UC Office of the President

Recent Work

Title
STELLAR WEAK INTERACTION RATES FOR INTERMEDIATE-MASS NUCLEI .4. INTERPOLATION PROCEDURES FOR RAPIDLY VARYING LEPTON CAPTURE RATES USING EFFECTIVE LOG (FT)VALUES

Permalink
https://escholarship.org/uc/item/7q569568

Journal

ASTROPHYSICAL JOURNAL, 293(1)
ISSN
0004-637X

Authors

FULLER, GM
FOWLER, WA
NEWMAN, MJ
Publication Date
1985
DOI
10.1086/163208

Peer reviewed

STELLAR WEAK INTERACTION RATES FOR INTERMEDIATE-MASS NUCLEI. IV. INTERPOLATION PROCEDURES FOR RAPIDLY VARYING LEPTON CAPTURE RATES USING EFFECTIVE log ($f t$)-VALUES
George M. Fuller
Lick Observatory, University of California, Santa Cruz, and Enrico Fermi Institute, University of Chicago
William A. Fowler
W. K. Kellogg Radiation Laboratory, California Institute of Technology
AND
Michael J. Newman
Applied Theoretical Physics Division, Los Alamos National Laboratory
Received 1984 October 18; accepted 1984 December 5

Abstract

Simple expressions for continuum electron and positron capture phase space factors and the associated neutrino energy loss integrals are presented in terms of standard Fermi integrals. Continuous approximations to the relevant Fermi integrals and their first derivatives are made. These allow the computation of effective $\log (f t)$-values, at each temperature and density point, for the continuum lepton capture rates considered in the earlier papers in this series. Since the effective $\log (f t)$-values have most of the rapid temperature and density dependence associated with the phase space integrals removed, interpolation in temperature and density to obtain stellar rates is greatly facilitated in speed and accuracy. Computer simulations of stellar evolution will be able to implement more accurately our calculations of the stellar nuclear weak interaction rates of intermediate-mass nuclei. Generalization of the Fermi integral expressions for the lepton continuum capture phase space factors are given for astrophysical environments where there exists an equilibrium distribution of electron-type neutrinos. These allow rough estimates of the effect of neutrino blocking on our tabulated rates and estimates of total neutrino capture rates.

Subject headings: neutrinos - nuclear reactions

I. INTRODUCTION

The calculation of the stellar weak interaction rates of intermediate-mass nuclei was considered in the previous papers in this series: Fuller, Fowler, and Newman (1980, 1982a, b; hereafter F ${ }^{2}$ N I, II, and III, respectively). The stellar electron and positron decay rates, and the stellar continuum electron and positron capture rates of these nuclei, as well as the neutrino energy loss rates associated with these processes, were tabulated as functions of density and temperature. Tables of these rates were given on an abbreviated temperature and density grid in $\mathrm{F}^{2} \mathrm{~N}$ III, and tables of rates on a detailed temperature and density grid were provided on magnetic tape for use in computer calculations of stellar evolution and nucleosynthesis.

The stellar weak interaction rates of nuclei are, in general, very sensitive functions of temperature and density (see $F^{2} \mathrm{~N}$ I and II). Temperature dependence of the rates arises through thermal excitation of parent excited states and through the lepton distribution functions inherent in the integrands of the decay and continuum capture phase space factors.

For electron and positron decay most of the temperature dependence is due to thermal population of parent excited states at all but the lowest temperatures and highest densities. In general, only a few transitions will contribute to these decay rates, and hence the variation of the rates with temperature is usually not so large that rates cannot be accurately interpolated in temperature and density with our grid. Density dependence of these decay rates is minimal. In the case of electron emission decay, however, there may be considerable density dependence because of Pauli blocking of final state electrons when the density is high and the temperature is low. In practice this does not present much of a problem for interpolation since the electron emission decay rate is usually very small in these conditions.

