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Abstract. We derive a new expression for the coefficient Dh of diffusion by horizontal turbulence in rotating stars. This new
estimate can be up to two orders of magnitude larger than that given by a previous expression. As a consequence the differential
rotation on an equipotential is found to be very small, which reinforces Zahn’s hypothesis of shellular rotation. The role of the
so–called µ–currents, as well as the driving of circulation, are reduced by the large horizontal turbulence. Stellar evolutionary
models for a 20 M� star are calculated with the new coefficient. The new and large Dh tends to limit the size of the convective
core and at the same time it largely favours the diffusion of helium and nitrogen to the surface of rotating OB stars, a feature
supported by recent observations.
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1. Introduction

Differential rotation usually creates turbulent motions due to
shear in rotating stars. In a normally stable radiative layer, the
turbulence is usually much stronger in the horizontal direction
perpendicular to gravity than in the vertical direction (Zahn
1992). The reason is that in the vertical direction the stable tem-
perature gradient needs stronger forces to be overcome than in
the horizontal direction where, in principle, no forces are op-
posed to the motions. An argument in favour of these intense
horizontal meteorological–like turbulent motions is given by
the study of the solar tachocline by Spiegel & Zahn (1992).
The tachocline is the transition zone between the rigid rotation
in the radiative interior and the external convective zone, where
rotation varies with latitude. Spiegel & Zahn show that if the
horizontal turbulence is intense, then the tachocline is very thin
as supported by helioseismological observations.

The global result of the transport of the fluid elements by
the horizontal turbulence is represented by a coefficient of vis-
cosity νh. This coefficient is a very important parameter in the
physics of rotating stars in several respects:

–1. If strong enough, the horizontal coupling expressed by
the coefficient νh makes the angular velocity Ω nearly constant
on isobaric surfaces (cf. Zahn 1992). In this case, the angular
velocityΩ is constant on shells and the rotation law is said to be
“shellular” by Zahn. If this is the case, the equations of stellar
structure are greatly simplified, because they depend on one co-
ordinate only (which is not just the Lagrangian coordinate Mr,
but which has to be defined in an appropriate way). This en-
ables us to keep a 1–D equations scheme for stellar structure
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(cf. Kippenhahn & Thomas 1970; Endal & Sofia 1976). In the
case of differential shellular rotation, Meynet & Maeder (2000)
have shown that the scheme usually employed is incorrect, but
that a consistent 1–D scheme may still be defined.

–2. The various mixing processes of chemical elements
play a major role in massive star evolution (cf. Heger et al.
2000; Heger & Langer 2000; Meynet & Maeder 2000). The
horizontal turbulence reduces very much the efficiency of ver-
tical transport of elements by meridional circulation (Chaboyer
& Zahn 1992). This enables us to understand in a consistent
way why the vertical transport of chemical elements by the cir-
culation is much smaller than the vertical transport of angular
momentum by circulation. This is a clear constraint which re-
sults from solar observations (Chaboyer et al. 1995a, 1995b),
as well as from the observations of massive stars (Maeder &
Meynet 2000).

–3. The horizontal turbulence was generally ignored in
the treatment of meridional circulation or of shear mix-
ing. However, recent developments (Chaboyer & Zahn 1992;
Maeder & Zahn 1998; Maeder & Meynet 2001; Brüggen &
Hillebrandt 2001) show that the horizontal diffusion by turbu-
lence may also intervene in the expressions of the transport of
chemical elements by meridional circulation, of the circulation
velocity, of the diffusion coefficient by shear mixing, of the heat
transport, etc. Interestingly enough, the numerical convergence
of the 4th order scheme of differential equations expressing the
transport of angular momentum and meridional circulation ap-
pears to be sensitive to the value of the diffusion coefficient of
horizontal turbulence.

We do not consider here the effect of the magnetic field (cf.
Spruit 2002), which may also play a role in the transport of

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20021731

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20021731


264 A. Maeder: Horizontal turbulence in stars

angular momentum. In Sect. 2, we examine the reasons which
demand a new estimate of νh. In Sect. 3, we derive a new ex-
pression for νh and some numerical estimates. Section 4 pro-
vides a discussion of the results.

