1998) is obtained for luminous galaxies over the

redshift range 0.3 to 0.7, selected to be the most massive and

with a uniform mass sampling with redshift (White et al. 2011;

Eisenstein et al. 2011). The acquired photometry has been released

with the Data Release 8 (DR8, Aihara et al. 2011), and the first set

of spectra will be made publicly available with the Data Release 9

(DR9), in Summer 2012 (Ahn et al. 2012, submitted).

For the project, we calculated photometric stellar masses

for BOSS galaxies. We use the galaxy spectroscopic redshift de-

termined by the BOSS pipeline (Bolton et al. 2012, submitted;

Schlegel et al. 2012, in prep.) and standard u, g, r, i, z SDSS pho-

tometry (Fukugita et al. 1996) for performing spectral energy dis-

tribution (SED) fitting at fixed spectroscopic redshift in order to

obtain a best-fit model and from it an estimate of the stellar mass

(see Section 3). The values of stellar mass and the routines to per-

form the same calculations for the rest of the BOSS survey will be

made publicly available through DR9 in Summer 2012.2

Spectroscopic redshifts are determined from BOSS spectra us-

ing the latest version of the SDSS Spec 1D pipeline and an ex-

tensive set of templates, based on both stellar empirical spectra as

1 Note that for the DR9 release, see Section 2, a slightly different cosmol-

ogy has been adopted, namely Ω = 0.258, H0 = 71.9 km s−1Mpc−1,

ΩT = 1,. We checked that this implies a negligible effect on stellar masses.
2 For this work we selected objects with solid spectroscopic redshift

determination (corresponding to the flag zwarning=0) and we used the

primary spectroscopic observation available (using flag specprimary=1).

These flags select a total number of galaxies which is slightly lower than

what will be available with DR9.

Figure 1. Observed-frame colour (r− i) - magnitude (i-model) diagram of

BOSS galaxies in the high-redshift CMASS sample. Magnitudes are galac-

tic extinction corrected (see text).

well as population models (Bolton et al. 2012, submitted; see also

Schlegel et al 2012, in prep., which explain the procedure to ob-

tain spectra which are input to the pipeline). The redshift success

for CMASS has the impressive figure of ∼ 98% (Anderson et al.

2012, Table 1) and is even better for the low-redshift (LOZ) sample.

Different magnitude definitions are available for galaxy photome-

try in SDSS. Model magnitudes aim at providing accurate colour

information, whereas cmodel magnitudes are better for accurate to-

tal luminosity (Stoughton et al. 2002).3 For an SED fit aimed at

mass determination we need both types of accuracy, so we decided

to use modelmag but scale the values using cmodel magnitudes in

the i-band. This scaling results in a constant shift of the entire SED.

We choose the i-band as this maps into r-rest-frame at the BOSS

redshifts, which is the base for model magnitudes. We have per-

formed separate SED-fit calculations using either model-mag or

cmodel mags and find that this choice mostly affects the scatter.

Finally, we applied extinction correction for Milky Way redden-

ing using Schlegel et al. (1998) values. It should be noted that this

method of combining magnitudes is the official method adopted for

the galaxy target selection for BOSS (Padmanabhan et al. 2012, in

prep.).

Typical photometric errors of model magnitudes are

1.00, 0.17, 0.06, 0.04, 0.09 in u, g, r, i, z, respectively. These are

averages evaluated on 331,915 BOSS galaxies at redshift ∼ 0.55.

Also errors are scaled to cmodelmag4, in order to preserve the S/N.

The BOSS galaxy sample consists of two parts. The high-

redshift or CMASS (i.e. constant mass) sample, mostly containing

galaxies with a redshift of 0.4 or larger. This selection is achieved

by using the r − i colour, which, by tracing the D-4000 Å break in

galaxy spectra in this redshift range, allows for a robust redshift se-

lection (Eisenstein et al. 2001). A lower-redshift sample (LOWZ),

which is included in BOSS in order to increase the effective area

and allow for a comparison with the SDSS I & II samples. Figure 1

shows as visualisation the CMASS sample in an observed-frame

colour-magnitude diagram. The galaxy target selection is presented

in Padmanabhan et al. (2012, in prep.).

3 http://www.sdss.org/dr7/algorithms/photometry.html#magmodel
4 The scaling writes as magscalederr[ugriz] = magscaled[ugriz] ·
modelmagerr[ugriz]/modelmag[ugriz]

c© 2012 RAS, MNRAS 000, 1–21
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The BOSS data sample, including both CMASS and LOWZ,

that was acquired through September 2011, contains over 400,000

galaxies5. In this paper we focus on the CMASS z∼> 0.4 sample

for the comparison with galaxy formation models.

3 STELLAR MASS CALCULATION

Photometric stellar masses (M∗) are obtained with the standard

method of SED fitting (e.g. Sawicki & Yee 1998), where observed

magnitudes are fitted to model templates to obtain a model stellar

population that best matches the data. The normalisation of this

model to the data provides an estimate of the galaxy stellar mass.

The fitting can be performed at fixed redshift or by leaving the

redshift as a free parameter to be adjusted and determined with the

fitting method itself. Here - by virtue of the BOSS spectroscopic

redshift - we can use the fixed redshift option. The adopted fitting

method and stellar templates are described below.

3.1 Galaxy model templates

We adopt two sets of templates in order to encompass plausible

variations in the star formation histories of BOSS galaxies.

First is a passive template, which we found to best match

the redshift evolution of luminous red galaxies (LRGs) from the

2dF SDSS LRG and Quasar (2SLAQ) survey (Cannon et al.

2006) up to a redshift of 0.6 (Cool et al. 2008; Maraston et al.

2009). The reason for the better match, with respect to standard

solar metallicity passive models or models with star formation

(e.g., Eisenstein et al. 2001; Wake et al. 2006) is twofold. First,

we use empirical model atmospheres in place of the standard

Kurucz-type ones, which produce a slightly ”bluer” g − r and

a slightly ”redder” r − i as the galaxy data suggested. The ef-

fect of various model atmospheres/empirical stellar libraries on

the optical spectral shape of a stellar population model is dis-

cussed in detail in Maraston & Strömbäck (2011) where the same

spectral shape as in empirical libraries is found in the new-

generation theoretical model atmospheres calculated with the soft-

ware MARCS (Gustafsson et al. 2008). The correct shape of the

model around the V -band has been confirmed using data of star

clusters in M31 (Peacock et al. 2011) as well as in the Milky Way

Maraston & Strömbäck (2011).

Second, we add a small fraction (3%) of old metal-poor stars

into the main metal-rich model. Old metal-poor stars add blue light

to the passive metal-rich model which, opposite to young stars,

is slowly evolving with redshift, in better agreement with those

data. This two-component model can be explained as to represent

a metal-poor halo in these massive galaxies.

In addition to the passive model, we consider a suite of tem-

plates with star formation, namely exponentially-declining star for-

mation e−t/τ , with τ = 0.1, 0.3, 1 Gyr and ”truncated” models,

where star formation is constant for a certain time and zero after-

wards, with truncation times of 0.1, 0.3 and 1 Gyr. Each star for-

mation history is composed of 221 ages, and is calculated for four

different metallicities, namely 0.2, 0.5, 1 and 2 solar. This selection

of templates was used in Daddi et al. (2005) and Maraston et al.

(2006) for the SED-fit of passive galaxies at z ∼ 2. We refer to this

second template as SF. Both template models were calculated for a

5 We additionally calculated the stellar masses of DR7 galaxies with the

same method, which will be published separately

Salpeter (1955) and a Kroupa (2001) initial mass function (IMF),

and in both cases the stellar mass lost due to stellar evolution is sub-

tracted from the total mass budget. The stellar mass budget includ-

ing white dwarf, neutron star and black-hole remnants follows our

previous calculations (Maraston 1998, 2005) and is based on the

initial mass versus final massrelations by Renzini & Ciotti (1993).

For a single burst population following passive evolution, the frac-

tion of mass lost is around 30 to 40% depending on the assumed

IMF (Maraston 2005, Figure 27).6

3.2 Fitting code and method

We employ the fitting code HyperZ (Bolzonella et al. 2000), and in

particular an adapted version of it, named HyperZspec, in which

the SED fitting is performed at a fixed spectroscopic redshift. This

latest version also uses a finer age grid of 221 ages for each star for-

mation history, instead of the 51 adopted in earlier versions7. The

use of a denser grid, though not changing any result appreciably,

allows for a better recovery of galaxy properties (Pforr et al. 2012).

The code can be used with various stellar population models (see

Bolzonella et al. 2010; Maraston et al. 2006, 2010). For this work

we adopt the models described in Section 3.1.

The fitting procedure is based on maximum-likelihood algo-

rithms and the goodness of the fit is quantified via reduced χ2 (χ2
r )

statistics. The code computes χ2
r for a large number of templates,

which differ in their SFHs, and identifies the best-fitting template.

It should be noted that in the reduced χ2
r calculated via HyperZ,

the degrees of freedom are only set by the number of photomet-

ric filters (minus unity), and not by the actual intrinsic degree of

freedom of the adopted template (e.g. age, metallicity, star forma-

tion history, reddening). This implies that the χ2
r obtained with dif-

ferent templates should not be compared quantitatively. The code

does not interpolate on the template grids, hence the template set

must be densely populated. The internal reddening E(B − V ) as

parametrized by various laws can be used as an additional free pa-

rameter.