The temperature and density dependence of continuum electron and positron capture can be quite different. In addition to temperature sensitivity introduced through thermal population of parent excited states, there is considerable temperature and density sensitivity introduced into the capture rates through the lepton distribution functions in the integrands of the continuum capture phase space factors (see eqs. [3a], [3b], and [4a], $\mathrm{F}^{2} \mathrm{~N} I$). This sensitivity of the capture rates means that interpolations in temperature and density on our standard grid to obtain a rate can be difficult, requiring a high-order interpolation routine and a relatively large amount of computer time to interpolate an accurate rate.
A typical transition for which electron capture rates are needed in stellar evolution calculations is ${ }^{56} \mathrm{Fe}\left(e^{-}, v\right)^{56} \mathrm{Mn}-4.2064 \mathrm{MeV}$, where we give the nuclear Q_{n}-value for the transition. The sensitivity problem can be illustrated with this transition as an example, considered at some typical presupernova conditions. At a temperature $T_{9} \equiv T / 10^{9} \mathrm{~K}=1.0$ or $k T=0.0862 \mathrm{MeV}$ and a density of $\rho Y_{e}=10^{8} \mathrm{gcm}^{-3}$ (where the number of electrons per baryon Y_{e} is defined by eq. [19a] below), the \log base 10 of the continuum electron capture rate is $\log \lambda_{e c}=\log \lambda_{z+1}=-13.265$ according to the $F^{2} N$ standard rate table tape. Equation (2a), which follows, defines $\log \lambda_{z+1}$. At a neighboring grid point of the same temperature and $\rho Y_{e}=10^{9} \mathrm{~g} \mathrm{~cm}^{-3}$, the log base 10 of the capute rate is $\log \lambda_{e c}=-2.628$; in other words, the rate is nearly 11 orders of magnitude faster than at the
neighboring grid point. This increase in rate is due almost entirely to the lepton distribution functions, which change dramatically as the electron total Fermi energy changes from $W_{F}=2.436 \mathrm{MeV}$ below the capture threshold at the first grid point to $W_{F}=5.176$ MeV above the capture threshold at the second. The interpolation problem can be greatly eased by defining a simple continuum capture phase space integral, based on the parent ground-state to daughter ground-state transition Q-value, and dividing this into the $F^{2} N$ tabulated rates at each temperature and density grid point to obtain a table of effective $f t$-values which are relatively temperature and density insensitive. This procedure requires a formulation of the capture phase space factors which is simple enough to use many times in the inner loop of stellar evolution or nucleosynthetic computer programs. Such a formulation in terms of standard Fermi integrals is presented in the next two sections, along with approximations for the requisite Fermi integrals which are continuous and have continuous first derivatives at zero argument. Section IV explains the calculation of effective log (ft)-values from the formulae deveoped in $\S \S$ II and III. Section IV also presents example tables of effective log $(f t)$-values for continuum electron and positron capture on the standard $\mathrm{F}^{2} \mathrm{~N}$ temperature and density grid, and outlines the procedure for reconstructing a stellar rate from an interpolated effective $\log (f t)$-value. Average neutrino (antineutrino) emission energies are calculated from the total neutrino (antineutrino) energy loss rates and the associated electron capture-positron emission (positron capture-electron emission) rates. These average neutrino (antineutrino) energies are slowly varying functions of temperature and density and are tabulated on the standard $F^{2} \mathrm{~N}$ grid. Finally, $\S V$ uses the generalized formulae of \S II to outline a procedure for estimating the effects of neutrino phase space blocking of the capture rates, and a method to obtain total neutrino (antineutrino) capture rates.