2. Reasons for a new estimate of the horizontal
turbulence

The usual expression for the coefficient νh of viscosity due to
horizontal turbulence and for the coeffcient Dh of horizontal
diffusion, which is of the same order, is, according to Zahn
(1992; Eq. (2.29)),

Dh � νh = 1
ch

r |2V(r) − αU(r)|, (1)

where r is the appropriately defined eulerian coordinate of the
isobar (Meynet & Maeder 2000). Apart from the case of ex-
treme rotational velocities, the parameter r is close to the av-
erage radius of an isobar, which is the radius at P2(cosϑ) = 0,
namely for ϑ = 54.7 degrees. U(r) is the vertical component of
the velocity of meridional circulation, V(r) the horizontal com-
ponent, α = 1

2
d ln r2Ω

d ln r and ch is a constant of order of unity or
smaller. This equation was derived assuming that the differen-
tial rotation (as defined by the ratio Ω2(r)

Ω(r)
in Eq. (4) below) on an

isobaric surface be small compared to unity. Indeed, there are
several difficulties prompting us to reconsider the expression
for νh:

– The first reason why the above expression is not satisfac-
tory has been given by Zahn (1992) and it is related to the way
Eq. (1) has been obtained. If we write the differential rotation
at a colatitude ϑ as

Ω(r, ϑ) = Ω(r) + Ω̂(r, ϑ) with (2)

Ω̂(r, ϑ) = Ω2(r) P2(cosϑ), (3)

where P2(cosϑ) is the Legendre polynomial of second order,
we find that the differential rotation is a constant (cf. Sect. 2.6
in Zahn 1992),

Ω2(r)

Ω(r)
=

ch

5
· (4)

This ratio is obtained when we use the coefficient νh given by
Eq. (1) together with the expressions for the horizontal trans-
port of angular momentum. This ratio is smaller than unity, but,
as noted by Zahn (1992), there is no reason for the amount
of differential rotation to be constant with r. On the contrary,
the importance of differential rotation should depend on the
value of νh, because the stronger the horizontal turbulence, the
stronger is the homogeneisation of the angular velocity on an
equipotential surface. This suggests that Ω2(r)

Ω(r)
should decrease

for larger νh. We might also expect that the importance of dif-
ferential rotation varies with the rotation velocity, since the hor-
izontal turbulence is itself generated by rotation.

– Another point is related to the numerical models (Meynet
& Maeder 2000; Maeder & Meynet 2001). During the course
of the evolution, some models indicate that the coefficient Dh

of horizontal turbulence, as given by Eq. (1), is not much larger

than the coefficient of vertical diffusion by shear, especially at
low metallicity Z where U(r) is small (see Fig. 6 in Meynet &
Maeder 2000 and Fig. 2 in Maeder & Meynet 2001). This is not
very satisfactory for the validity of the assumption of shellular
rotation. We may remark in this context that this assumption
would be much better if the diffusion coefficient of horizontal
turbulence would be larger.

– We may also note that physically the horizontal turbu-
lence results from the differential rotation, while the meridional
circulation with components U(r) and V(r) results from the dis-
ruption of the thermal equilibrium on an equipotential. These
two phenomena are generally, but not necessarily, related. An
example is the case of a uniformly rotating star. There we have
no differential rotation, but a breakdown of thermal equilibrium
occurs unavoidably.

3. The dissipation and feeding of turbulent energy

Let us first examine the rate of dissipation of the turbulent en-
ergy. As shown by Zahn (1992), we may write the rate of vis-
cous dissipation of the energy present in the differential zonal
motions on an isobar as

δε̇t(r, ϑ) = νh

sinϑ
∂Ω̂

∂ϑ
δϑ


2

, (5)

per mass and time and for an interval of latitude δϑ. Taking into
account Eq. (3), we obtain

δε̇t(r, ϑ) = νh sin2 ϑ Ω2
2(r)

(
dP2(cosϑ)

dϑ

)2

δϑ2, (6)

δε̇t(r, ϑ) = 9 νh Ω2
2(r) sin4 ϑ cos2 ϑδϑ2. (7)

The rate of energy dissipation is proportional to the square of
the amplitude Ω2(r) on an equipotential. It is zero at the pole
and equator and maximum at P2(cosϑ) = 0.

