
Eur. Phys. J. C (2020) 80:615
https://doi.org/10.1140/epjc/s10052-020-8130-4

Regular Article - Theoretical Physics

Stellar structure of quark stars in a modified Starobinsky gravity

Arun Mathewa , Muhammed Shafeequeb , Malay K. Nandyc

Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India

Received: 3 November 2019 / Accepted: 9 June 2020 / Published online: 10 July 2020
© The Author(s) 2020

Abstract We propose a form of gravity–matter interaction
given by ωRT in the framework of f (R, T ) gravity and
examine the effect of such interaction in spherically symmet-
ric compact stars. Treating the gravity–matter coupling as a
perturbative term on the background of Starobinsky grav-
ity, we develop a perturbation theory for equilibrium con-
figurations. For illustration, we take the case of quark stars
and explore their various stellar properties. We find that the
gravity–matter coupling causes an increase in the stable max-
imal mass which is relevant for recent observations on binary
pulsars.

1 Introduction

Modern day scenarios such as inflation [1,2], late-time cos-
mic acceleration [3–5], flat rotation curves [6–9] etc. are
incompatible with the standard prescription of general rel-
ativity (GR). Although the predictions of GR in the weak-
field regime are precise, it falls short in the higher curvature
regime in the sense that it predicts singularities such as the
big bang and the black hole singularities. It has been shown
that quantum corrections generate higher order self-coupling
curvature in addition to the original scalar curvature [10,11].
This motivates one to consider non-linear curvature theories
to see if they provide a better descriptions of gravitation phe-
nomena.

A nonlinear curvature theory of gravity was proposed by
Starobinsky [12] in order to address the issue of the big-
bang singularity. He considered the Einstein field equations
Gμν = κ〈Tμν〉 where the right hand side gives quantum
mechanical contributions due to coupling between quantum
matter fields (having different spins) with classical gravita-
tional field, with the assumption of isotropy and homogeneity
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and absence of radiation field. In one-loop approximation,
and upon regularization, 〈Tμν〉 was found to be a function
of the Riemann geometric quantities. Based on these find-
ings, Starobinsky exhibited the existence of a one-parameter
family of non-singular solutions of the de-Sitter type which
could be analytically continued into the region t < 0. The de-
Sitter phase naturally explains the inflation scenario without
having to include any inflaton field.

However, another approach involves a generalization of
the Einstein–Hilbert action where an arbitrary function f (R)

represents the Lagrangian density [13]. In the Starobinsky
model, namely, f (R) = R + αR2, and its other generali-
sations, inflation has been explained to obtain increasingly
better fits the observational data [14,15]. Moreover, various
forms of f (R) gravity have been able to explain the late-time
cosmic acceleration [15,16]. In addition, a simple power-
law form of f (R) gravity is able to explain [17,18] rotation
curves in the spiral galaxies. The power-law form has been
explored [19–21] to find a basis for the modified Newtonian
dynamics (MOND) which is the most successful scenario in
explaining rotation curves in many different types of galaxies
[22–25].

Inclusion of the effect of classical matter with f (R) grav-
ity came in two different forms, namely, f (R, Lm) and
f (R, T ), where Lm is the matter Lagrangian and T is the
trace of energy–momentum tensor. While f (R, Lm) grav-
ity has been studied extensively in various contexts [26,27],
f (R, T ) gravity entered the literature somewhat recently
[28]. It was noted that the T dependence may arise due to
exotic imperfect fluid or quantum effects. Thus it is natural to
expect that f (R, T ) gravity may be a suitable candidate for
compact objects such as neutron stars and quark stars where
quantum effects are expected to play a significant role.

Models of extended gravity have been employed to study
the stellar structure of different compact objects. Starobin-
sky gravity with f (R) = R + αR2 has been applied to
neutron stars treating αR2 as perturbation with well-known
models for the equation of state [29]. It was found for some
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cases that the maximal mass could approach ∼ 2 M⊙ only
for negative values of α. Moreover the logarithmic model,
f (R) = R + αR2 + αγ R2 ln(R/μ2) [30], was also studied
perturbatively for neutron and quark stars that exhibited simi-
lar trends for different γ values. The Starobinsky model was
further explored non-perturbatively for neutron stars [31].
They observed that, for positive values of α, GR yeilded
higher maximum mass values than the Starobinsky case.
They also studied the model f (R) = R+αR2(1+γ R) which
exhibited low sensitivity on the γ value. On the other hand,
for their model R1−ǫ , GR gave the lowest maximum mass
and the mass value increased to very high values approaching
2.5 to 3 M⊙.

Yazadjiev et al. [32] solved for the stable configurations
of neutron stars in the Starobinsky model f (R) = R + αR2

for increasing values of the parameter α. By constructing
an equivalent scalar-tensor theory, they obtained the stel-
lar structure non-perturbatively and compared their results
with perturbative estimates. While the perturbative result was
unphysical because it gave a decreasing mass with respect to
the radial distance in a region interior to the star [33], no such
unphysical behaviour was observed in the non-perturbative
framework. Staykov et al. [34] included a slow rotation in
neutron and strange stars in a non-perturbative framework of
Starobinky gravity. While the slow rotation does not affect
the mass and radius with respect to the static Starobinky case,
they found a measurable increase in the moment of inertia
with respect to GR.