II. LEPTON CONTINUUM CAPTURE PHASE SPACE INTEGRALS

In accordance with the approach stated in the introduction we now drop all reference to individual states of the parent and daughter nuclei and concentrate on the lepton capture reactions:

$$
\begin{align*}
& A^{A}(Z+1)+e^{-} \not{ }^{A} Z+v+Q_{n}, \tag{1a}\\
& A^{A}(Z-1)+e^{+} \rightleftarrows{ }^{A} Z+\bar{v}+Q_{n} \tag{1b}
\end{align*}
$$

where the Q_{n} represent the nuclear mass-energy differences of the ground states of the parent (left-hand side) and daughter (right-hand side) nuclei. We will be interested in neutrino (antineutrino) continuum capture, the reverse of reactions (1a), (1b), as well as electron (positron) continuum capture, not necessarily under conditions of beta equilibrium. Appropriate modification in the notation of equation (I.1) (hereafter an "I" designates equations from $\mathrm{F}^{2} \mathrm{~N}$ I, "II" from $\mathrm{F}^{2} \mathrm{~N}$ II, etc.) and equations (A19) and (A19') of Fowler and Hoyle (1964) then lead to

$$
\begin{equation*}
\lambda_{Z \pm 1}=\ln 2 \frac{I_{e}}{\langle f t\rangle_{e}} \tag{2a}
\end{equation*}
$$

for electron or positron continuum capture, with a modified phase space factor defined by

$$
\begin{equation*}
I_{e} \equiv f_{e} /\left\langle G_{e}\right\rangle \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\mathrm{Z}}=\ln 2 \frac{I_{v}}{\langle f t\rangle_{v}} \tag{2b}
\end{equation*}
$$

for neutrino or antineutrino continuum capture, with $I_{v} \equiv f_{v} /\left\langle G_{e}\right\rangle$, where e represents either e^{-}or e^{+}as appropriate and v represents either v or \bar{v}.

In equations (2a) and (2b) the t are half-lives and the f_{e} are the phase space factors defined in equation (I.3b), while the f_{v} are given by interchanging S_{\mp} (S_{e} in our notation) and S_{v} in that equation. In applying equation (I.3b) we have removed $G(\pm Z, w)=G_{e}$ (in our notation) from under the integral sign and replaced it by an average value $\left\langle G_{e}\right\rangle$ in front of the integral sign. Note the $\left\langle G_{e}\right\rangle$ appears in both directions of reactions (1a) and (1b). This procedure is valid in fair approximation except for low-energy positron capture where the rates are negligible in any case. At the risk of being pedantic we note that the Z in $G(\pm Z, w)$ must be replaced by ($Z+1$) for equation (1a) and by ($Z-1$) for equation (1 b).

In equation (2a) the quantity $\langle f t\rangle_{e}$ represents an effective value for $f t /\left\langle G_{e}\right\rangle$ for the left-to-right reactions (1a) or (1b). Similarly in equation (2b) the quantity $\langle f t\rangle_{v}$ represents an effective value for $f t /\left\langle G_{e}\right\rangle$ for the right-to-left reactions (1a) and (1b). One may be tempted to invoke detailed balance at this point to connect $\langle f t\rangle_{e}$ and $\langle f t\rangle_{v}$. This is not valid since by our original premise we have essentially approximated complex nuclear systems comprised of many excited states and Gamow-Teller resonances by just the ground states in evaluating I_{v} and I_{e}. The connection between $\langle f t\rangle_{e}$ and $\langle f t\rangle_{v}$ will become more transparent in the discussions of beta equilibrium in the last section. Detailed balance does relate I_{v} and I_{e} as shown in equation (5d) below. This is an important generalization of the nondegenerate expression for detailed balance to the case for initial and final reactants of arbitrary degeneracy.

As stated in the Introduction the effective $\langle f t\rangle_{e}$-values are to be determined from equation (2 a) using the weak interaction rates previously calculated ($\left.\mathrm{F}^{2} \mathrm{~N} \mathrm{I}-\mathrm{III}\right)$ for electron and positron capture. In addition, some average modified phase space factor I_{e} should be used in equation (2 a), but that would defeat the purpose of our approach which attempts to ease calculational difficulties in the problem. What we have done is to use modified phase space factors calculated for parent ground-state to daughter ground-state transitions and solved for $\langle f t\rangle_{e}$. The user must do likewise, except to reverse the procedure in calculating λ from our tables of $\langle f t\rangle_{e}$ and in using procedures for calculating I factors now to be described.