There is an excess of energy on an isobar due to the dif-
ferential rotation described by Eq. (2) compared to an average
rotation. The velocity of rotation v(r, ϑ) on the equipotential of
average distance r is given by

v(r, ϑ) = r sinϑΩ + r sinϑΩ2(r) P2(cosϑ). (8)

For an interval of latitude δϑ, the difference of rotational ve-
locity δv(r, ϑ) due to the latitudinal differential rotation on the
equipotential is

δv(r, ϑ) = r sinϑ Ω2(r)
dP2(cosϑ)

dϑ
δϑ

= −3r sin2 ϑ cosϑ Ω2(r)δϑ. (9)

We express here only in the velocity difference due to the shear
on the equipotential. The excess of energy δEdiff(r, ϑ) over an
interval δϑ due to the differential rotation in latitude is

δEdiff(r, ϑ) =
1
4
δv2(r, ϑ)

=
9
4

r2 sin4 ϑ cos2 ϑ Ω2
2(r) δϑ2. (10)
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Now, this small excess of energy over an interval δϑ will be
smeared out in a dynamical timescale δtdiff.

Let us estimate this characteristic timescale. On the isobar,
the differential rotation due to Ω2 produces a shift δϕ in longi-
tude for two fluid elements located at a difference δϑ in colati-
tude in a time interval δt

δϕ = δΩ̂ δt = Ω2
dP2

dϑ
δϑ δt. (11)

The meridional circulation has a horizontal velocity compo-
nent V , which is pointing toward the pole in the external layers
where U(r) < 0. This is due to the Gratton–Öpik term, which

is the term − Ω2

2πGρ (Öpik 1951) which appears in the equation
for U(r) given for example in Eq. (4.29) by Maeder & Zahn
(1998). Due to the average density ρ at the denominator, the
Gratton–Öpik term is largely negative near the surface, thus it
acts so as to change the sign of the circulation U(r), making
it rising in the equatorial plane and descending along the polar
axis. In the deeper layers, one has generally U(r) > 0, which
means that the circulation rises along the polar axis and de-
scends in the equatorial plane. Thus, in this case V is pointing
toward the equator. The shift in latitude is given by

r δϑ = V
dP2

dϑ
δt, (12)

and this leads to

δϕ =
Ω2V

r

(
dP2

dϑ

)2

(δt)2. (13)

The complex motion in ϑ and ϕ due to the differential rota-
tion Ω2 on the isobar will tend to smear out the latitudinal
energy differences as discussed above. As a typical dynami-
cal timescale, we take the time necessary for this differential
motion in ϕ to perform n axial rotations. We may consider an
average of δϕ(ϑ) over the star

δϕ =
Ω2V

r
(tdiff)2

∫ π
2

0

(
dP2

dϑ

)2

sinϑ dϑ = 2nπ. (14)

Thus, we get for the characteristic timescale

tdiff =

(
5nπ

3
r
Ω2V

)1/2

· (15)

The numerical factor is of course rather arbitrary. The ratio of
the energy excess (Eq. (10)) and of the rate of viscous dissipa-
tion (Eq. (7)) is of the order of this timescale and we write

δEdiff(r, ϑ)
δε̇t(r, ϑ)

= tdiff . (16)

Using Eqs. (7) and (10), we obtain for the coefficient of hori-
zontal turbulence νh

νh =

(
3

80nπ
r3Ω2V

) 1
2

· (17)

We may also estimate νh by dividing the square of a typical
lengthscale (of the order of r) by the diffusion timescale given
by Eq. (15). We obtain exactly the same functional dependence
in (r3Ω2V)

1
2 , with a numerical coefficient depending on the

chosen lengthscale. Studying conservation of the angular mo-
mentum by taking into account the horizontal variations Ω2 of
rotation leads to the following relation (Zahn 1992; Eq. (2.27)),
that relates Ω2 and νh

νh Ω2(r) =
1
5
Ω(r) r [2V − αU] , (18)

where α is the same as in Eq. (1). This is the expression dis-
cussed in Sect. 2 , which implies that, if νh is given by an equa-
tion like Eq. (1), the ratio Ω2