The Starobinsky model R + αR2 was further studied for
neutron and quark stars non-perturbatively [35]. For positive
and non-zero values of α, they observed that the scalar cur-
vature does not decrease to zero at the surface (unlike the
perturbative results) and it exponentially falls off outside the
star. The stellar mass contribution until the surface plus the
gravitational mass contribution outside the star constitute the
total mass which is actually observed by a distant observer.
The gravitational redshift for the distant observer will be
determined by the total (stellar + gravitational) mass. The
gravitational mass contribution from the outside of the star
is remarkably in distinction with the perturbative approaches
where the exterior solution is assumed to be Schwarzschild.
For negative values of α, they [35] found that the Ricci
scalar executes a damped oscillation beyond the surface of the
star and the gravitational mass contribution increases indef-
initely. In an earlier paper, the same authors [36] compared
the prediction of the Starobinsky model and the correspond-
ing scalar-tensor theory. Their non-perturbative analysis indi-
cated that the star is surrounded by a dilaton sphere whose
contribution to the mass is negligible.

Models of f (R, T ) gravity and its generalisations were
studied for equilibrium configurations of compact stars. Car-
valho et al. [37] considered the model f (R, T ) = R − 2λT

to find the equilibrium configurations for white dwarfs. The

maximum mass limit obtained was slightly above the Chan-
drasekhar limit. In comparison to GR and f (R) predictions,
the white dwarfs were found to have larger radii as the λ

value was increased from zero. Deb et al. [38] considered
the same model to obtain the equilibrium stellar structure
of quark stars. They demonstrated that the M-R curves are
different for positive, negative and zero λ values.

It is important to note that, in the Starobinsky model
R + αR2, a maximum value of 2 M⊙ or beyond is reached
only when the α value is chosen to be negative [35]. How-
ever, this leads to an issue, namely, the Ricci scalar exe-
cutes a damped oscillation and the gravitational mass con-
tribution increases indefinitely in the exterior region. On the
other hand, the Ricci scalar smoothly decreases to zero at
infinity for positive α values, for which the star can sup-
port a maximum mass lower than 2 M⊙. Thus a physical
theory based on Starobinsky model requires a positive α

value whence the Ricci scalar behaves properly everywhere.
However, in order to reach 2 M⊙ or beyond, the Starobin-
sky model requires modification. We therefore consider the
model f (R, T ) = R + αR2 + ωRT with α > 0. This mod-
ification implies inclusion of gravity–matter interaction in
the description via the term ωRT . It would be sufficient
to show that the maximum mass attainable is greater than
the Starobynsky prediction even if we take a simple form
R(1 + αR + ωT ), and treat ωT perturbatively on the back-
ground of non-perturbative Starobinsky solution.

In this paper, we obtain the field equations for spherically
symmetric distribution of matter for f (R, T ) = R + αR2 +
ωRT to O(ω). With this, we solve for equilibrium config-
urations of quark stars with the equation of state given by
the bag model, namely, p = k(ε − 4B), where B = 60
MeV/fm3 is the bag constant, and we take the physical value
k = 0.28 which is valid for strange quark mass ms = 250
MeV/c2. For the pure Starobinsky case, a maximum mass
of 1.832 M⊙ is obtained for α = 10r2

g , whereas GR gives
a maximum mass of 1.764 M⊙ [36]. On the other hand, the
present model yields a maximum mass ∼ 2 M⊙, which is
consistent with different observations of binary millisecond
pulsars, namely, J0348+0432, J1614-2230, and J0740+6620,
with pulsar masses 2.01 ± 0.04 M⊙ [39], 1.93 ± 0.017 M⊙
[40,41], and 2.14+0.20

−0.18 M⊙ [42], respectively.
The paper is organised as follows. In Sect. 2, we lay out the

preliminary details for the field equations and energy conser-
vation in f (R, T ) gravity. In Sect. 3, we present the details
of calculation for the proposed model with gravity–matter
interaction. There, we also develop a perturbative treatment
as the gravity–matter interaction is expected to be small. We
thus obtain the stellar equation for equilibrium configurations
in spherically symmetric stars. We apply these equations to
quark stars in Sect. 4 and obtain the stellar properties. Sect. 5
contains a discussion on the obtained results and the main
conclusions are given in Sect. 6.
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2 Preliminary details

In this section we briefly present the preliminary details
of f (R, T ) gravity needed for our later developments. The
action of the most general f (R, T ) gravity is given by [28]

S =
c3

16πG

∫

d4x
√

−g f (R, T ) +
∫

d4x
√

−gLm (1)

where Lm is the Lagrangian density of matter. The stress-
energy tensor Tμν is obtained from the matter Lagrangian
Lm as

Tμν = gμν Lm − 2
∂Lm

∂gμν
. (2)

Field equations following from Eq. (1) are

fR Rμν −
1

2
f gμν + (gμν∇α∇α − ∇μ∇ν) fR

= κTμν − fT Tμν − fT Θμν (3)

where Θμν = gαβδTαβ/δgμν , fR = ∂ f/∂ R, fT = ∂ f/∂T

and κ = 8πG/c4.
Assuming the matter to be a perfect fluid, the stress-energy

tensor Tμν can be obtained from going over to the proper
frame and then switching back to the gravitational frame
[43], yielding

Tμν = (ε + p)uμuν + pgμν, (4)

where the energy density ε and pressure p are the proper
values and uμ is the macroscopic four-velocity.