An important feature of our analysis is that we do not include

reddening in our fitting procedure. This is because our study of the

SED fit of simulated galaxies (Pforr et al. 2012) shows that the level

of degeneracy increases and solutions with unlikely low ages and

substantial dust may have favourable χ2
r values when reddening is

included as a free parameter. This problem is known as age/dust

degeneracy (e.g. Renzini 2006 for a review). These young, dusty

models provide a good representation of the photometric SED, but

the derived mass significantly underestimates the true total galaxy

mass (Pforr et al. 2012, Figure 11). Our work further shows that this

effect is more severe in old galaxies that have experienced a recent,

small burst of star formation. Such galaxies are, in the simulations

and likely in the real Universe,mostly found at redshift below 1,

i.e. in the realm of BOSS observations. Higher-redshift galaxies -

by having overall younger stellar populations and a smaller spread

in age - suffer less from these degeneracies.

In summary, to keep our SED-fit mass estimates as protected

as possible from the age-dust degeneracy, we do not include red-

dening. Reddening for BOSS galaxies can be quantified through

emission-line studies (Thomas et al. 2012, submitted, Figure 8)

6 As stellar mass losses are not always subtracted from the total mass in the

literature, we provide values with and without the inclusion of this effect.
7 The latest version of the HyperZspec code was kindly made available to

us by Micol Bolzonella.
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Figure 2. Examples of SED-fit results for four BOSS galaxies, in order of increasing spectroscopic redshift from top left to bottom right. Red and blue lines

display the best-fit models and labels show logM∗/M⊙, age (Gyr), reduced χ2, as obtained using the LRG-passive and the star forming (SF) templates,

respectively. Object Id., spectroscopic redshift and median spectral S/N are indicated.

and is included in galaxy spectral fitting by Chen et al. (2012) and

Toieiro et al. (2012). None of these works find the bulk of BOSS

CMASS galaxies to be dusty, as they are selected to be mostly qui-

escent. For example, from the emission lines we get an average

reddening of E(B − V ) ∼ 0.05 (Thomas et al. 2012). This value

is also consistent with the observed morphologies of the sample of

BOSS galaxies we could cross-match to COSMOS, where we find

that ∼ 73% of BOSS galaxies are early-types (Masters et al. 2011,

see Section 4.1).

Fitted ages are constrained to be younger than the age of

the Universe in the adopted cosmology. We also apply age cut-

offs to the templates. The minimum allowed fitting age for the

passive LRG model is 3 Gyr. This corresponds to the assumption

that the descendants of these galaxies are 10 Gyr old at redshift

zero, and in our adopted cosmology the look-back time to redshift

0.8 (roughly corresponding to the maximum redshift sampled in

BOSS) is ∼ 7 Gyr. The set of a minimum age in the fitting min-

imises the probability of underestimating the stellar mass by ob-

taining too low an age. Should we relax this prior, we would obtain

a fraction of galaxies with somewhat lower ages (see Figure 5). In

practice, as we shall see in Section 4.1, to galaxies whose fitted age

with the LRG template is the minimum allowed age we assign the

stellar mass value obtained with the star forming template, where

such a constraint is not posed. Hence, the prior has no effect on the

final mass distribution. On a similar ground, we apply an age cutoff

to the star forming model of 0.1 Gyr, which is typically assumed

in SED-fit of star-forming galaxies (e.g. Bolzonella et al. 2010;

Maraston et al. 2010). Finally, the mass is calculated with an addi-

tional routine developed in Daddi et al. (2005) and Maraston et al.

(2006), and extended for this project for properly handling large

databases.

A few examples of SED-fits are shown in Figure 2, for ran-

domly chosen galaxies at various redshifts. The best fit population

parameters obtained using the two templates - the passive LRG and

the suite with star formation (SF) - are indicated in red and blue,

respectively. BOSS data are shown as circles. Excellent fits are ob-

tained, in general with both templates, even for objects with low

S/N8. The distributions of reduced-χ2 is shown in Figure 3 as a

function of the i-model magnitude in observed-frame. The χ2
r val-

ues do not depend on the object’s magnitude, and we have checked

they also do not depend on the object’s redshift.

The fitting procedure gives the best-fit model corresponding to

the minimum χ2 and the probability distribution function (PDF) of

neighbouring solutions for different cuts in χ2 above the minimum.

Interestingly, we find that the difference in stellar mass between the

best-fit value and the median PDF value is only 0.03 dex in case of

the LRG template, and at most 0.1 dex in case of the templates with

star formation, due to the higher number of neighbouring solutions

with similar χ2.

8 The S/N ratio is calculated as S/N = mean(flux/
√
var), where

mean is the median and var the variance

c© 2012 RAS, MNRAS 000, 1–21
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Figure 4. Photometric stellar masses of BOSS galaxies in the first two years of data. The two histograms show logM∗/M⊙ as obtained with different galaxy

templates: the LRG passive model of Maraston et al. (2009) (red), in which a small fraction (3%) of old metal-poor stars is added to a dominant metal-rich

(Z = Z⊙) population, both being coeval and in passive evolution, and a set of templates with star formation (blue), ranging from τ -models to constant SF.

Stellar masses obtained with the SF template are systematically lower due to the lower M/L of young populations. Calculations shown here refer to a Kroupa

IMF and included mass-losses from stellar evolution. Average errors on logM∗/M⊙ are 0.1 dex (cfr. Figure 9).

Figure 3. Reduced χ2 (χ2
r ) as a function of observed-frame i-model mag-

nitude for the SED fits of BOSS galaxies.

4 RESULTS

We have calculated the photometric stellar masses M∗ for ∼

400, 000 massive luminous galaxies from the first two years of data

of the SDSS-III BOSS survey. The calculations of stellar mass will

be released with the Data Release 9 (DR9), as well as ages, star

formation histories (SFH), star formation rate (SFR), and metal-

licities, for each of the two template fittings and the two adopted

IMFs. Ages, SFRs and stellar masses are provided with their 68%

confidence levels. We also derive median stellar masses by taking

the median of the PDF and list them together with their 68% confi-

dence levels. In each case, we provide M∗ with and without stellar

mass-loss due to stellar evolution. We note here that, even if we

provide all quantities derived through the SED-fit, the procedure is

studied as to maximise the quality of M∗ determination. The other

by-products of the fits should be considered less certain. Future

work will be invested in more detailed spectral analysis.

Figure 4 shows the distribution of stellar masses of BOSS

galaxies for the combined CMASS and LOWZ samples, for the

LRG (red) and the SF template (blue). Plotted values refer to the

Kroupa IMF, and stellar mass loss has been accounted for in the

calculations. The mass histogram is thin and well defined, pointing

to a uniform mass distribution as a function of redshift as was the

aim of the BOSS target selection (White et al. 2011; Eisenstein et

al. 2011), which we quantify later in this section.

The results for both templates agree reasonably well in indi-

cating a peak stellar mass of ∼ 11.3 logM (for a Kroupa IMF,

1.6 higher for a Salpeter IMF). Stellar masses derived with the SF

template (blue) show an excess of lower mass values which is due

to the lower ages for some of the galaxies derived with this tem-

plate, see Figure 5. Except for an excess of younger galaxies with

the SF template, the age distributions agree remarkably well, in-

dependently of the adopted template, which confirms the homoge-

neous nature of the CMASS sample (see also Tojeiro et al. 2012).

In Appendix A we discuss in detail the comparison with other

stellar mass calculations performed in BOSS, while in Appendix
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Figure 5. The distribution of stellar ages obtained for BOSS galaxies using

different templates for SED fitting, namely the LRG passive template (red)

and the template with star formation (blue).

B we present rest-frame magnitudes that are a by-product of the

fitting and will be available via DR9.

As previously mentioned, the target selection for the BOSS

survey aimed for a uniform mass sampling as a function of redshift.

We can now test whether this goal has been achieved. Figures 7 and

8 show the stellar mass distributions in various redshift bins, for the

calculations referred to the two different templates, LRG passive

and SF, for the combined CMASS plus LOWZ samples9.

A remarkably uniform mass sampling is achieved in a large

redshift range spanning between redshift 0.2 and 0.6, when stel-

lar masses are determined with the LRG passive template.10. At

z∼> 0.6, the mass distribution is skewed towards higher values,

which is probably due to the magnitude limit of the survey. From

these plots we infer that BOSS becomes incomplete at z∼> 0.6
and logM∗/M⊙ ∼

< 11.3. This suggestion will be qualitatively con-

firmed when we will compare the BOSS mass function with litera-

ture values (Section 5.2.1).

The assumed template impacts the uniformity of the mass

sampling, as should be expected. Figure 8 shows that, when inter-

preted with templates including star formation, a fraction of BOSS

galaxies get lower stellar masses, which leads to secondary peaks

in the mass distributions. Note, however, that the redshift bins be-

tween 0.2 and 0.6 are not strongly affected by the assumed tem-

plate, and the mass distribution remains fairly uniform over this

redshift range.

9 Note that for these plots we have not applied any cut in χ2
r , but we have

checked that the consideration of only acceptable values would not change

if not minimally the histograms.
10 The mean logM∗/M⊙ (for a Kroupa IMF, including stellar mass

losses) in the various redshift bins are: for the LRG template, 11.25

at 0.2∼<z∼< 0.4, 11.27 at 0.4∼<z∼< 0.5, 11.27 at 0.5∼<z∼< 0.6, 11.42

at 0.6∼<z∼< 0.7, and 11.62 at z∼> 0.7; for the SF template, 11.11 at

0.2∼<z∼< 0.4, 11.11 at 0.4∼<z∼< 0.5, 11.14 at 0.5∼<z∼< 0.6, 11.26 at

0.6∼<z∼< 0.7, and 11.31 at z∼> 0.7; for the merged template, 11.25 at

0.2∼<z∼< 0.4, 11.22 at 0.4∼<z∼< 0.5, 11.26 at 0.5∼<z∼< 0.6, 11.36 at

0.6∼<z∼< 0.7, and 11.48 at z∼> 0.7.