Using equations (I.3b) and (I.4a), and with some change in notation, it is possible to write

$$
\begin{equation*}
I_{e}=\left(\frac{k T}{m_{e} c^{2}}\right)^{5} \int_{\eta_{e}^{2}}^{\infty} \eta_{e}^{2}\left(\eta_{e}+\zeta_{n}\right)^{2}\left[1+\exp \left(\eta_{e}-\eta_{e}{ }^{\mathbf{F}}\right)\right]^{-1}\left\{1-\left[1+\exp \left(\eta_{e}+\zeta_{n}-\eta_{v}{ }^{\mathbf{F}}\right)\right]^{-1}\right\} d \eta_{e} \tag{4a}
\end{equation*}
$$

and, with obvious generalization in which η_{v} in I_{v} is replaced by $\eta_{v}=\eta_{e}+\zeta_{n}$, one has

$$
\begin{equation*}
I_{v}=\left(\frac{k T}{m_{e} c^{2}}\right)^{5} \int_{\eta_{e}^{2}}^{\infty} \eta_{e}^{2}\left(\eta_{e}+\zeta_{n}\right)^{2}\left[1+\exp \left(\eta_{e}+\zeta_{n}-\eta_{v}{ }^{\mathrm{F}}\right)\right]^{-1}\left\{1-\left[1+\exp \left(\eta_{e}-\eta_{e}{ }^{\mathrm{F}}\right)\right]^{-1}\right\} d \eta_{e} \tag{4b}
\end{equation*}
$$

In these equations all symbols under the integral sign are energies in $k T$ units: $\eta_{e}=W_{e} / k T$, with $W_{e}=$ total $e^{ \pm}$-energy (rest mass energy plus kinetic); $\eta_{v}=W_{v} / k T, \eta_{e}{ }^{\mathrm{F}}=W_{e}^{\mathrm{F}} / k T$, and $\eta_{v}{ }^{\mathrm{F}}=W_{v}{ }^{\mathrm{F}} / k T$, where the superscript " F " designates total chemical potentials, which in most of our applications reduce to total Fermi energies (kinetic plus rest mass energy). The quantity $\eta_{e}{ }^{L}$ is defined by $\eta_{e}{ }^{L}=W_{e}^{L} / k T$, where W_{e}^{L} is the appropriate lower limit of integration given by $W_{e}^{L}=m_{e} c^{2}$ when $Q_{n}+m_{e} c^{2}>0$ and by $W_{e}^{L}=\left|Q_{n}\right|$ when $Q_{n}+m_{e} c^{2} \leq 0$. Thus for the no threshold case $\eta_{e}{ }^{L}=m_{e} c^{2} / k T$, while for the threshold case $\eta_{e}{ }^{L}=\left|\zeta_{n}\right|$, where $\zeta_{n}=Q_{n} / k T$ and we have used $W_{v}=W_{e}+Q_{n}$. Note, however, that $\eta_{e}{ }^{\mathrm{F}}$ and $\eta_{v}{ }^{\text {F }}$ represent four independent quantities for e^{-}, e^{+}, v, and \bar{v} to be determined from the appropriate number densities in the standard way from the ambient conditions for temperature and density. A useful reference is Bethe, Applegate, and Brown (1980).