It can be shown from Eq. (4) that the above form of stress-
energy tensor can be obtained from the choice Lm = p [44].
Consequently one obtains

Θμν = −2Tμν + pgμν (5)

Thus the field equation (3) become

fR Rμν −
1

2
f gμν + (gμν∇α∇α − ∇μ∇ν) fR = κTμν

+ fT Tμν − fT pgμν (6)

which can be re-written as

fRGμν −
1

2
( f − fR R)gμν + (gμν∇α∇α − ∇μ∇ν) fR

= κTμν + fT Tμν − fT pgμν (7)

where Gμν = Rμν − 1
2 gμν R is the Einstein tensor.

It is shown that the covariant divergence of the field equa-
tions give the identity [45]

∇μ

[

fR Rμν −
1

2
f gμν + (gμν∇α∇α − ∇μ∇ν) fR

]

= 0 (8)

which in turn gives

∇μTμν =
fT

κ − fT

[

(Tμν + Θμν)∇μ ln fT + ∇μΘμν

]

(9)

Substituting for Θμν from Eq. (5), we obtain

∇μTμν =
fT

κ + fT

[

(pgμν − Tμν)∇μ ln fT + gμν∇μ p

]

(10)

for a perfect fluid.

3 Present model

In this section we define the present model of gravity–matter
interaction in f (R, T ) gravity. We derive the corresponding
field equations, the modified TOV equations and also discuss
the far-field solution.

3.1 Gravity–matter interaction

We consider gravity–matter interaction in a modified gravity
represented by

f (R, T ) = R + αR2 + ωRT, (11)

where the last term represents the gravity–matter interaction.
This form reduces the field equation (7) to

φGμν +
1

2
αR2gμν + 2α(gμν∇α∇α − ∇μ∇ν)R

= κTμν + ω

[

R(Tμν − pgμν) − GμνT

−(gμν∇α∇α − ∇μ∇ν)T

]

(12)

where φ = 1 + 2αR.
The corresponding trace equation is

6α∇μ∇μ R + [2αR − φ]R = κT

+ω
[

2(T − 2p)R − 3∇μ∇μT
]

(13)

Since the gravity–matter interaction is expected to be
small, we shall take a perturbative approach about the exact
solutions of R + αR2 by assuming |ωT | ≪ 1. To the first
order in ω, we get

Gμν +
αR2

2φ
gμν +

2α

φ
(gμν∇α∇α − ∇μ∇ν)R

= κ
Tμν

φ
+

ω

φ0

[

R(T0μν − pg0μν) − G0μνT

−(g0μν∇α∇α − ∇μ∇ν)T0

]

(14)

where the subscript “0” indicates unperturbed quantities
when ω = 0, so that φ0 = 1 + 2αR0. The corresponding
trace equation (13) is obtained as

6α∇μ∇μ R + [2αR − φ]R = κT

+ω
[

2(T0 − 2p0)R0 − 3∇μ∇μT0
]

(15)
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up to O(ω).
Since we are interested in the spherically symmetric and

static case, we assume the metric

ds2 = −eν(r)c2dt2 + eλ(r)dr2 + r2dΩ2 (16)

along with φ = φ(r) and T = T (r), and dΩ2 = dθ2 +
sin2 θ dϕ2. Thus the above trace equation reduces to

6α

[

d2

dr2 +
(

ν′

2
−

λ′

2
+

2

r

)

d

dr

]

R − Reλ = κT eλ

+ω

[

2(T0 − 2p0)R0eλ0 − 3

(

ν′
0

2
−

λ′
0

2
+

2

r

)

T ′
0

−3T ′′
0

]

(17)

up to O(ω).
The t t-component of the field equation (14) yields

λ′ =
1 − eλ

r
+

1

6

reλ

φ
(2 + 3αR) R − γ ν′

+
κ

3

reλ

φ
(3ε + T ) + ω

[

reλ0

3φ0
(3ε0 − p0 + 2T0)R0

−
1

φ0

(

rT ′
0
ν′

0

2
+ T0λ

′
0

)

+
1 − eλ0

rφ0
T0

]

(18)

up to O(ω). The rr -component yields the following equation

ν′ =
1

1 + γ

[

κ
reλ

φ
p +

eλ − 1

r
−

α

2

reλ

φ
R2 −

4

r
γ

]

−
ω

1 + γ0

[

1

φ

(

T0 +
rT ′

0

2

)

ν′
0 +

1

φ

(

1 − eλ0

r

)

T0

+
2

φ
T ′

0

]

(19)

up to O(ω), where γ = r
2 (ln φ)′.