4.1 The final BOSS mass distribution: sorting templates by

galaxy morphology

As described in the previous section, we calculate stellar masses

with two templates in separate runs. Hence, each BOSS galaxy has

two possible values of M∗ according to the different templates we

adopt. This will be useful when the stellar masses of BOSS galaxies

are used for comparison with results from other surveys in which

various templates are adopted. Nonetheless, for most science ap-

plications it would also be useful to have one preferred choice of

M∗.

In this section we describe a colour criterion to assign stellar

mass values from different templates to observed galaxies which is

based on the galaxy morphology.

In Masters et al. (2011), we cross-matched the BOSS sam-

ple with the COSMOS survey (Capak et al. 2007) which provides

high resolution I-band imaging from the Hubble Space Telescope

(HST) over 2 square degrees. The cross-match yields 240 BOSS

target galaxies for which detailed morphological information was

obtained

We found that ∼ 73% of the galaxies in CMASS are early-

types, and the rest ∼ 27% is composed by late-types. Critical to the

analysis of the present paper, we defined a simple colour criterion

of g − i, namely g − i∼> 2.35, which allows us to separate early-

types from later-types with better than 90% purity. Here we employ

this colour criterion to assign mass values obtained with different

templates to the different morphological classes. We use the best fit

LRG mass for objects with g − i∼> 2.35, and the best fit SF mass

for galaxies with g−i∼< 2.35, which is the location of most spirals.

The final total M∗ distribution of BOSS CMASS galaxies is

shown in Figure 6. Similar to Figure 4, the total mass distribution

still peaks at logM∗/M⊙ ∼ 11.3 (for a Kroupa IMF) and is dom-

inated by the mass values obtained with the LRG template, as the

majority of galaxies in CMASS is of early-type. The adoption of the

values obtained with the SF template implies an excess of galaxies

with logM∗/M⊙ ∼ 10.8 with respect to the distribution obtained

using the LRG template.

The distribution of errors on stellar mass for the final merged

template calculation is shown in Figure 9. The average uncertainty

on logM∗ is ∼ 0.1 dex. We have verified that the error is not de-

pendent on galaxy mass, and is also not asymmetric.

We have also tested the goodness of our template choice with

mock galaxies with known input mass. Figure 10 shows the com-

parison between input stellar mass (x-axis) of mock galaxies from

a semi-analytic model (as in Pforr et al. 2012) at redshift 0.5, and

their photometric stellar masses (y-axis) we obtain by the SED-

fit to their broadband u, g, r, i, z photometry with the LRG pas-

sive template. The red colour highlights those mocks that have

g− i∼> 2.35, which corresponds to the colour region where we use

the LRG template in the BOSS sample. The stellar masses of these

”reddest” galaxies are well recovered with the LRG template, with

a scatter of only 0.06 dex. The red points correspond to fits with

χ2
∼
< 20, which is well above our acceptable cut (χ2

∼
< 2). Black

points represent the results for mock galaxies with bluer colours,

g − i∼< 2.35. For these, the application of the LRG passive tem-

plate would lead to an overestimate of the mass, so for these types

of objects in BOSS we use stellar masses obtained with the SF tem-

plate.

In summary, our mass distribution may still not be the per-

fect representation of the true stellar masses, but it is anchored to

real data through the colour cut and is supported by simulations.

Moreover, in a companion paper (Beifiori et al 2012, in prep.) we
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Figure 6. The final M∗ distribution of BOSS/CMASS galaxies where values of stellar mass obtained with different templates are assigned according to the

galaxy morphology - early-type or star-forming - using the cut in apparent colour g − i ∼ 2.35. Galaxies on the red side of the colour cut get M∗ from

the passive LRG template and those on the blue side from the SF template. The total stellar mass distribution of BOSS galaxies peaks at ∼ 11.3 M⊙, for a

Kroupa IMF, with a mean of ∼ 11.28 M⊙ and a FWHM of ∼ 0.5 dex.

Figure 7. The distribution of stellar mass in the combined CMASS and

LOWZ sample, in various redshift bins (normalised to the peak mass value

in each bin), for results obtained with the LRG passive template. The mass

distribution is fairly uniform in the redshift range 0.2∼<z∼< 0.6 (cfr. green,

black and blue histograms).

compare M∗ with dynamical masses Mdyn. The two quantities cor-

relate well and M∗ is never larger than Mdyn, thereby providing

further support to the robustness of M∗.

Finally, Figure 11 similarly to Figures 7 and 8 shows the

merged template mass distribution for various redshift slices. The

same conclusions hold.

Figure 8. As in Figure 7 for the SF template.

5 COMPARISON TO GALAXY EVOLUTION MODELS

5.1 The semi-analytic model

We compare our results with a theoretical light-cone based on the

latest version of the Munich semi-analytic galaxy formation and

evolution model (Guo et al. 2011; Henriques et al. 2012). These

are built on top of the Millennium dark matter simulation that

traces the evolution of dark matter haloes in a comoving cubic box

500h−1Mpc on a side. Merger trees are complete for sub-halos

above a mass resolution limit of 1.7 × 1010h−1M⊙. A Λ-CDM

c© 2012 RAS, MNRAS 000, 1–21
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Figure 9. Errors on stellar masses for the merged-template sample, for fits

with χ2 ∼< 2. Errors are around 0.1 dex on average.

Figure 10. Effect of fitting star-forming galaxies with the passive LRG tem-

plate, using mock galaxies from semi-analytic models at redshift 0.5 with

known stellar mass. Red points highlight mock galaxies with g − i∼> 2.35.

The stellar masses of these red galaxies are well recovered with a scatter of

only 0.06 dex. For bluer galaxies (black points) the application of the LRG

passive template leads to overestimate the mass.

Figure 11. The merged template mass distribution for four redshift slices,

normalised to the peak mass value in each bin.

WMAP1-based cosmology is adopted (Spergel et al. 2003) with pa-

rameters H0 = 73 km · s−1Mpc−1,Ωm = 0.25,ΩΛ = 0.75, n =
1 and σ8 = 0.9.

Baryonic matter forming galaxies is treated as follows. Ini-

tial hot gas masses are derived from the mass of corresponding

dark matter haloes after collapse, assuming a cosmic abundance of

baryons fb = 0.17. The fate of the gas is then followed through

different phases using analytical prescriptions, in particular dur-

ing cooling and star formation, which maybe empirically derived.

Feedback from Supernovae II and/or AGNs act to inhibit cooling

and - in case of Supernovae - may also reheat the gas, or eject it

into an external reservoir. The full evolution history of galaxies -

including merging, satellite infall and star formation - is then fol-

lowed to z = 0. The version of the models used by Henriques et al.

(2012) includes AGN feedback as in Croton et al. (2006), the dust

model introduced by De Lucia & Blaizot (2007) and the redshift-

evolving cold gas-to-dust ratio from Kitzbichler & White (2007).

This simulation also includes more efficient supernova II feedback

and a more realistic treatment of satellite galaxy evolution and of

mergers as introduced by Guo et al. (2011).

The spectrophotometric properties of semi-analytic galaxies

are obtained using stellar population models. Single-burst or Sim-

ple Stellar Population (SSPs) models are assigned to each stellar

generation, which is weighted by the mass contribution of the in-

dividual star formation episode to the total galaxy mass. Henriques

et al. (2011; 2012) have updated the De Lucia et al. (2006) and

the latest Guo et al. (2011) semi-analytic models with the Maras-

ton (2005) stellar population models, such that now each semi-

analytic model is available with multiple choices of input stellar

population models. As it has been discussed in the recent litera-

ture (Tonini et al. 2009; Fontanot & Monaco 2010; Henriques et al.

2011), the specifics of the stellar population models adopted in

the galaxy formation model shape the spectra of model galaxies,

which has an important effect on the comparison between models

and data.

The method used to construct the mock catalog is described in

detail in Henriques et al. (2012).11 In addition to the pencil-beam

format that was originally available, the model is now provided

11 Light cones and data products are publicly available at

http://www.mpa-garching.mpg.de/millennium.
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with an all sky light-cone (4π) that we will use in this work. The

model catalogue is limited to an observed-frame AB (Oke & Gunn

1983) magnitude of i∼< 21.0, significantly deeper than the BOSS

limit of i∼< 19.9. It was constructed by replicating the Millennium

simulation box (500 Mpc ·h−1 on a side) with no additional trans-

formations applied.

The original volume of the Millennium simulation is large

enough to sample the most massive galaxies in the Universe, which

makes the comparison with BOSS data interesting. Note that the

models are normalised to the local mass function, which impacts

on the mass of the most massive galaxies that can be found in the

simulations.

To make a direct data model comparison we apply to the semi-

analytic models the same magnitude colour selection cut that was

applied to define the observed sample (the CMASS cut). Here the

stellar population model has an effect. The adoption of the Maras-

ton (2005) models instead of the Bruzual & Charlot (2003) models

allow more semi-analytic galaxies to enter the BOSS cut. In the

following analysis we shall mostly use the semi-analytic models

based on the Maraston (2005) models.

Figure 12 shows, in the BOSS target selection plot of the

observer-frame i-mag vs the dperp colour12, the portion of model

galaxies entering the CMASS selection cut. Only a tiny fraction of

the Millennium galaxies satisfies this selection criterion, because

the CMASS cut is designed to select the most luminous and mas-

sive galaxies in the Universe (Eisenstein et al. 2011, Padmanabhan

et al. 2012, in prep.).

An illustrative approach is to compare the colour distributions

of models and data within the target selection cut. Figure 13 ex-

pands the BOSS selection region in Figure 12. Colours of models

and data agree generally well, though one notes a deficit of red

galaxies in the models over the entire redshift range. In Section 7.3

we shall discuss this issue in more detail.