It will be clear that the integrals in equations (4a) and (4b) involve Fermi integrals, and by elementary algebraic manipulation we have been able to show
and

$$
\begin{align*}
I_{e} & =\left(\frac{k T}{m_{e} c^{2}}\right)^{5}\left[1-\exp \left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{\mathrm{F}}\right)\right]^{-1} I, \tag{5a}\\
I_{v} & =\left(\frac{k T}{m_{e} c^{2}}\right)^{5}\left[\exp \left(\eta_{e}{ }^{\mathrm{F}}+\zeta_{n}-\eta_{v}{ }^{\mathrm{F}}\right)-1\right]^{-1} I, \tag{5b}\\
\left(I_{e}-I_{v}\right) & =\left(\frac{k T}{m_{e} c^{2}}\right)^{5} I, \tag{5c}
\end{align*}
$$

where the integral I is given below.
The limit for I_{v} / I_{e} given in equation (5 d) as $\eta_{v}{ }^{\mathrm{F}}$ approaches $\eta_{e}{ }^{\mathrm{F}}$ is not usually applicable to situations discussed in this paper. However, it shows that the nondegenerate result for $\eta_{v}{ }^{\mathrm{F}}=\eta_{e}{ }^{\mathrm{F}}=0$ is more general than might be anticipated. It is important to note, especially when ζ_{n} is negative, that $I_{v}=I_{e}$ for $\eta_{v}{ }^{\mathbf{F}}=\eta_{e}{ }^{\mathbf{F}}+\zeta_{n}$. Doing the integral for I in equation (5), we obtain

$$
\begin{align*}
I \equiv & \int_{\eta_{e}^{L}}^{\infty} \eta_{e}{ }^{2}\left(\zeta_{n}+\eta_{e}\right)^{2}\left(\frac{1}{1+e^{\eta_{e}-\eta_{e}{ }^{F}}}-\frac{1}{1+e^{\eta_{e}+\zeta_{n}-\eta_{v}{ }^{\mathrm{F}}}}\right) d \eta_{e} \\
= & F_{4}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{2}\right)-F_{4}\left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{L}\right)+\left(2 \zeta_{n}+4 \eta_{e}{ }^{L}\right)\left[F_{3}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}\right)-F_{3}\left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{L}\right)\right]+\left[6\left(\eta_{e}{ }^{L}\right)^{2}+6 \eta_{e}{ }^{L} \zeta_{n}+\zeta_{n}{ }^{2}\right] \\
& \times\left[F_{2}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}\right)-F_{2}\left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{L}\right)\right]+\left[4\left(\eta_{e}{ }^{L}\right)^{3}+6\left(\eta_{e}{ }^{L}\right)^{2} \zeta_{n}+2 \eta_{e}{ }^{L}\left(\zeta_{n}\right)^{2}\right]\left[F_{1}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}^{L}\right)-F_{1}\left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{L}\right)\right] \\
& +\left[\left(\eta_{e}{ }^{L}\right)^{4}+2 \zeta_{n}\left(\eta_{e}{ }^{L}\right)^{3}+\left(\eta_{e}{ }^{L}\right)^{2}\left(\zeta_{n}\right)^{2}\right]\left[F_{0}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}\right)-F_{0}\left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{L}\right)\right] \tag{5e}
\end{align*}
$$

where we have used the standard definition of relativistic Fermi integrals of order k :

$$
\begin{equation*}
F_{k}(\eta) \equiv \int_{0}^{\infty} \frac{x^{k}}{1+\exp (x-\eta)} d x \tag{5f}
\end{equation*}
$$

For conditions in which neutrinos are trapped and thermalized and in near beta equilibrium, the increasing value of $\eta_{v}{ }^{\mathrm{F}}$ approaches $\eta_{e}{ }^{\mathrm{F}}+\zeta_{n}$, and the expressions for I_{e} and I_{v} in equations (5a), (5b) are undefined. Using l'Hopital's rule and the well-known property of relativistic Fermi integrals, $\partial F_{x}(\eta) / \partial \eta=k F_{k-1}(\eta)$, we have been able to show that as $\eta_{v}{ }^{\mathrm{F}} \rightarrow \eta_{e}{ }^{\mathrm{F}}+\zeta_{n}$,