3.2 Extended TOV equation

Covariant divergence of the field equation (7) yields

(κ + fT )∇μTμν

= fT

[

(pgμν − Tμν)∇μ ln fT + gμν∇μ p

]

(20)

Substituting fT = ωR, we obtain

∇μT μν =
ωR

κ + ωR

[

(pgμν − T μν)∇μ ln R + gμν∇μ p

]

(21)

For the spherically symmetric static metric (16), we obtain
from Eq. (4)

∇μT μν = e−λ p′ + (ε + p)
ν′

2
e−λ. (22)

Since Ricci scalar R and pressure p are functions of r alone,
the conservation equation (21) becomes

p′ = −(ε + p)

(

κ + ωR

κ

)

ν′

2
(23)

To the first order in ω, we obtain

p′ = −(ε + p)
ν′

2
−

ω

κ
(ε0 + p0)R0

ν′
0

2
. (24)

For the case of vanishing ω, we recover the original TOV
equation. For ω 
= 0, we designate Eq. (24) as the extended
TOV (ETOV) equation, where the pressure gradient depends
on the value ofω as well as the Ricci scalar R. It is thus evident
from Eq. (24) that the pressure gradient inside a spherically
symmetric star will change as compared to the standard GR
case. However, similarly to GR, the cumulative mass m(r) is
related to the metric potential λ(r) as

m(r) =
c2r

2G

[

1 − e−λ(r)

]

. (25)

3.3 Far field solution

In the region exterior to the star, the trace equation (15) takes
the form

6α∇μ∇μ R − R = 0. (26)

which is identical to that obtained for f (R) = R + αR2

gravity in vacuum. This suggests that the exterior solution
has an identical form in both Starobinsky gravity and for the
given particular form of f (R, T ).

For spherically symmetric static metric (16), this equation
takes the form

e−λ

{

R′′ +
(

ν′

2
−

λ′

2
+

2

r

)

R′
}

−
R

6α
= 0 (27)

We note that the Starobinsky correction αR2 is a very
weak contribution as one approaches infinity. This is also
immediately obvious from the above equation because the
last term dominates in the limit α → 0 giving us back R = 0.
Thus the choice of the Starobinsky form R + αR2 has to
coincide with the solution of Einstein gravity at infinity. In
order to see how the Einstein limit is approached at infinity,
we must do an approximate analysis of Eq. (27). Since ν and
λ and their first derivatives are expected to approach zero
on approaching infinity (also confirmed by exact numerical
calculations), we can approximate Eq. (27) to the form

R′′ +
2

r
R′ −

R

6α
= 0 (28)

Solution of this equation is given by

R(r) = c1
e−r/

√
6α

r
+ c2

√
6α

2

er/
√

6α

r
(29)
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Since R → 0 as r → ∞, we have to set the integration
constant c2 = 0, giving

R(r) = c1
e
− r√

6α

r
, (30)

which approaches zero faster than r−1 as r → ∞ for positive
value of α. However, for negative values of α, the far field
solution given by (29) is oscillatory in nature implying that
negative α values are unphysical.

4 Quark stars with gravity–matter coupling

In this section, we examine in detail the stellar structure
of quark stars in the modified gravity model f (R, T ) =
R+αR2+ωRT that incorporates gravity–matter interaction.
In massive compact stars (such as quark stars and neutron
stars), we expect the gravitational field to be strong enough
so that the gravity–matter coupling has a appreciable contri-
bution. With the above choice of f (R, T ) gravity, Sects. 3.1
and 3.2 give a perturbative solution on the background of
unperturbed Starobynsky gravity given by f (R) = R+αR2.
The field equations (18), (19), (24), together with the trace
equation (17), are reduced to a set of five first order differen-
tial equations, given by

R′ = Ψ, (31)

Ψ ′ = −
2

r
Ψ +

κ

6α
T eλ +

eλ

6α
R +

λ′ − ν′

2
Ψ

+
ω

6α

[

2(T0 − 2p0)R0eλ0 − 3

(

ν′
0

2
−

λ′
0

2
+

2

r

)

T ′
0

−3T ′′
0

]

, (32)

λ′ =
1 − eλ

r
+

1

6

reλ

φ
(2 + 3αR) R − γ ν′ +

κ

3

reλ

φ
(3ε + T )

+ ω

[

reλ0

3φ0
(3ε0 − p0 + 2T0)R0

−
1

φ0

(

rT ′
0
ν′

0

2
+ T0λ

′
0

)

+
1 − eλ0

rφ0
T0

]

, (33)

ν′ =
1

1 + γ

[

κ
reλ

φ
p +

eλ − 1

r
−

α

2

reλ

φ
R2 −

4

r
γ

]

−
ω

1 + γ0

[

1

φ0

(

T0 +
rT ′

0

2

)

ν′
0 +

1

φ0

(

1 − eλ0

r

)

T0

+
2

φ0
T ′

0

]

, (34)

p′ = −(ε + p)
ν′

2
−

ω

κ
(ε0 + p0)R0

ν′
0

2
, (35)

where we have defined a new field variable Ψ = R′.