5.2 Stellar mass densities

Figure 14 displays the stellar mass function of CMASS galaxies

(red points with errors), in three redshift ranges.

These mass functions are calculated based on an effective area

(area × completeness) for the DR9 of 3275 deg2 (see Anderson et

al. 2012 for details) and the full volume between the redshift limits

i.e. we make no correction for the fact that more luminous galaxies

will be brighter than the magnitude limit of the survey to higher

redshifts. We choose such a strategy as our goal is to compare to

the semi-analytic model for which we calculate the mass function

in the same manner, and it removes any assumptions that would

be necessary to calculate the required corrections for the CMASS

mass function. Our choice of effective area is driven by the wish to

use the exact CMASS catalogue adopted for clustering analysis in

BOSS (Anderson et al. 2012). The most important reasons for such

a choice is that this sample has been cut to be uniformly selected

over the entire survey, so removing any issues of the changing se-

lection over time. It also removes regions of low completeness and

is based on the full survey mask including bright star masking etc.

(see Anderson et al. 2012 for details). The use of this sample gives

us a total number of galaxies of 277385.

Error-bars on data-derived stellar masses reflect the ± 1σ vari-

ation in stellar mass according to the χ2 of the fit. The errors on

12 dperp is a colour index obtained through the combination of r, g, i, such

as dperp = (r − i) − ((g − r)/8), see Eisenstein et al. (2011).

the empirical stellar mass function were estimated by combining in

quadrature the contributions given by shot noise and by the errors

on data-derived stellar masses. The former term was included by

using the Gehrels (1986) formulation, which takes into account the

low-count regime, characteristic of the massive end of the galaxy

stellar mass function. The second term is calculated via bootstrap,

by perturbing individual masses within their errors and recalculat-

ing at each iteration the values of spatial density. In particular, by

means of this method we obtain spatial-density value distributions

for each stellar mass bin, which are used to determine 68% confi-

dence intervals for each spatial density value plotted in Figures 14

and 15. The error contribution due to data-derived stellar masses is

generally the dominant one, as expected given the large number of

galaxies used to measure the stellar mass function, although errors

become comparable at the tails of the mass distribution, due to the

lower number of objects.

First of all, one should mote the extremely fine resolution in

stellar mass at the high mass end and the small error-bars that the

BOSS data allow us to achieve.

The blue lines display the theoretical mass function from

semi-analytic models as derived from the full-sky simulations and

averaged to the BOSS volume. The blue points are the same simu-

lations where the magnitude-colour CMASS cut has been applied

and an identical mass binning as in the data is used.

The blue shaded area represents a model variance as obtained

by accounting for the possible scatter in modelled observations

(Baugh 2006, also applied in Fontanot et al. 2009 and Kitzbich-

ler & White 2009). This scatter is caused by the fact that several

assumptions need to be taken in an empirical mass derivation, such

as e.g., the initial mass function, the stellar population model, the

wavelength range adopted in the fitting, and the analytical form for

the star formation history, including the effects of metallicity and

dust reddening. As discussed in previous literature, the considera-

tion of this effect mostly alters the tail of the distribution.

Usually, a scatter of 0.25 dex in logM is assumed, as repre-

sentative of the typical scatter at high-redshift (z ∼ 2, Kitzbich-

ler & White 2009). Here, using our simulations, we can exploit a

more quantitative determination for the intrinsic uncertainty in stel-

lar mass. The general template mismatch plus assumed wavelength

range13 can be read from Figure 10. At the high-mass end, this

effect amounts to an asymmetric offset of 0.06 dex, in the sense

that our data-derived stellar masses could still be slightly underes-

timated. On the other hand, there is a scatter of around 0.08 dex, so

we decided to translate this result into a Gaussian error distribution

of size 0.1 dex to apply to the theoretical mass function.

The comparison between the red points (modelled BOSS data)

and the blue area/blue points (scattered model) in Figure 14 is then

the most appropriate one. Note that the bias due to the derivation of

stellar masses from data could have also been accounted for in the

data-derived quantities rather than in the models. We performed

this exercise when bootstrapping the observed stellar mass func-

tion (as explained earlier in this section). This exercise showed that

BOSS observed spatial densities should be corrected towards lower

values because of the presence of this bias, which was found to be

significant, around 0.1 dex, above 11.8 logM∗/M⊙, and negligi-

ble at lower masses. This effect is equivalent to shifting the the-

oretical mass function towards higher spatial density values (blue

shaded area), in order to reproduce the bias-uncorrected observed

13 As in Kitzbichler & White (2009), we neglect the initial mass function

effect, as we use the same IMF in both models and modelled data.
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Figure 12. Semi-analytic model galaxies from the model of Henriques et al. (2012) using the Maraston (2005) stellar population models, in the observer-frame

dperp(= (r − i)− ((g − r)/8) colour vs i-mag in the redshift range ∼ 0.5 to ∼ 0.7. The CMASS selection cut is shown as dashed lines.

mass function. We decided to account for the bias in the models

because other data-derived mass functions we shall compare with

in Section 5.2.1 (see Fig. 19) do not take this bias into account.

First of all, it is interesting that the models coincide at the mas-

sive end independently of whether or not the CMASS cut is applied

(compare blue points to blue dashed lines). This result implies that

a selection like the CMASS one is perfectly suited to select the

most massive galaxies at least from the simulation point of view.

In other words, there are no massive galaxies in the models that the

CMASS selection would miss.

In Figure 14 one sees that neither the models nor the data

evolve significantly over the BOSS redshift range. This is perhaps

not surprising since the redshift spanned is narrow.

The models and data agree overall quite well. The turnover in

the mass function occurs at slightly different masses, which could

result from the different colours of model galaxies and data (see

next Section), the photometric errors, or both. There is a mild deficit

of massive galaxies in the models in the mass range logM∗/M⊙ ∼

11.3 − 11.6, which extends to higher masses (logM∗/M⊙ ∼ 12)

in the highest redshift bin. There is also a lack of lower mass galax-

ies in the models, between 10.5 and 11.0 logM∗/M⊙. This latter

effect originates from the fact that model galaxies with this mass

have blue colours which cause them to be excluded by the CMASS

cut. In Section 7.2 we shall compare the colours of models and data

as a function of mass.

The model comparison we present here reaches the highest

possible galaxy masses, and cosmic variance, thanks to huge BOSS

volume/area, is negligible. We comment on other comparisons of

this kind that were previously performed in the literature in the Dis-

cussion. We should note that, for the comparison with semi-analytic

models, the set of masses for BOSS galaxies we use, whether from

this work or from Chen et al. (2012) does not alter the essence of

the conclusions. However, the lower M∗ values for BOSS galaxies

obtained in this paper (see Appendix A) make the comparison with

the models more favourable.

The BOSS data show little evolution within the explored red-

shift and mass range, but this statement should be taken with cau-

tion as we are not dealing with a complete sample; the incomplete-

ness of BOSS is presently not known. For example, note the lower

mass density at logM∗/M⊙ ∼ 11.5 at the highest redshift bin

(right-hand panel) with respect to z = 0.55, which is the repre-

sentative redshift for BOSS; this suggests that CMASS is not com-

plete above z ∼ 0.6 around this mass value, as already argued

in Section 4. This results is in qualitative agreement with ongoing

simulations of the BOSS completeness (M. Swanson et al. 2012, in

preparation). As we shall see in the next section when comparing

with previous results from the literature, the BOSS sample may be

not severely incomplete at the high-mass end (logM∼
> 11.5) over

the entire BOSS redshift range.

5.2.1 Comparison with published mass functions

The lack of evolution displayed by the field massive galaxy mass

function from the BOSS data is in qualitative agreement with ear-

lier results in the literature (e.g. Drory et al. 2004; Bundy et al.

2006; Cimatti et al. 2006; Ilbert et al. 2010; Pozzetti et al. 2010),

including studies considering the luminosity function instead of

the mass function in the same redshift range explored here

(e.g. Blanton et al. 2003; Wake et al. 2006; Cool et al. 2008;

Loveday et al. 2012).

Our approach, which considers identical volumes in the mod-

els and data, should be free from issues related to the unknown

completeness of the BOSS sample, and allows us to make a mean-

ingful model-data comparison. Even if the completeness is as yet

unknown, it is also instructive to compare our results with the liter-

ature in order to estimate where the new BOSS data stand.

Figure 15 is identical to Figure 14, but with the addition of

empirical mass functions derived from other data samples, namely:

Drory et al. (2004, open circles), derived from the MUNICS K-

selected survey with photometric redshift; Bundy et al. (2006,

green open symbols) derived from DEEP2 data; Ilbert et al. (2010,

purple triangles) for the COSMOS sample using photometric red-

shifts, and Pozzetti et al. (2010, black filled circles), for the zCOS-

MOS sample with spectroscopic redshifts. There are several other

mass functions in the literature, e.g. Borch et al. (2006), Fontana

et al. (2006), Bell et al. (2003), but we do not discuss these results

as we focus on the high-mass end and explore a high-resolution in

redshift binning. In this comparison we need to use works based
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Figure 13. Observed-frame colours of semi-analytic models as in Figure 12 (left-hand columns) and BOSS data (right-hand columns), in the BOSS selection

cut plane of dperp colour and i-magnitude
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Figure 14. The empirically-derived stellar mass function of BOSS-CMASS galaxies (red points), obtained from stellar masses calculated with the merged

template as in Fig. 6, for three redshift bins, 0.5, 0.55, 0.65. Predictions from semi-analytic models (from Henriques et al. 2012 as in previous figures) extracted

from a light-cone reproducing the BOSS volume are shown as blue dashed lines. The blue points are the same predictions after application of the CMASS

selection cut and an identical mass binning as the data. The light-blue shaded area is the theoretical mass function including a 0.1 dex Gaussian uncertainty in

stellar mass derivation from data (bias).

on a similar stellar initial mass function (IMF) as the one (Kroupa)

assumed here. The Bundy et al., Ilbert et al. and Pozzetti et al. mass

functions are all based on a Chabrier IMF and Bruzual & Char-

lot (2003) stellar population models, while the Drory et al. study

is based on Maraston (1998) models and assumed a Salpeter IMF.