Ω(r)
is a constant. Now, we eliminate

Ω2 between the two Eqs. (17) and (18). This gives for the coef-
ficient of viscosity due to the horizontal turbulence

νh = A r
(
rΩ(r) V [2V − αU]

) 1
3

with A =

(
3

400nπ

) 1
3

· (19)

For n = 1, 3 or 5 A ≈ 0.134, 0.0927, 0.0782 respectively. This
expression can be written in the usual form νh = 1

3 l · v for a
viscosity, where the appropriate velocity v is a geometric mean
of 3 relevant velocities:

– a velocity (2V − αU) as in Eq. (1) by Zahn (1992);
– the horizontal component V of the meridional circulation;
– the average local rotational velocity rΩ(r). This rotational

velocity is usually much larger than either U(r) or V(r),
typically by 6 to 8 orders of magnitude in an upper Main
Sequence star rotating with the average velocity.

4. Numerical results

4.1. Comparisons and orders of magnitude

Let us compare the present value of νh to that given by Zahn
(1992). We get the following ratio from Eqs. (1) and (19),

νh(present)
νh(Zahn)

= A ch

 r Ω V
(2V − αU)2


1
3

· (20)

The quantities V and U have the same order of magnitude. The
numerical models below show that typically V ≈ 1

3 U and (2V−
αU) ≈ V , thus we have the following order of magnitude,

νh(present)
νh(Zahn)

≈ A ch

 r Ω
V


1
3

· (21)

Thus, we see that the ratio of the two estimates of the diffu-
sion coefficient is equal to the power 1

3 of the ratio of the local
rotational velocity to the horizontal velocity of meridional cir-
culation at the considered level. Let us consider a 20 M� star
with an average rotation velocity of 220 km s−1 at the surface.
At the middle of the MS phase, the vertical component of the
meridional circulation lies between 3×10−4 and 3×10−3 m/s as
shown by the models below (see also Meynet & Maeder 2000).
Thus, we typically have νh(present)

νh(Zahn) of the order of 102 (cf. Fig. 1).
Thus, our estimate of the diffusion coefficient of the horizon-
tal turbulence is much larger than the coefficient proposed by
Zahn (1992; Eq. (2.29)) as given by Eq. (1).
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Fig. 1. Values of the various diffusion coefficient in the interior of a
star model of 20 M� at beginning of the MS phase, with an age of
8.577 × 104 yr. and central hydrogen content of Xc = 0.702. That is
to say during the initial non–stationary phase of convergence of the
rotation, where the velocities U(r) are large. The new Dh is that given
by Eq. (19) with A = 0.079. The old Dh is that given by Eq. (1). K is
the radiative diffusivity. Dshear is the coefficient of diffusion by shears.
Deff expresses the diffusion of the chemical elements by meridional
circulation with account of the effects of horizontal turbulence. When
not specified, the quantities shown are those for the new Dh.

Let us now estimate the degree of differential rotation cor-
responding to this value of νh. From Eq. (18), we have with
Eq. (19),

Ω2

Ω(r)
=

1
5 A

(
(2V − αU)2

r ΩV

) 1
3

· (22)

There is of course no coefficient ch in this ratio. Numerically,
this is 1/5 of the inverse of the ratio given by Eq. (20), in which
the value of ch = 1 would be used. This results from Eqs. (1)
and (18) relating νh and Ω2. Thus, with the above estimates,
we obtain a ratio of about Ω2

Ω(r)
= 2 × 10−3. As the value of νh

obtained in this work is much larger than the value given by
Eq. (1), we see that quite logically the degree of differential
rotation on an isobar is much smaller. The present value of the
coefficient reinforces Zahn’s hypothesis of shellular rotation.
We also notice that the ratio Ω2

Ω(r)
is larger for slowly rotating

stars. This is quite a consistent feature, because νh is growing
with the velocity of rotation.