To complete the solution of the above equations, we take
the equation of state of the quark star as that of quark-gluon
plasma given by the bag model [46,47], namely, p = k(ε −
4B), where B = 60 MeV fm−3 (or B1/4 ≈ 147 MeV) is the
bag constant and the value of the constant k is associated with
the choice of the QCD coupling constant (αc) and the mass
(ms) of strange quark; k = 0.33 if ms = 0 and k = 0.28 for
the realistic value ms = 250 MeV/c2. The values B1/4 ≈ 147
MeV and ms = 250 MeV correspond to the QCD coupling
constant αc = 0, as seen from Figure 1 in Ref. [48].

Consistency of the perturbation theory requires |ωT | ≪ 1
at all densities. This condition is satisfied throughout the star
if one require that |ωT | ≪ 1 is true at the center. By defining

ω =
β

4B
, (36)

this condition becomes (1 − 3k)β εc

4B
+ 3βk ≪ 1. For the

choice of β ∼ 10−2 and εc

4B
∼ 10, |ωTc| ≈ 4.48 × 10−2,

thus ensuring the validity of the perturbative approach.
We solve field equations (31)–(35) numerically upon mak-

ing them dimensionless by defining η = r/rg , χ = Rr2
g ,

χ0 = R0r2
g , ξ = Ψ r3

g , p̃ = p/4B, p̃0 = p0/4B, ε̃ = ε/4B,

ε̃0 = ε0/4B, T̃ = T/4B and T̃0 = T0/4B, where rg =
G M⊙/c2 = 1.4766 × 105 cm, is taken as the the scaling
parameter.

The numerical integrations of the above set of differen-
tial equations are carried out by requiring that the metric
is asymptotically flat at infinity for the initial conditions
λ(0) = 0 and ν(0) = νc. Since the metric potential ν(r)

enters the field equations only through its derivatives, the cen-
tral value νc remains arbitrary and fixed by specifying a value
that satisfies ν → 0 for r → ∞. The same initial conditions
are imposed on the unperturbed metric, that is, λ0(0) = 0
and ν0(0) = ν0c. The central value of pressure p(0) = pc

is assigned by the equation of state for a given central den-
sity ρc. Correspondingly, the unperturbed pressure takes the
value p0(0) = pc. The surface of the star is identified at a
radial distance rs (stellar radius) for which the pressure p

vanishes. Moreover, since the value of the scalar curvature is
maximum at the center, and it gradually decreases towards
the surface, we have the boundary condition Ψ (0) = 0.

A unique choice for the central value of the scalar curva-
ture in both the unperturbed scenario (Starobinsky gravity)
and the actual case requires the knowledge of the exterior
solution. This requires one to continue the integration outside
the star with boundary conditions λ(rs) = λs , ν(rs) = νs ,
R(rs) = Rs and Ψ (rs) = Ψs at the surface, obtained from the
interior solution for an initial guess for Rc. To set the above
initial conditions, we first carry out a numerical integration
for the unperturbed case, with similar boundary conditions
λ0(rs) = λ0s , ν0(rs) = ν0s , R0(rs) = R0s and Ψ0(rs) = Ψ0s ,
imposed for an initial guess R0c.
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For convenience, the initial guess in both the cases are
taken to be the GR value E Rc = κ(ρcc2 − 3pc) since this
value is not too far from the required values. The integration
is carried out several times for different initial guesses until
the required conditions R → 0 and |Ψ | → 0 as r → ∞
and R0 → 0 and |Ψ0| → 0 as r → ∞ are satisfied. This
procedure gives the correct central values Rc and R0c, which
are found to be lower than the GR value. For the sake of
accuracy, we fine-tune χc (= Rcr2

g ) and χ0c (= R0cr2
g ) up to

twelve decimal figures by taking the exterior solution as far
as ηmax (= rmax/rg), where ηmax satisfies χ(ηmax) ∼ 10−12

and χ0(ηmax) ∼ 10−12.
In the original framework of general relativity, the Ricci

scalar vanishes immediately outside the surface, the trace
equation being R = −κT . In our present case, the vacuum
solution is given by Eq. (26) and the Ricci scalar does not van-
ish but decays exponentially outside the star, as also implied
by the far-field solution, Eq. (30). This gives rise to two dis-
tinct masses [36], namely, the stellar mass Ms = m(rs), the
mass within the stellar radius rs , and the mass M as seen by
a sufficiently distant observer, estimated as

M =
c2

2G
rmax

{

1 − e−λ(rmax)
}

(37)

Since the numerical calculations are sufficiently accurate
with a sufficiently large value of rmax, this estimate for M

is expected to be close to the one for r → ∞.
In the following subsections, we analyze the exact numer-

ical solutions of the field equations given by Eqs. (31)–
(35) with the boundary conditions discussed above for quark
stars with the equation of state given by the bag model.
We also compare these results with the Starobinsky case,
ω = 0. We take α = 10r2

g = 2.1804 × 1011 cm2 (that is,√
α = 3.16rg = 4.6694 × 105 cm), which is smaller than

the estimated upper bound
√

α < 7 × 107 cm as predicted
by binary pulsar data [49].