$$
\begin{align*}
& I_{v} \rightarrow I_{e} \rightarrow\left(\frac{k T}{m_{e} c^{2}}\right)^{5}\left\{4 F_{3}\left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{L}\right)+3\left(2 \zeta_{n}+4 \eta_{e}{ }^{L}\right) F_{2}\left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{L}\right)\right. \\
&\left.+2\left[6\left(\eta_{e}{ }^{L}\right)^{2}+6 \eta_{e}{ }^{L} \zeta_{n}+\zeta_{n}{ }^{2}\right] F_{1}\left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{L}\right)+\left[4\left(\eta_{e}{ }^{L}\right)^{3}+6\left(\eta_{e}{ }^{L}\right)^{2} \zeta_{n}+2 \eta_{e}{ }^{L}\left(\zeta_{n}\right)^{2}\right] F_{0}\left(\eta_{v}{ }^{\mathrm{F}}-\zeta_{n}-\eta_{e}{ }^{L}\right)\right\} \tag{5~g}
\end{align*}
$$

The procedure for converting our tables of $\langle f t\rangle_{e}$ into stellar rates in now clear. The user must have on hand values for W_{e}^{F} and $W_{v}{ }^{\mathrm{F}}$. These are commonly available in the equation-of-state subroutines in the stellar evolution computer programs in which our rates are usually employed. If these total Fermi energies are not readily available and standard approximations are used to compute them from ambient lepton densities and temperatures, then we caution that our tables of $\langle f t\rangle_{e}$ were computed using accurate values of W_{e}^{F} from numerical integration, not an approximation. Hence, introduction of an approximate value of W_{e}^{F} in the reverse procedure may result in an inaccurate and unfaithful calculation of the capture rate from our tables of $\langle f t\rangle_{e}$. We have used

$$
W_{v}{ }^{\mathrm{F}}=\eta_{v}{ }^{\mathrm{F}} k T=-\infty
$$

in our calculation of $\langle f t\rangle_{e}$ from our original rate tables in $\mathrm{F}^{2} \mathrm{~N}$ I, II, and III. Note the important difference in I_{v} / I_{e} from equation (5d) for free streaming neutrinos, $\eta_{v}{ }^{\mathrm{F}}=-\infty$, and for the marginally degenerate case, $\eta_{v}{ }^{\mathrm{F}} \approx 0$.

Over much of the temperature and density conditions encountered during stellar evolution, neutrinos are not thermalized, and freely stream out of the star with interaction mean free paths large compared to relevant stellar dimensions. In this case neutrino
phase space is empty, the neutrino occupation probability per state is zero, and $\eta_{v}{ }^{\mathrm{F}}=-\infty$. In this case only I_{e} is relevant, and it reduces to

$$
\begin{align*}
I_{e}= & \left(\frac{k T}{m_{e} c^{2}}\right)^{5}\left\{F_{4}\left(\tilde{\eta}_{e}\right)+\left(4 \eta_{e}^{L}+2 \zeta_{n}\right) F_{3}\left(\tilde{\eta}_{e}\right)+\left[6\left(\eta_{e}^{L}\right)^{2}+6 \eta_{e}^{L} \zeta_{n}+\left(\zeta_{n}\right)^{2}\right] F_{2}\left(\tilde{\eta}_{e}\right)\right. \\
& \left.+\left[4\left(\eta_{e}^{L}\right)^{3}+6\left(\eta_{e}^{L}\right)^{2} \zeta_{n}+2 \eta_{e}^{L}\left(\zeta_{n}\right)^{2}\right] F_{1}\left(\tilde{\eta}_{e}\right)+\left[\left(\eta_{e}^{L}\right)^{4}+2\left(\eta_{e}^{L}\right)^{3} \zeta_{n}+\left(\eta_{e}^{L}\right)^{2}\left(\zeta_{n}\right)^{2}\right] F_{0}\left(\tilde{\eta}_{e}\right)\right\} \tag{6a}
\end{align*}
$$

where $\tilde{\eta}_{e} \equiv \eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}$. For the threshold case, $\eta_{e}{ }^{L}=\left|\zeta_{n}\right|, \zeta_{n}<-m_{e} c^{2} / k T, Q_{n}<-m_{e} c^{2}$, one has