4.2. Test with the evolution of a 20 M� model

In order to examine the consequence of the new coefficient of
horizontal diffusion, we calculate stellar models for a 20 M�
with composition X = 0.705 and Z = 0.02 with the same
physics as in our recent papers (Maeder & Meynet 2001). The

initial rotation velocity is 300 km s−1, which corresponds to
average rotation during the MS phase of about 240 km s−1.
Several expressions and diffusion coefficients will be discussed
numerically below, let us briefly recall them. The vertical com-
ponent U(r) of the velocity of meridional circulation velocity
is given by

U(r) =
P

ρgCPT [∇ad − ∇ + (ϕ/δ)∇µ]

×
{

L
M�

(EΩ + Eµ)

}
· (23)

P is the pressure, CP the specific heat, EΩ and Eµ are terms de-
pending on the Ω– and µ–distributions respectively, up to the
third order derivatives, and on various thermodynamic quan-
tities (see details in Maeder & Zahn 1998). The term EΩ ex-
presses the driving effects of meridional circulation, while the
term Eµ expresses the µ–currents which tend to inhibit the cir-
culation. The term ∇µ is very important numerically, its origin
in this expression is more complex than could be thought at
first sight. This expression also prevents infinite velocities at
the edge of semiconvective zones. The term EΩ expresses the
driving of the circulation by the fluctuations of density due to
the breakdown of radiative equilibrium.

The diffusion by shear instabilities is expressed by a coeffi-
cient Dshear, namely

Dshear =
4(K + Dh)[

ϕ
δ
∇µ(1 + K

Dh
) + (∇ad − ∇rad)

]

×Hp

gδ

α4
(

fΩ
d lnΩ
d ln r

)2

− (∇′ − ∇)

 . (24)

where f is a numerical factor equal to 0.8836, K is the thermal
diffusivity and (∇′ − ∇) expresses the difference between the
internal nonadiabatic gradient and the local gradient (Maeder
2001). There is also the coefficient Deff , which expresses the
contribution of the meridional circulation and horizontal turbu-
lence to the diffusion of the elements (Zahn 1992),

Deff =
|r U(r)|2

30Dh
, (25)

while the transport of angular momentum by circulation has to
be treated explicitly as advection. More details on these various
expressions, on the hypotheses leading to them and on their
domain of validity can be found in the given references.

Figure 1 shows the diffusion coefficients at the very begin-
ning of the MS phase. There, the situation is non-stationary
during 1–2% of the MS lifetime, until the rotation has con-
verged toward an equilibrium profile, (in reality a part of this
convergence, but probably not the whole, may be achieved dur-
ing the pre-MS phase). In this temporary stage, U(r) is usually
much larger (about a few 10−2 m s−1) than later in the course
of evolution, where it is only of the order of a few 10−3 m s−1

(Meynet & Maeder 2000). We point out the much larger value
of the new Dh with respect to the old one. With the new Dh,
we see that Deff is rather small with respect to Dshear, while
with the old Dh, the coefficient Deff would have been larger
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Fig. 2. Values of the various diffusion coefficients in the interior of a
star model of 20 M� at about the middle of the MS phase, with an age
of 7.066 × 106 yr. Same remarks about the coefficients of diffusion as
in Fig. 1.

than Dshear everywhere, and in particular by several orders of
magnitude close to the core. As to Dshear, the effect is opposite,
the new Dh makes it bigger since K is replaced by K+Dh, when
the µ–gradient is small.

Figure 2 shows the various diffusion coefficients near the
middle of MS evolution. Interestingly enough, the star shows
3 cells of meridional circulation. At the interfaces located at
Mr
M = 0.535 and 0.950, the nulling of U(r) produces a kink in

the curves of Dh, Dshear and Deff . The outer cell is the Gratton–
Öpik cell, due to the lower density in the outer layers. The
main inner cell is the usually dominant cell where U(r) is pos-
itive. There the circulation rises along the polar axis and de-
scends in the equatorial plane, (thus bringing angular momen-
tum toward the interior). The third cell close to the core is not
a well understood one. It was already present in some curves
of Fig. 4 in Meynet & Maeder (2000). The velocities here are
very small and slighty negative. We interpret this third cell as
due to a change of the second derivative of the angular velocity
Ω, which influences the expression of U(r) as given by Maeder
& Zahn (1998). (We also remark a kick in the curve of Dshear

at Mr
M = 0.41; it is produced by variations of the nearly vertical

gradient of µ in some regions.)
Figure 2 tells us much about the diffusion coefficients in the

stellar interior and their effects:
– As discussed above, the new Dh given by Eq. (19) is larger by
about 2 orders of a magnitude than the old one given by Eq. (1);
the new value is not far from the thermal diffusivity K.
– The new Dh brings some change to Dshear. In regions where
the µ–gradient is negligible, the ratio Dshear(new)