4.1 Interior and exterior solutions

In this sub section we elaborate upon the interior and exterior
solutions by looking at the radial profiles for pressure p(r),
mass m(r) and Ricci scalar R(r). Figure 1 plots pressure p

as a function of the radial coordinate r for the central density
ρc = 2.5414 × 1015 g /cm3 for β = 0.025, 0.01, −0.01
and −0.025. We see that the magnitude of pressure gradient
increases (decreases) with respect to the pure Starobinsky
case (β = 0) for positive (negative) value of β (or ω) due
to the additional term in the extended TOV Eq. (35). This in
fact pushes (pulls) the stellar boundary outward (inward) as
compared with the pure Starobinsky case. The slight increase
(decrease) in stellar radius rs for positive (negative) values
of β (or ω) can be seen in the inset of Fig. 1.
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Fig. 1 Radial profile of pressure p(r) for different values of β (β =
4Bω) with central density ρc = 2.5414×1015 g cm−3. The inset shows
the pressure profile near the stellar radius rs for different values of β
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Fig. 2 Radial profile of scalar curvature R(r) for different values of β

(β = 4Bω) with central density ρc = 2.5414 × 1015 g cm−3. The inset
shows the scalar curvature profile for the Starobinsky model (β = 0)
with two different central densities ρc (in g cm−3)

Radial profiles of the scalar curvature R(r) for different
values of β with central density ρc = 2.5414 × 1015 g /cm3

are shown in Fig. 2. It may be observed that the choice of
the central scalar curvature Rc is strongly correlated with
β (or equivalently ω) in that the value of Rc increases with
increasing values of ω. On the other hand, when we fix β = 0
and vary ρc, the central value Rc is found to be higher for a
higher value of ρc as shown in the inset of Fig. 2. Although
there is an increase in the value of Rc when ρc is increased,
the scalar curvature R falls off rapidly for higher value of
ρc than for the lower one. In the former case (with fixed
ρc and varying β), the Ricci scalar maintains higher values
thoughtout the star for higher value of β.This is consistent
with the fact that the perturbative ω terms in Eq. (32) add with
the term κ

6α
T eλ, so that the effective value of T changes

which is equivalent to a changed value of matter content
with respect to the Starobinsky case. Since these perturbative
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Fig. 3 Radial profile of total mass m(r) for different values of β (β =
4Bω) with central density ρc = 2.5414×1015 g cm−3. The inset shows
the interior mass profile up to the stellar radius rs

terms disappear outside the star, they act as if they were an
additional matter content in Starobinsky gravity.

Figure 3 shows the total mass profile m(r) with ρc =
2.5414 × 1015 g /cm3 for different values of β. The inset
represents the mass profile up to the stellar surface r = rs . In
comparison with Starobinsky gravity (β = 0), we observe a
slight increase (decrease) in the stellar mass Ms and stellar
radius rs when β is positive (negative). Further we observe
that these changes in stellar mass Ms and radius rs are larger
for β = ±0.025 than β = ±0.01. On the other hand, we see
that the mass M measured by a distant observer increases
appreciably with increasing β.

As seen from Fig. 2, the scalar curvature does not decrease
to zero at the surface of the star and it falls off outside the
star. This fall-off is similar to a Yukawa function (as shown in
Sect. 3.3). There is a gravitational mass contribution due to
the non-vanishing scalar curvature outside the star. The mass
profiles shown in Fig. 3 contains both contributions, stel-
lar plus gravitational. The inset shows only the stellar mass
contribution that does not extend beyond the stellar radius
rs ∼ 10 km. The main graphs in Fig. 3 show both contribu-
tions (stellar plus gravitational) extending beyond rs ∼ 10
km. We see that the combined mass profiles approach asymp-
totic values for large r (∼ 60 km). A sufficiently distant body
experiences the gravitational field of the combined mass.

4.2 Mass–radius relations

In this section we study the mass–radius (M − R) relations
obtained from the field equations for a continuous range of
central density ρc or equivalently the central Ricci scalar
Rc. In addition, we verified that all energy conditions are
satisfied.

Figure 4 represents the relation between stellar mass Ms

and stellar radius rs for different values of β. We see that for
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Fig. 4 Mass–radius relation (between stellar mass Ms and stellar
radius rs ) for different values of β
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Fig. 5 Total mass M measured by a distant observer versus stellar
radius rs for different values of β

a particular value of Ms , rs increases with increase in β in
the higher mass regime. In the same regime, if we fix rs , Ms

is found to increase with increasing β. This fact signify that
the presence of the ω terms strengthens the effect of gravity
to balance the increased pressure gradient as inferred from
the pressure profiles studied in Sect. 4.1.

Figure 5 presents the mass M measured by a distant
observer against the stellar radius rs for different values of
β. As noted earlier, the mass M consists of contributions
from both the stellar mass and non-vanishing scalar curva-
ture extending beyond the stellar radius rs . This mass was
calculated up to a sufficiently high radial distance (rmax) until
the scalar curvature approached very close to zero with the
condition given by Eq. (37). The relationship between the
curves in Fig. 5 bear similarity with those in Fig. 4 giving
qualitatively similar conclusion. However we note the impor-
tant fact that maximum observed mass M∗ are appreciably
higher than those in Fig. 4.
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4.3 Stability and energy conditions

In this section, we study mass versus central density to find
the maximal mass from the stability of equilibrium config-
urations. The stable configuration corresponds to the region
in the mass-central density curve where ∂ M

∂ρc
> 0, whereas

the unstable region is given by ∂ M
∂ρc

< 0 [50]. The onset of
instability is identified as the point where ∂ M/∂ρc = 0, and
the mass corresponding to this point is the maximal.