For plotting the Drory et al. results, we divide their mass function

by a factor 1.6 to mimic the assumption of a Kroupa or a Chabrier

IMF.

Also plotted in the left-hand panel of Figure 15 is the z ∼

0 model mass function along with two local mass functions derived

from SDSS-I,II data by Baldry et al. (2008, filled black circles) and

Li & White (2009, open purple triangles). Assumptions on the stel-

lar population model and IMF are the same as in the high-redshift

sector. We shall comment on the z ∼ 0 trend in section 5.2.2.

A remarkable agreement is found with the mass function

based on the zCOSMOS survey using spectroscopic redshift by

Pozzetti et al. (2010, black circles) at z∼> 0.5 and logM∼
> 11.4.

At redshift 0.6, the BOSS mass function at logM ∼ 11.5 is lower

than the Pozzetti et al. estimate. This is probably the mass below

which the BOSS sample is incomplete at this redshift.

Compared to the mass functions by Drory et al. (2004), Bundy

et al. (2006) and Ilbert et al. (2010), the BOSS data display a

slightly lower density of massive galaxies, which is consistent

within 2-σ with these previous results.

The overall agreement with previous literature is remarkable,

considering the diversity of data sample, and of methods used to

derive stellar masses, both in terms of template models and fitting

techniques. The literature works considered here use Bruzual &

Charlot (2003) templates (with the exception of Drory et al. 2004,

who adopt Maraston 1998 models) and various wavelength range

for the data fitting. As we are dealing with galaxies that are mostly

passive and have stellar ages above the AGB period in the Maraston

models (∼ 1 Gyr), the difference induced by the different template

is small (e.g. Maraston 2005; Pforr et al. 2012). The same conclu-

sion was taken in Pozzetti et al. (2010), which tested their results

using also Maraston (2005) templates.

The agreement with Pozzetti et al. also suggests that the use

of u, g, r, i, z suffices to obtain robust results with our choice of

templates in case of mostly passive galaxies (Pforr et al. 2012), as

Pozzetti et al. use a very broad wavelength range extending to the

rest-frame near-IR. We plan to test the effect of near-IR data on our

results in a future work.

In summary, the BOSS mass function, which extends to ∼

1012M⊙, represents the highest-mass mass function published so

far in this redshift range in such detail. The comparison with the

literature suggests that BOSS may be a complete sample at mass

∼
> 2 · 1011 M⊙ at redshift below 0.6 and ∼

> 4 · 1011 M⊙ at redshift

above 0.6, which will be verified in future work.

5.2.2 Evolution with redshift

The agreement between data and models degrades proceeding to-

wards lower redshift. The comparisons with z∼< 0.1 mass functions

as derived from SDSS data (open black and blue circles) by Baldry

et al. (2008) and Li & White (2008) show that the model overesti-

mates the fraction of massive galaxies. Baldry et al. (2012) confirm

- using the GAMA survey - the results they previously obtained us-

ing the SDSS. This evolutionary trend can already be appreciated

in Figure 14, where one notices that the distance between models

and data decreases proceedings towards lower redshifts, and that

the amount of massive galaxies at the massive end tends to become

slightly larger than in the BOSS data.

From the model point of view, this result is explained with the

secular mass build-up in the hierarchical clustering model. Hence,

the model seems to overestimate the evolution with redshift, as also

concluded in Almeida et al. (2008). Possible solutions to this prob-

lem will be mentioned in the Discussion.

Worth noticing is that - for BOSS - the density of massive

galaxies at redshift 0.5 is consistent with the one at redshift zero.

This is not the case for other mass functions plotted in Figure 15

which appear to suggest a slight negative evolution, where the den-
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Figure 15. Similar to Figure 14, but showing four mass functions from the literature: Bundy et al. (2006, green squares) derived from DEEP2 data; Ilbert

et al. (2010, purple triangles) for the COSMOS sample based on photometric redshifts; Pozzetti et al. (2010, black circles), for the zCOSMOS sample with

spectroscopic redshifts; Drory et al. (2004, open circles) from the K-band selected MUNICS survey with photometric redshifts. The left panel shows two local

z∼< 0.1 mass functions from Li & White (2009) and Baldry et al. (2008) as derived from SDSS data.

sity of massive galaxies at high-redshift is higher than at redshift

zero. 14

Though this apparent negative evolution could be caused by a

slight shift at high-z due to the larger errors affecting mass determi-

nations caused by the photometry of fainter objects, it is interesting

to note that our mass function based on BOSS does not appear to be

affected by this problem. Though we cannot exclude that this event

happens by chance and that we are actually incomplete at the high-

mass end, if confirmed this good result is probably due the very

wide area covered by BOSS, which is virtually free from cosmic

variance issues, and by the accuracy of spectroscopic redshifts.

The low-z empirical mass function is relevant to the models

because it is used to normalise the models themselves (Li & White

2009). Examining Figure 15 it appears that both the z ∼ 0 and z ∼

0.5 BOSS data can now be used simultaneously and consistently to

calibrate the models over a wider redshift range.

5.3 Colours vs mass and the metallicity of galaxies

Comparing the spectral energy distribution with the stellar mass, is

a powerful approach to gain insight into the galaxy evolution pro-

cess, as the SED records the history of star formation, e.g. the age

distribution and the metallicity, which encodes information about

merging and gas infall histories and feedback processes. Here we

use the SDSS colours which at the BOSS redshift mostly sample

the rest-frame optical, although towards the lowest boundary in red-

shift the i, z bands record a touch of the rest-frame near-IR.

Figure 16 shows the relations between the observed-frame

colour g − z and the stellar mass, for BOSS CMASS galaxies

and semi-analytic models (right-hand and left-hand panels, respec-

tively), in three redshift slices. The number counts under each con-

14 Uncertainties in the mass function at redshift zero should also be taken

into account. Li & White (2009) find a 0.1 dex offset between stellar masses

of SDSS galaxies as derived by Kauffman et al. (2003) and Blanton et al.

(2007). Chen et al. (2012) re-derive the stellar masses of DR7 galaxies and

notice that the new ones are higher (by 0.08 dex) than previously published.

Baldry et al. (2008) also discuss the variance between different estimations

of the mass function using SDSS data.

tour have been weighted by the volume of each catalog. The mod-

els by Guo et al. (2011) - modified by Henriques et al. (2012) as to

include the M05 stellar population models - are used, as in previ-

ous Sections. Similar plots using other colours are listed in the Ap-

pendix. Here we discuss this specific colour as it samples the same

rest-wavelength of u− i, which was used in Guo et al. (2011), and

with which we shall compare later in this Section.

Focussing on the data first, we see that the BOSS galaxies

display the well-known colour-magnitude - here colour vs mass

- relation, where larger galaxies are redder (e.g. Bower, Lucy &

Ellis 1992). This qualitatively holds for all examined colours (see

Appendix). In the local Universe, the colour-magnitude relation is

interpreted in terms of metallicity, with the most massive galaxies

being the most metal-enriched (Kodama & Arimoto 1997). This is

confirmed by the detailed analysis of the metal content of galaxies

through absorption-line modelling (e.g. Thomas et al. 2005; 2010).

Moreover, Kodama et al. (1998, 1999) and Stanford et al. (1998)

show that colour-magnitude relations similar to those in the local

Universe exist for galaxies in clusters at redshifts comparable to

BOSS up to z ∼ 0.9. Cool et al. (2006) analyse a sample of 20,000

massive SDSS galaxies up to redshift 0.3 and show that such rela-

tions exist for field galaxies, dependent of the band, although those

for field galaxies show a 10% larger dispersion than those in clus-

ters.

Here we demonstrate that well-defined colour-mass relations

hold for field galaxies at the BOSS redshifts. Since the BOSS sam-

ple is dominated by high-mass galaxies, which, in terms of stellar

content and chemical enrichment, do not differ much from their

counterparts in the field (Thomas et al. 2010, Peng et al. 2010),

we do not expect that these relations would be very different from

those for cluster galaxies. We are unable to plot a mass-metallicity

relation in our paper as the metallicity derived through broad-band

SED fit is not well-resolved, and moreover the LRG model that is

used for most galaxies has a fixed metallicity. The analysis of the

absorption lines in BOSS galaxies stacked spectra will be devel-

oped in a parallel paper (Thomas et al. 2012, in prep.).

Galaxy colours in the models do not vary as a function of stel-

lar mass, in other words, the colour-mass relation in the models is

flat, and the model colours are typically bluer than the real galaxy

colours. As is well known, galaxy colours can vary as a function
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Figure 16. g − z observer-frame colour vs stellar mass for BOSS/CMASS galaxies in the redshift range 0.45 to 0.7 (right-hand column). Equivalent relations

from semi-analytic models are shown in the left-hand column. The data display colour-mass relations with the most massive galaxies being the reddest, which

are not seen in the models. Diagrams for other SDSS colours are shown in the Appendix.
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of age, metallicity or dust content. Dust effects should play a minor

role, as the bulk of the massive CMASS galaxies are not very dusty,

as already discussed (see Section 3.2).