Dshear (old) of the coeffi-
cients of shear diffusion calculated with the new and the old Dh

behaves like K+Dh
K . In view of the values in Fig. 2, this means

that Dshear in the outer regions is increased only moderately,
currently less than a factor of two. Comparisons with Fig. 6
by Meynet & Maeder (2000) confirm the comparable order of
magnitude of Dshear.
– When ∇µ >> (∇ad − ∇rad), a situation which occurs close
to the convective core, the ratio Dshear (new)

Dshear(old) behaves like Dh(new)
Dh(old) .

This means that Dshear is increased by a factor of 100 in the in-
ternal regions close to the core. Such a change should normally
strongly favour mixing in the star, however this is not so much
the case, because precisely in the regions close to the core Dshear

is very small due to the very steep µ–gradient, which limits the
shear diffusion as shown by Eq. (24). Close to the core, Deff is
generally similar or larger than Dshear (this was particularly the
case when the low Dh given by Eq. (1) was used).
– Contrarily to the case of Dshear, Deff is reduced by an increase
of Dh, as is evident from Eq. (25). This can also be seen from
a comparison between the present Figs. 2 and 6 by Meynet &
Maeder (2000), where much larger values of Deff can be seen.
– Last but not least, the old Dh was often of the same order
as the old Dshear in some parts of the star. This was not satis-
factory, in view of the hypothesis of shellular rotation as men-
tioned in Sect. 2. The new Dh, which is much larger than the
new Dshear (cf. Fig. 2), solves the problem and makes the hy-
pothesis of shellular rotation a much better one as also indi-
cated by Eq. (22).

Thus we see that a larger horizontal turbulence makes Dshear

larger and Deff smaller. The situation is complex, since the
relative importance of these two coefficients is not the same
throughout the star. Dshear always dominates at some distance
of the stellar core, while Deff tends to dominate near the core,
especially if Dh is small. In addition, the ratio of these two co-
efficients is changing during evolution, as seen from Figs. 1
and 2. Thus, a change of Dh affects the evolution of a star in
a complex way. These new results now seem very similar to
those of Heger et al. (2000). In a rough summary, we may say
that a larger Dh tends to reduce or contain the size of the core,
since Deff which is important close to the core is reduced; at
the same time the spread of the processed elements (He and N)
up to the surface is larger.

A larger horizontal turbulence Dh also reduces the horizon-
tal µ–gradients and thus it limits the importance of the so-called
µ–currents introduced by Mestel (1953, 1965); see also Theado
& Vauclair (2001) and by Palacios et al. (2003). Quantitatively,
the term Eµ which expresses the µ–currents contains a term
Λ =

µ̃
µ
, as shown by Eq. (4.30) by Maeder & Zahn (1998)

andΛ itself goes like (Dh)−1 in a stationary situation (Eq. (4.40)
in above reference). This establishes the relation of Dh with
the µ–currents.

In addition, the horizontal turbulence also contributes to
smear out the temperature and density fluctuations on an
equipotential and this reduces the effects driving meridional
circulation. Quantitatively, this is expressed by the term con-
taining Dh in the expression of EΩ in Eq. (4.37) by Maeder
& Zahn (1998). Thus, globally a higher Dh reduces both the
terms driving the meridional circulation and the term which
inhibit this circulation. In the numerical example, we see that
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Fig. 3. Distribution of hydrogen in models during the MS phase when
Xc ≈ 0.33 (cf. Fig. 2). The broken line shows the profile for a model
without rotation. The continuous line shows the H–profile for a model
with an initial rotation velocity of 300 km s−1 with new Dh, while the
dotted line shows the H–profile for a rotating model with same rotation
velocity and the old Dh.

the values of U(r) mentioned above are generally smaller than
those found by Meynet & Maeder (2000).