To study the stability, we first examine stellar mass Ms

versus central density ρc in Fig. 6 for different values of β.
We see that the maximal stable mass M∗

s (corresponding to
the maximal total mass M∗) increases as β increases from
β = −0.025 to β = +0.025.

A similar trend is observed in Fig. 7, where the mass M

observed by a distant observer is plotted against the central
density ρc. Here we see that the maximal mass M∗ (denoted

by the open circle in the figure) shift to appreciably higher
value with respect to the stellar values M∗

s .
Table 1 displays maximal mass values M∗ observed by a

distant observer for different values of β. The correspond-
ing stellar mass values M∗

s , stellar radius r∗
s , central Ein-

stein Ricci scalar E R∗
c , central Starobynsky Ricci scalar R∗

0c,
central Ricci scalar R∗

c , and central density ρ∗
c are also dis-

played. We see that the maximal mass value M∗ increases
and approaches ∼ 2 M⊙ as β is increased. We note that this
increase is appreciable even for very small magnitudes of
β, suggesting a measurable effect played by gravity–matter
interaction.

We verify the validity of the perturbative results by esti-
mating the maximal value of ωT corresponding to the max-
imal mass. For β = 0.025 (or ω = 0.025/4B) and cen-
tral density ρ∗

c = 2.4173 × 1015 g/cm3, we get |ωTc| =
(1 − 3k)βρcc2/4B + 3βk = 4.36 × 10−2. Thus the maxi-
mum value of ωT is of the order of 10−2, giving assurance
to the validity of the perturbative results.

Figure 8 displays the energy conditions [51], namely, null
energy condition (ε ≥ 0), weak energy condition (ε+p ≥ 0),
strong energy condition (ε + 3p ≥ 0), and dominant energy
condition (ε−|p| ≥ 0). We see that all energy conditions are
satisfied because they are positive in the entire region of the
star. These energy conditions are valid to a good approxima-
tion since they are large throughout the star (lying between
∼ 1 and ∼ 10 in the units of 4B) compared to the highest
perturbation (∼ 10−2 at the centre).

5 Discussion

In the original case of Einstein’s gravity, the Ricci scalar
is a linear function of the central density, expressed as
χ = κr2

g {(1 − 3k)ρc2 + 12k B}. One might expect such a
linear relationship in the Starobinsky model in the low den-
sity regime where αR ≪ 1. Besides, the same behaviour is
expected in the present model for low central densities where
the term R dominates over αR2 and ωRT . However, the sit-
uation is completely different in the high density regime in
both Starobinsky and the present model. In the Starobinsky
model, we found that at higher central densities, the central
Ricci scalar R0c varies slowly as a function of ρc, as shown
in Fig. 9. On the other hand, in the present model, depend-
ing on the sign of β (or ω), we find that the central Ricci
scalar Rc would either increase or decrease with respect to
the Starobinsky case. Figure 9 shows the variation of central
Ricci scalar with respect to central density for different values
of β. For positive β, we see that the Rc value increases com-
pared to the Starobinsky model in the higher density regime.
This was expected since the additional terms in the present
model contribute at higher densities as previously noted in
Sect. 4.1. The opposite is true for the case of negative β val-
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Table 1 Maximum stable mass M∗ for different values of ω. The corresponding values of stellar mass M∗
s , stellar radius r∗

s , central Einstein Ricci
scalar E R∗

c , central Starobynsky Ricci scalar R∗
0c, central Ricci scalar R∗

c and central density ρ∗
c are also displayed

β ρ∗
c (g cm−3) E R∗

c (×10−2r−2
g ) R∗

0c (×10−3r−2
g ) R∗

c (×10−3r−2
g ) r∗

s (km) M∗
s (M⊙) M∗ (M⊙)

− 0.025 2.6526 × 1015 3.189908 5.81876 4.286802 10.2686 1.46058 1.70031

− 0.01 2.6098 × 1015 3.162040 5.81296 5.209743 10.3482 1.50937 1.77659

0.0 2.5242 × 1015 3.106321 5.80072 5.800721 10.4265 1.54080 1.82725

0.01 2.5029 × 1015 3.092391 5.79744 6.375852 10.4790 1.57427 1.87787

0.025 2.4173 × 1015 3.036672 5.78384 7.180354 10.5851 1.62390 1.95371
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Fig. 8 Radial profiles of energy conditions (ECs): null energy con-
dition (ε ≥ 0), weak energy condition (ε + p ≥ 0), strong energy
condition (ε + 3p ≥ 0), and dominant energy condition (ε − |p| ≥ 0)

ues where we found that the central Ricci scalar Rc values lie
below the Starobinsky values for higher densities as shown
in Fig. 9. This happens because O(ω) term gives a negative
contribution in this case.