A substantially younger age component in the models - which

causes colours to remain blue - is also not the main driving of this

mismatch as - at redshift 0.5 - the galaxy ages in the present semi-

analytic models are strongly peaked at old ages, with a very low

percentage scattering to low ages (Henriques et al. 2011, Figure

5). This conclusion would not be the same for other semi-analytic

models, as the same Figure shows.

We are left with metallicity effects as a possible explana-

tion. It is known that galaxies in semi-analytic models are gener-

ally quite metal-poor even at high-masses; their metallicity barely

reaches the solar value as discussed e.g. by Pipino et al. (2009),

Henriques & Thomas (2010, , their Figure 10) and also briefly

pointed out in Tonini et al. (2009) and Pforr et al. (2012). More-

over, Sakstein et al. (2011) describe the difficulty in matching the

mass-metallicity relation at high-redshift even when implementing

a sophisticated recipe for chemical enrichment. We shall return to

this point for the discussion.

We also should comment on the effect of population synthesis

models. We checked that the use of the BC03 population models

makes only a marginal difference in the semi-analytic model pre-

dictions in the SDSS bands, which sample a rest-frame spectral

region, between 3400 Å and 6400 Å, which is not vastly different

between the two models, especially because the model galaxies are

mostly old and have roughly half-solar metallicity. The choice of

population synthesis model appears to matter, however, at higher

metallicity, as we discuss below.

Guo et al. (2011) perform a similar analysis as in Figure 16,

by comparing the rest-frame u − i galaxy colours in bins of stel-

lar mass at redshift zero, using SDSS data. Models and data are

found to compare remarkably well for galaxies with masses in

the range logM∗/M⊙ ∼ 9.5 − 10.515. At the high-mass end,

logM∗/M⊙ ∼
> 10.5, model galaxies are found to be bluer and to

span a narrower colour range with respect to the data. The discrep-

ancy discussed by Guo et al. is identical to the one we point out

in Figure 16 for galaxies at redshift ∼ 0.5. Galaxy metallicities at

redshift zero are centred around 0.5 Z⊙. This value is smaller than

what is inferred by observational data using stellar population mod-

elling of absorption lines (Thomas et al. 2005, 2010; Gallazzi et al.

2006; Smith et al. 2009), as discussed by Henriques & Thomas

(2010).

Hence, our conclusion is that the main cause of the discrep-

ancy between models and data for the colours of massive galaxies

lies in the metallicity, which is too low in the models. Guo et al.

(2011) conclude the opposite, namely that metallicity/age effects

are unlikely to be able to explain this discrepancy. This conclusion

is based on the evidence that the u − i colour of the Bruzual &

Charlot (2003) models for 12 Gyr and twice solar metallicity (and

a Chabrier IMF) is at most 3.07, whereas the peak of the data is

around 3 and extends up to ∼ 3.5. On the other hand, the equivalent

model from Maraston 2005 (for a Kroupa IMF) has u−i = 3.4716 .

Hence, the semi-analytic models with a higher metallicity for the

15 At lower masses, the models are redder, which - as discussed by the

authors - is due to substantial fraction of dwarf satellites (roughly half) in

the models which finish their star formation early and become passive. The

observed fraction of such passive dwarfs is substantially smaller. Our data

do not encompass this low-mass range hence we cannot address further this

problem.
16 See www.maraston.eu

galaxies and using the M05 stellar population models could match

the colours, for metallicity values - between solar and twice solar -

that are in accord with what is derived observationally. This finding

further stresses the importance of evolutionary population synthe-

sis for the theoretical modelling of galaxies (Tonini et al. 2009;

Henriques et al. 2011; Monaco & Fontanot 2010).

The conclusion from this section is that the most massive

galaxies in the models need to be more metal-rich to match the

observations.

6 SUMMARY AND DISCUSSION

We have calculated the photometric stellar masses for galaxies in

the BOSS survey from the commissioning stage through the first

release of data to the public (DR9). We have used the BOSS spec-

troscopic redshift and standard SDSS photometry u, g, r, i, z, to

perform broad-band spectral energy distribution (SED) fitting with

HyperZ (Bolzonella et al. 2000) using various galaxy templates.

In particular, we exploit our previously published Luminous Red

Galaxy (LRG) best-fitting template (Maraston et al. 2009), which

is composed of a major metal-rich population containing traces

(3% by mass) of metal-poor stars, both populations being coeval

and in passive evolution. This template provides a good description

of the redshift evolution of the g, r, i colours of LRG galaxies in

the redshift range 0.3 to 0.6 from the 2SLAQ survey (Maraston et

al. 2009; see also Cool et al. 2008 who used a preliminary version

of the same template). This template was also used to design the

target selection for BOSS (Eisenstein et al. 2011; Padmanabhan et

al. 2012, in prep.). Furthermore, as the BOSS target selection in-

cludes galaxies that are bluer than the classical LRGs, we also use

a template suite allowing star formation, ranging from standard τ -

models to constant star formation and spanning a wide metallicity

range (from 0.2 solar to twice solar). For both templates we employ

a Salpeter (1955) as well as a Kroupa (2001) Initial Mass Function

(IMF) and consider the mass lost via stellar evolution.

Independently of the adopted template, the result is that BOSS

galaxies are massive and display a narrow mass distribution, which

peaks at logM/M⊙ ∼ 11.3 for a Kroupa IMF. We also study the

uniformity of the mass sampling as a function of redshift and find

that BOSS is a mass-uniform sample over the redshift range 0.2

to 0.6 (see also White et al. 2011). Qualitatively speaking, incom-

pleteness emerges at redshift above 0.6 and logM∗/M⊙ ∼
< 11.6.

The galaxy stellar mass depends on the adopted template, and

generally it is not obvious which template is the best choice as

the galaxy star formation history is not known. To make a robust

template choice is especially difficult for large galaxy databases,

in which objects cannot be handled on an individual basis. For ob-

taining a unique set of reference stellar masses, we adopt an em-

pirical colour cut developed in a companion paper (Masters et al.

2011) which is able to separate galaxies with early-type morpholo-

gies from later-type ones at redshift above 0.4. We then use the

stellar masses obtained with the LRG passive model for galaxies

on the ’early-type side’ of the colour criterium, and the values ob-

tained with the star-forming template for galaxies on the ’late-type’

side. In this way we obtain a merged mass distribution in which the

assignment of the stellar population template is motivated by the

observed galaxy morphology.

The BOSS galaxy sample used here, comprising

∼ 400, 000 massive galaxies at redshifts ∼ 0.3 − 0.7, is

ideally suited to study at unprecedented detail the evolution of

the most massive galaxies at late epochs. We compare the mass
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distribution and the colours of BOSS galaxies with predictions

from semi-analytic models of galaxy evolution based on the

Millennium simulations (Guo et al. 2011; Henriques et al. 2012).

The simultaneous comparison of mass and colour is crucial. These

quantities in the models are affected by the prescription for AGN

feedback (Guo et al. 2011; De Lucia & Blaizot 2007; Croton et al.

2006; Cattaneo et al. 2005), which is likely far too simplified, and

probably incorrect in detail (Bower et al. 2012).

To perform a robust comparison free as much as possible

from possible completeness issues, we consider the models in light-

cones using the BOSS effective area and the target selection cuts.

The large area of the BOSS survey and the selection cut at the high-

mass end allow us to pose results on an unprecedentedly solid sta-

tistical ground.

Overall the models perform well in comparison with the data

in terms of stellar mass density distribution at redshift ∼ 0.5. This

is already visible in previous work (cfr. Figure 20 by Pozzetti et

al. 2010). We extend this conclusion to the density of very massive

galaxies, logM∗/M⊙ ∼ 12, finding that the data match rather well

with the models.

It is the evolution from z ∼ 0.5 to z ∼ 0 where the largest

discrepancy between models and data lies. The data do not appear

to have evolved, considering the effect of photometric errors on

the high-redshift side, whereas the models evolve consistently with

the hierarchical mass build-up. This conclusion is qualitatively con-

sistent with those taken in previous articles (Fontanot et al. 2009,

Pozzetti et al. 2010, Ilbert et al. 2010), who noticed that the evolu-

tion at the high-mass end of the empirical mass function is much

milder than the one at the low-mass end, in agreement with the

baryonic mass downsizing. On the contrary, the models display an

up-sizing where the massive end and especially the passive popula-

tion (Cattaneo et al. 2008; Fontanot et al. 2009) evolves faster with

respect to the low-mass end. Due to the BOSS target selection we

can only conclude about the high-mass end here, but we are able

to extend the analysis to the very massive end that was not probed

previously.

The extension to high mass is crucial for understanding the

evolution of the most massive galaxies with respect to galaxy for-

mation models. For example, Bower et al. (2006) conclude that the

predicted mass function in their semi-analytic models reproduces

reasonably well the observations all over the redshift range from

zero to five. Examining their Figure 6, however, one notices that

their model at redshift 0.5 lacks the most massive galaxies com-

pared to our BOSS results and to the semi-analytic models we use

here. Bower et al. could use only observed mass functions that ex-

tended up to ∼ 1011 M⊙.

Almeida et al. (2008) on the other hand noticed that the ob-

served luminosity function of LRG at z ∼ 0.5 is not matched by

either the Bower et al. (2006) or the Baugh et al. (2005) semi-

analytic model of galaxy formation and evolution. The Bower et

al. model is successful at predicting such abundance at lower red-

shift (z ∼ 0.24). This implies a different redshift evolution in the

models and the data similar to what we find here. The models we

use in this work appear to be more successful at redshift 0.5 than at

lower redshift, as already discussed in the literature.