Figure 3 illustrates the effects of the diffusion coefficients
Dh on the internal distribution of hydrogen. The model with the
new and higher values of Dh has a convective core and a sur-
rounding H–profile which is close to that of the non–rotating
model; in particular we see that the H–profile close to the core
is much steeper than for the rotating model with the old Dh. In
the outer layers, the H–content of the rotating model with the
new Dh is lower than for the other two cases which means than
mixing has been more efficient there. These properties are quite
consistent with our previous discussion. Indeeed, the higher Dh

reduces the coefficient Deff, which was the largest one close
to the core. This prevents the growth of the core and creates
the steep µ-gradient just above it. Now, the larger Dh makes
Dshear larger outside the region of the very steep µ–gradient
and this favours mixing in the outer layers. As a consequence,
the enrichments in helium and nitrogen at the stellar surface
are higher. This explains the rather paradoxical result that the
model with the higher Dh has a slightly smaller convective core
and at the same time a larger enrichment in CNO processed el-
ements at the stellar surface.

Figure 4 illustrates the tracks in the HR diagram. We see
that the model with the new (and large) Dh has a turnoff in be-
tween that of the model without rotation and that of the rotating
model with the old coefficient Dh given by Eq. (1). This is quite
in agreement with the H–profiles and the values of the mass
fractions of the convective cores, which are 6.8, 7.1 and 7.7 M�
when Xc = 0.33 for the model with zero rotation, for the model

Fig. 4. The HR diagram for the MS phase of 3 models of 20 M� at
Z = 0.02. The broken line (lower turnoff) is for a non–rotating model.
The continuous line is for an initial velocity of 300 km s−1 with the
new Dh given by Eq. (19). The track with a dotted line (higher turnoff)
is for the same initial velocity with the old Dh given by Eq. (1).

with rotation, with the new and the old Dh respectively. As is
well known, larger cores make MS tracks extend to higher lu-
minosities. We notice however that the intermediate track with
the new Dh is slightly bluer than an average of the other two
tracks would suggest. This is due to the larger enrichments of
the outer layers in helium, which reduces the opacity and makes
the star slightly bluer and brighter.

Figure 5 completes this picture by showing the evolution
with time of the ratio N/H of the nitrogen to hydrogen ra-
tios at the stellar surface. We see that the surface enrichment
in nitrogen of the model with the new Dh given by Eq. (19)
is larger than the one obtained with old Dh given by Eq. (1).
This is quite consistent with what we have just seen above in
Fig. 3. The larger Dh makes Dshear larger in the outer layers
and the transport of the new helium and nitrogen to the surface
is more important. This observational consequence is partic-
ularly interesting in view of the new results by Heap (2002),
who has shown very high N/H enrichments in OB stars up
to about 50. Future detailed comparisons considering carefully
the mass, velocities and abundances of OB stars are necessary
to examine whether the models with the new Dshear are better
supported by the observations.

5. Conclusions

The following conclusions have been obtained here:
– By expressing the balance between the energy dissipated by
the horizontal turbulence and the excess of energy present in
the differential rotation on an equipotential which can be dis-
sipated in a dynamical time, we have found a new expression
for the coefficient of diffusion Dh by the horizontal turbulence
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Fig. 5. Evolution as a function of time of the abundance ratios N/H at
the stellar surface of the 3 models with 20 M� considered. The mean-
ing of the lines is the same as in Figs. 3 and 4. The continuous (higher)
line is that of the rotating model with the new Dh.

in rotating stars. This new coefficient is typically larger by a
factor 102 than the one proposed by Zahn (1992).
–The differential rotation on an equipotential is found much
smaller so that the hypothesis of shellular rotation by Zahn
(1992) is reinforced.
–A higher horizontal turbulence reduces the importance of the
µ–currents and also to a smaller extent the driving of the merid-
ional circulation.
–Numerical models show in agreement with a physical discus-
sion that due to the different effects of the horizontal turbulence
on the shears and on the transport of chemicals by circulation,
a larger Dh tends to contain the size of the core and at the same
time to favour the spread of the processed elements up to the
stellar surface.
–The tracks in the HR diagram obtained with the new and
larger Dh for rotating stars are in agreement with the above
effects.

It will be interesting to further explore the consequences
of the larger Dh suggested here for other stellar masses and
evolutionary stages.
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