For any positive β, the curve in Fig. 9 lies above the
Starobinsky case, so that maximum mass values higher than
the Starobinsky case would be obtained. On the other hand,
the curve for any negative β lies below the Starobinsky
case implying that the maximum mass values lower than the
Starobinsky case would be obtained.

It may be recalled from the discussion in Introduction that,
in the Starobinsky gravity (ω = 0), the star is surrounded by
a gravitational halo since the Ricci scalar is non-vanishing
outside the star. In fact we see the same behaviour from Fig. 2
in the present model (ω 
= 0) as well. The far-field solution
(given by Eq. 30) shows that the Ricci scalar (and the gravita-
tional halo) falls off exponentially as r → ∞. Moreover, it is
evident from Fig. 2 that this fall-off is faster for higher values
of the central density ρc. Figure 10 plots an effective radius
rH of the gravitational halo (defined by χ(ηH) = 10−7) with
respect to the central density ρc until the onset of gravita-
tional instability at ρ∗

c . (Densities beyond the threshold ρ∗
c

are outside the scope of the present theory for equilibrium
configurations.) It is seen from the right-hand part of the
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Fig. 9 Central value of Ricci scalar χc (= Rr2
g ) versus central density

ρc for different values of β, namely, β = ±0.025 and β = 0
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Fig. 10 The radius of gravitational halo rH versus the central density
ρc until the onset of gravitational instability at ρ∗

c . The inset shows that
the radial profiles for the scalar curvature χ (corresponding to the points
denoted by the open circle in the main graph) falls off faster for a higher
density, similar to the Starobinsky case (β = 0), as shown in the inset
of Fig. 2

graphs in Fig. 10 that the radius of the halo rH decreases with
increasing central density ρc. At the same time, the value of
rSch = 2G M

c2 increases with increasing central density ρc, as
seen from Fig. 7. These two opposite behaviours (shrinking
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and expansion) continue as ρc increases. Thus it is apparent
that, when the star collapses to a black hole (with an infinite
central density), the gravitational halo would shrink and will
be well inside the horizon, leading to a vanishing Ricci scalar
outside the horizon. This scenario is consistent with the fact
that when the coefficient of R2 term is positive, the only static
spherically symmetric solution of a black hole with a regular
horizon is the Schwarzschild solution, as shown in Ref. [52].

6 Conclusion

In this paper, we considered a form of f (R, T ) gravity
that includes a coupling between gravity and matter on the
background of the Starobinsky model. While the Straobin-
sky model takes account of quantum fluctuations [12] and
f (R, T ) gravity may arise due to quantum effects [28], a
coupling between matter and gravity is expected to bring
about the features in quark stars where the gravitational field
is extremely strong. In particular, the stellar structure of quark
stars, with equation of state coming from the bag model, is
expected to undergo an measurable change due to this cou-
pling. Moreover, we speculate that the maximum mass limit
would change appreciably so that astrophysical observations
on binary pulsars could be given a theoretical basis.

The Starobinsky model has been applied to quark stars by
other authors [35,36] to find their stellar structure. This pro-
duced a different stellar structure from the pure GR case and
it was found that the maximum mass limit increased from
the GR case due to an additional contribution from gravita-
tional mass enveloping the stellar mass. In the present case,
we find that this mass is further increased due to additional
contribution from the coupling between gravity and matter
(for positive values of ω).

To assert the above features, it was sufficient to treat the
gravity–matter coupling as a perturbation keeping in mind
that the coupling constant is sufficiently small for the valid-
ity of the perturbation treatment. We adopted this perturba-
tion treatment in the background of unperturbed solutions
of the Starobinsky case. Remarkably, such a treatment gives
physically acceptable solutions for both signs of the cou-
pling constant ω representing the strength of gravity–matter
interaction.

The gravity–matter coupling term increases (decreases)
the magnitude of the pressure gradient p′(r) for positive
(negative) values of ω pushing (pulling) the stellar bound-
ary outward (inward) as compared to the pure Starobinsky
case. Moreover the strength ω of the gravity–matter cou-
pling determines the central value of the scalar curvature Rc

for a given central density ρc. The scalar curvature main-
tains higher (lower) values throughout the star compared to
the pure Starobinsky case for positive (negative) values of ω

as the effective matter content increases (decreases) within

the star. It is interesting to see that, although there is small
increase (decease) in the stellar mass Ms for positive (nega-
tive) values of ω, the gravitational mass contribution envelop-
ing the star increases (deceases) appreciably with respect
to the Starobinsky case. This is because of the increased
(decreased) scalar curvature exterior to the star contribut-
ing a greater (lesser) gravitational mass than the Starobinsky
case. Consequently the quark star can support higher values
of maximal total mass (M∗) than the Starobinsky case for
positive values of ω.

Recent observations of binary millisecond pulsars, have
yielded the pulsar masses to be ∼ 2 M⊙ [39–42]. Such a
high value of mass cannot be explained by models based
on hyperon or boson condensate equations of state for neu-
tron stars, leading to their possibility of being quark stars.
We see that our present model with gravity–matter coupling,
although treated as a perturbation, is capable of supporting
high values of masses of quark stars.
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