As star formation is quenched by AGN feedback in these mod-

els, the secular evolution of massive galaxies is mostly determined

by mergers, particularly by minor mergers, since for the most mas-

sive galaxies the mass ratio to other galaxies is always large. The

relative growth of the mass function between z=0.5 and z=0 is

therefore strongly affected by the treatment of the physics of satel-

lite galaxies. In particular, tidal disruption of stellar material can

significantly decrease the amount of mass accreted onto massive

galaxies, and moving it into the intra-cluster light (Monaco et al.

2007; Henriques & Thomas 2010). A more effective implementa-

tion of this process could help reducing the excessive build up of

massive galaxies in the Guo et al. (2011) models and ease the ten-

sion with z=0 data.

We find that our light-coned mass function compares well with

the mass function based on the zCOSMOS survey(Pozzetti et al.

2010). Our determinations find slightly lower densities of massive

galaxies with respect to other published works (by Drory et al.

2004, Bundy et al. 2006, Ilbert et al. 2010). The comparison with

these previous analysis suggests that BOSS is a complete sample at

mass ∼
> 2·1011 M/M⊙ at redshift below 0.6 and ∼

> 4·1011 M/M⊙

at redshift above 0.6. These suggestions will be verified quantita-

tively in future works.

Also noteworthy, the BOSS mass function at z ∼ 0.5 does not

appear to be in tension with local mass functions in giving a higher

number of massive galaxies at high redshift with respect to redshift

zero, as seen in previous work. This positive result, if not due to

incompleteness of the BOSS sample, should come from a combi-

nation of the very large area and accurate spectroscopic redshift of

BOSS, which are the major strengths of the survey.

In summary, the BOSS mass function which extends up to

∼ 1012M⊙ represents the highest-mass mass function published

so far in this redshift range in such detail in redshift and mass.

BOSS now offers an interesting data base of massive galaxies for

calibrating models of galaxy formation and evolution at the high-

est mass end at high-redshift which is protected by cosmic variance

and small-number statistics.

A comparison of the colours of BOSS galaxies and models

demonstrates that BOSS galaxies define colour-mass relations sim-

ilar to those of local galaxies, with colours becoming redder with

stellar mass. The models, however, span a narrower (bluer) colour

range, and in particular their colours do not vary with stellar mass,

i.e. the models do not display a colour-mass relation. We argue that

the main driver for this discrepancy is the metallicity, which in the

models is too low, a conclusion which is consistent with evidence

from other work in the literature. Interestingly, Guo et al. (2011)

discarded this possibility when comparing - in a similar fashion as

we do here - SDSS galaxies with models at redshift 0. Their conclu-

sion is based on the evidence that Bruzual & Charlot (2003) pop-

ulation synthesis model colours do not vary enough as a function

of metallicity as to encompass the observed colours. On the other

hand, the Maraston (2005) model colours show a stronger variation

with metallicity (between solar and twice solar) which would just

be appropriate to reconcile the models with the data. In summary,

an improvement to the models should go in the direction of gaining

a higher metallicity for the most massive galaxies.

The low metallicity of massive galaxies may be more a prob-

lem of semi-analytic models than galaxy formation in general.

In fact, chemical enrichment in hydro-dynamical simulations pro-

ceeds more efficiently than in semi-analytic models and galaxies

reach higher metallicities (Dave’, Finlator and Oppenheimer 2006;

Naab et al., in preparation; Dave’ et al. 2012; Cattaneo et al. 2011).

On the other hand, semi-analytic models are still the most efficient

approach for large galaxy simulations, hence the goal should be to

improve upon the star formation, chemical enrichment and feed-

back in semi-analytic models of galaxies. Moreover, it may be the

full hierarchical growth, in terms of satellite accretion and gas in-

fall, which is responsible for diluting the metallicity (Henriques &

Thomas 2010), which is not yet included in full hydro-dynamical

simulations. Much effort is currently invested in galaxy formation
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science and the next few years will certainly see major step forward

towards the solution of these problems.

ACKNOWLEDGMENTS

Funding for SDSS-III has been provided by the Alfred P. Sloan

Foundation, the Participating Institutions, the National Science

Foundation, and the U.S. Department of Energy Office of Science.

The SDSS-III web site is http://www.sdss3.org/. SDSS-III is man-

aged by the Astrophysical Research Consortium for the Participat-

ing Institutions of the SDSS-III Collaboration including the Uni-

versity of Arizona, the Brazilian Participation Group, Brookhaven

National Laboratory, University of Cambridge, Carnegie Mellon

University, University of Florida, the French Participation Group,

the German Participation Group, Harvard University, the Instituto

de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA

Participation Group, Johns Hopkins University, Lawrence Berkeley

National Laboratory, Max Planck Institute for Astrophysics, Max

Planck Institute for Extraterrestrial Physics, New Mexico State

University, New York University, Ohio State University, Pennsyl-

vania State University, University of Portsmouth, Princeton Uni-

versity, the Spanish Participation Group, University of Tokyo, Uni-

versity of Utah, Vanderbilt University, University of Virginia, Uni-

versity of Washington, and Yale University.

Numerical computations were performed on the Sciama High Per-

formance Compute (HPC) cluster which is supported by the ICG,

SEPNet and the University of Portsmouth.

CM acknowledges relevant discussions with Ivan Baldry, Olivier
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Davé R., Finlator K., Oppenheimer B. D., 2012, MNRAS, 421, 98

Davies R. L., Sadler E. M., Peletier R. F., 1993, MNRAS, 262,

650

Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ,

292, 371

Davis M. et al., 2003, in Society of Photo-Optical Instrumenta-

tion Engineers (SPIE) Conference Series, Vol. 4834, Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Se-

ries, Guhathakurta P., ed., pp. 161–172

Dawson K. S., et al., 2012, AJ, submitted

De Lucia G., Blaizot J., 2007, MNRAS, 375, 2

De Lucia G., Springel V., White S. D. M., Croton D., Kauffmann

G., 2006, MNRAS, 366, 499

Dickinson M. et al., 2003, Spitzer Proposal, 196

Driver S. P., Hill D. T., Kelvin L. S., others, 2011, MNRAS, 265

Drory N., Bender R., Feulner G., Hopp U., Maraston C., Snigula

J., Hill G. J., 2004, ApJ, 608, 742

Drory N., Bender R., Snigula J., Feulner G., Hopp U., Maraston

C., Hill G. J., Mendes de Oliveira C., 2001, ApJL, 562, L111

Drory N., Salvato M., Gabasch A., Bender R., Hopp U., Feulner

G., Pannella M., 2005, ApJL, 619, L131

Eisenstein D. J., Annis J., Gunn J. E., others, 2001, AJ, 122, 2267

Eisenstein D. J. et al., 2011, AJ, 142, 72

c© 2012 RAS, MNRAS 000, 1–21

http://www.sdss3.org/


BOSS stellar masses 19

Eisenstein D. J. et al., 2005, ApJ, 633, 560

Fontana A. et al., 2003, ApJL, 594, L9

Fontana A. et al., 2006, A&A, 459, 745

Fontanot F., De Lucia G., Monaco P., Somerville R. S., Santini P.,

2009, MNRAS, 397, 1776

Fontanot F., Monaco P., 2010, MNRAS, 405, 705

Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K.,

Schneider D. P., 1996, AJ, 111, 1748

Gallazzi A., Charlot S., Brinchmann J., White S. D. M., 2006,

MNRAS, 370, 1106

Gehrels N., 1986, ApJ, 303, 336

Glazebrook K., Tober J., Thomson S., Bland-Hawthorn J., Abra-

ham R., 2004, AJ, 128, 2652

Governato F., Baugh C. M., Frenk C. S., Cole S., Lacey C. G.,

Quinn T., Stadel J., 1998, Nature, 392, 359

Greggio L., 1997, MNRAS, 285, 151

Grogin N. A. et al., 2011, ApJS, 197, 35

Gunn J. E. et al., 1998, AJ, 116, 3040

Gunn J. E. et al., 2006, AJ, 131, 2332

Guo Q. et al., 2011, MNRAS, 413, 101

Gustafsson B., Edvardsson B., Eriksson K., Jørgensen U. G.,

Nordlund A. A., Plez B., 2008, A&A, 486, 951

Hatton S., Devriendt J. E. G., Ninin S., Bouchet F. R., Guiderdoni

B., Vibert D., 2003, MNRAS, 343, 75

Henriques B., Maraston C., Monaco P., Fontanot F., Menci N., De

Lucia G., Tonini C., 2011, MNRAS, 415, 3571

Henriques B. M. B., Thomas P. A., 2010, MNRAS, 403, 768

Henriques B. M. B., White S. D. M., Lemson G., Thomas P. A.,

Guo Q., Marleau G.-D., Overzier R. A., 2012, MNRAS, 421,

2904

Ilbert O. et al., 2010, ApJ, 709, 644

Johansson P. H., Naab T., Ostriker J. P., 2012, ArXiv e-prints

Jorgensen I., Franx M., KjaergA&Ard P., 1995, MNRAS, 276,

1341

Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576

Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS,

264, 201

Kitzbichler M. G., White S. D. M., 2007, MNRAS, 376, 2

Kodama T., Arimoto N., 1997, A&A, 320, 41

Kodama T., Arimoto N., Barger A. J., Arag’on-Salamanca A.,

1998, A&A, 334, 99

Kodama T., Bower R. G., Bell E. F., 1999, MNRAS, 306, 561

Kroupa P., 2001, MNRAS, 322, 231

Kuntschner H., 2000, The Observatory, 120, 165

Kurk J. et al., 2008, in Astronomical Society of the Pacific Con-

ference Series, Vol. 399, Panoramic Views of Galaxy Formation

and Evolution, Kodama T., Yamada T., Aoki K., eds., p. 332

Le Fevre O. et al., 2005, in Bulletin of the American Astronom-

ical Society, Vol. 37, American Astronomical Society Meeting

Abstracts, p. 1252

Li C., White S. D. M., 2009, MNRAS, 398, 2177

Loveday J. et al., 2012, MNRAS, 420, 1239

Maraston C., 1998, MNRAS, 300, 872

Maraston C., 2005, MNRAS, 362, 799

Maraston C., Daddi E., Renzini A., et al., 2006, ApJ, 652, 85

Maraston C., Pforr J., Renzini A., Daddi E., Dickinson M.,

Cimatti A., Tonini C., 2010, MNRAS, 407, 830
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APPENDIX A: COMPARISON WITH OTHER STELLAR

MASS CALCULATIONS IN DR9.

Chen et al. (2012) calculate stellar masses for BOSS galaxies using

the individual BOSS spectra and a procedure based on Principal

Component Analysis (PCA) for obtaining the star formation history

of the galaxy from spectral fitting. The PCA is run on a library

of stellar population models for a variety of ages, metallicities and

dust content to identify its principal components over the rest-frame

wavelength range 3700 − 5500 Å.

Chen et al. present results based on both the Bruzual & Char-

lot (2003) and the Maraston & Strömback (2011) stellar popula-

tion models17. Chen et al. assess the dependence of their results on

the different stellar population models. There is a constant offset

of 0.12 dex, mostly concentrated at low galaxy ages, in the sense

of lower stellar masses obtained with the Maraston & Strömback

(2011) models. This difference is most likely due to the different

energetics and temperatures in the phase of Red Super Giant in the

stellar evolution models adopted in the two population models (see

Chen et al. 2012). This offset is smaller than the 0.2− 0.3 dex usu-

ally reported in the literature for stellar masses obtained from SED

fitting using Bruzual & Charlot and Maraston models (e.g. Ilbert

et al. 2010). The offset can be due to a combination of the follow-

ing two effects. First, BOSS galaxies are generally older than the

AGB ages (∼ 1 Gyr) where the two models mostly differ. Second,

the wavelength range adopted in the fit does not include rest-frame

near-IR wavelengths where the two models differ the most.

Here we focus on the dependence of stellar mass on the two

methods, namely high-resolution spectral fitting versus broad-band

SED fit. Hence we focus on the comparison at fixed population

model and we adopt Chen stellar masses based on the Maraston

& Strömback (2011) models. Figure A1 shows the difference in

stellar mass between the values of M∗ derived in this work and

those by Chen et al. (2012), both based on Maraston’s models. The

difference is shown as a function of the median spectral S/N18. A

constant offset of 0.2 dex is evident, with the spectral masses being

larger than our photometric ones. This difference is independent of

the S/N.

Also Chen et al. (2012) find that spectral stellar masses, at

BOSS S/N, are higher, by 0.1 dex, than those they derive from

broad-band SED fitting on g, r, i, z, using the same model tem-

plates.

Still, the discrepancy we find (∼ 0.2 dex) is larger than the

one quoted by Chen et al. (2012). Here there is another factor en-

tering, namely the model star formation history. We use a mostly

passive template and do not include reddening from dust in the

fitting, while Chen et al. include star formation and dust. While

the mere use of the passive template should push the analysis to

higher masses (as the M/L of stellar population models increases

17 The Maraston & Strömback (2011) stellar population models are the

high-resolution version of the Maraston (2005) we adopt here for the star

forming template, and use empirical stellar libraries, as in the LRG model.
18 The different absolute scale of S/N in Figure A1 compared to Figure

12 of Chen et al. 2012 is due to the fact that here we use the S/N in the

spectral window 3700.57 − 5498.80 Å, whereas Chen et al. used the S/N

determined over the entire spectrum. The trend of the comparison is not

affected by this choice.

Figure A1. Difference in M∗ for CMASS galaxies between masses from

this work obtained via broad-band SED fit of u, g, r, i, z and those from

Chen et al. (2012) based on PCA spectral fitting of individual BOSS spec-

tra, as a function of the median spectroscopic S/N in the spectral window

3700.57− 5498.80 Å. The red line highlights the median of the difference

and the two green lines the ±1 σ variation. Red and green lines indicate the

median and standard deviation.

with age), the inclusion of dust may force the model to fit for a

larger old component than in case of a single age template to bal-

ance the younger and dusty component. This increases the global

M/L ratio, hence produces a higher M∗
19. A similar conclusion is

drawn in Chen et al. (2012), who show (their Figure 13) that when

dust is excluded, their M∗ is reduced by ∼ 0.08 dex. It is sug-

gestive that - using emission line information - Thomas et al. 2012

(Figure 8) find very little dust in the reddest CMASS galaxies.

Hence, the different priors used in constructing the two model

libraries and the low S/N of the BOSS data appear to explain the

discrepancy in stellar masses.

Nonetheless, we explored two further possible sources of dif-

ference that can affect the stellar mass derivation. First, the PCA-

spectral stellar-mass-to-light ratios derived by Chen et al. (2012)

are based on the light which falls within the 2 arc-second SDSS

fiber and translated into total galaxy masses by multiplying the de-

rived M/L ratio by the light (in the i-band) derived from cmodel-

mag. As already pointed out by Chen et al., this approach assumes

that the M/L is constant over the whole galaxy. However, if galax-

ies have colour gradients that are detected by the data, the total M/L

will not be the same as the M/L ratio within the fiber. To quantify

this effect, we perform SED fit using fiber-magnitudes, after scaling

them to the brightness of the i-band cmodelmag as in our standard

procedure.

Figure A2 (left-hand panel) shows that there is indeed a slight

difference between the two mass estimates - true total mass minus

the total mass obtained from the fiber magnitudes scaled with the

total luminosity. The total masses are slightly larger than the fiber-

19 This is the opposite effect reported by Maraston et al. (2010) and Pforr

et al. (2012), who find that when dust is included, M∗ decreases because

dust favours young solutions with a low M/L. However, this result holds for

single-age fitting, while Chen et al. consider a composition of populations

and in this case exactly the opposite effect happens.
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Figure A2. Difference between the total stellar mass obtained with total magnitudes and the ’fiber’ stellar mass scaled to the total light (left-hand panel)

and the same, but additionally excluding the u-band from the SED fit for the ’fiber-scaled’ stellar masses (right-hand panel). Galaxies in the high-z CMASS

sample are shown in red.

scaled ones (mean of 0.044 dex, with dispersion of 0.1 dex, and

0.046 dex with dispersion of 0.098 dex for the high-z sample, red

histogram in Figure A2). This is due to slightly larger ages obtained

using total magnitudes. Hence, this effect cannot explain the offset

with the Chen et al. masses, because their masses are larger than

ours. However, this trend refers to our photometric SED-fit, and it

may be different in case of spectral fitting.

The second effect that may be acting to cause the mass dis-

crepancy is related to the fact that we include the u-band in the

SED fit, while Chen et al. do not. We repeated our calculations by

excluding the u-band, but the results hardly change (Figure A2,

right-hand panel). The mean of the distribution is 0.038 dex, with

standard deviation 0.11 dex (and mean of 0.039 dex with standard

deviation of 0.098 for the high-z sample).

In summary, we investigated and discussed the sources of dif-

ference between stellar masses from broad-band SED fit and those

derived via spectral fitting of individual spectra. From Chen et

al. one sees that - due to the limited quality of BOSS data - the

mass obtained via spectral fitting is 0.1 dex higher then the SED-

fit masses. In addition, the different priors used in constructing

the model libraries push the spectral-based stellar masses towards

higher values. The sum of these effects can explain the difference

between the spectral masses and our SED-fit masses.

APPENDIX B: MODEL REST-FRAME MAGNITUDES OF

BOSS GALAXIES.

The fitting of theoretical templates to derive galaxy stellar masses

allows us to obtain other interesting quantities. Using HyperZ,

we generated the rest-frame magnitudes in u, g, r, i, z of the best-

fitting template for all BOSS galaxies. These are the magnitudes

each galaxy has according to the best-fit template in its rest-frame,

e.g., Mr represents the magnitude in the r-filter at rest. We have

also calculated k and evolutionary corrections which will be pub-

lished separately.

The two panels of Figure B1 show the rest-frame magnitudes

of BOSS galaxies according to the passive LRG and the SF tem-

plate. There is hardly any difference in these results due to the sim-

ilar age distribution that is obtained independently of the assumed

template.

APPENDIX C: OBSERVED-FRAME

COLOUR-MAGNITUDE DIAGRAMS OF BOSS

GALAXIES.

Several observed-frame colour magnitude diagrams for BOSS

galaxies are displayed in the following figures, which are analo-

gous to Figure 16. The same conclusions as in Section 5.3 can be

drawn from these plots.

This paper has been typeset from a TEX/ LATEX file prepared by the

author.

c© 2012 RAS, MNRAS 000, 1–21



22 C. Maraston et al.

Figure B1. Modelled rest-frame magnitudes of BOSS (CMASS and LOWZ) galaxies in u, g, r, i, z (labelled) for the passive LRG template (left-hand panel),

and for the star forming template (right-hand panel).
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Figure C1. g − r observer-frame colour vs stellar mass for BOSS/CMASS galaxies and semi-analytic models, as in Figure 16.
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Figure C2. r − i observer-frame colour vs stellar mass for BOSS/CMASS galaxies and semi-analytic models, as in Figure 16.

c© 2012 RAS, MNRAS 000, 1–21



BOSS stellar masses 25

Figure C3. g − i observer-frame colour vs stellar mass for BOSS/CMASS galaxies and semi-analytic models, as in Figure 16.
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Figure C4. u− i observer-frame colour vs stellar mass for BOSS/CMASS galaxies and semi-analytic models, as in Figure 16.
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