$$
\begin{equation*}
I_{e}=\left(\frac{k T}{m_{e} c^{2}}\right)^{5}\left[F_{4}\left(\tilde{\eta}_{e}\right)+2\left|\zeta_{n}\right| F_{3}\left(\tilde{\eta}_{e}\right)+\zeta_{n}^{2} F_{2}\left(\tilde{\eta}_{e}\right)\right] \tag{6b}
\end{equation*}
$$

where $\tilde{\eta}_{e}=\left(W_{e}^{\mathrm{F}}-\left|Q_{n}\right|\right) / k T$. For the no threshold case, $W_{e}^{L}=m_{e} c^{2}$, and $\tilde{\eta}_{e}=U_{e}{ }^{\mathrm{F}} / k T$ is just the plasma degeneracy parameter, where we define $U_{e}{ }^{\mathrm{F}} \equiv W_{e}^{\mathrm{F}}-m_{e} c^{2}$. For the threshold case, $W_{e}^{L}=\left|Q_{n}\right|$, and $\tilde{\eta}_{e}$ represents an effective plasma degeneracy parameter for electron (positron) capture; where a threshold exists, the effective degeneracy parameter is less than that for the plasma, reflecting the smaller number of electrons (positrons) in the Fermi-Dirac distributions with energy sufficient to overcome the energy barrier.

Equally as important as electron and positron capture rates are the associated rates of neutrino energy emission. The rate of neutrino energy emission in units of $m_{e} c^{2} s^{-1}$ is defined

$$
\begin{equation*}
\pi_{v}=\ln 2 \frac{J_{e}{ }^{v}}{\langle f t\rangle_{e}} \tag{7a}
\end{equation*}
$$

where, as before, we factor an average value of G_{e} out of the neutrino emission phase space factors (eq. [I.6]) to obtain $J_{e}{ }^{\nu}=f_{e}{ }^{\nu} /\left\langle G_{e}\right\rangle$. In analogy with equation (4a),

$$
\begin{equation*}
J_{e}{ }^{\nu}=\left(\frac{k T}{m_{e} c^{2}}\right)^{6} \int_{\eta_{e}^{L}}^{\infty} \eta_{e}^{2}\left(\zeta_{n}+\eta_{e}\right)^{3}\left[1+\exp \left(\eta_{e}-\eta_{e}{ }^{\mathrm{F}}\right)\right]^{-1}\left\{1-\left[1+\exp \left(\eta_{e}+\zeta_{n}-\eta_{v}^{\mathrm{F}}\right)\right]^{-1}\right\} d \eta_{e} \tag{7b}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{e}{ }^{v}=\left(\frac{k T}{m_{e} c^{2}}\right)^{6} \frac{1}{1-\exp \left(\eta_{v}{ }^{\mathbf{F}}-\zeta_{n}-\eta_{e}{ }^{\mathbf{F}}\right)} J^{\nu} \tag{7c}
\end{equation*}
$$

with

$$
\begin{align*}
J^{\mathrm{V}}= & \int_{\eta_{e}^{L}}^{\infty} \eta_{e}^{2}\left(\zeta_{n}+\eta_{e}\right)^{3}\left\{\frac{1}{1+e^{\eta_{e}-\eta_{e} \mathrm{~F}}}-\frac{1}{1+e^{\eta_{e}+\zeta_{n}-\eta_{v} \mathrm{~F}}}\right\} d \eta_{e} \\
= & F_{5}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}\right)-F_{5}\left(\eta_{v}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}-\zeta_{n}\right)+\left(5 \eta_{e}{ }^{L}+3 \zeta_{n}\right)\left[F_{4}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}\right)-F_{4}\left(\eta_{v}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}-\zeta_{n}\right)\right] \\
& +\left[10\left(\eta_{e}{ }^{L}\right)^{2}+12 \eta_{e}{ }^{L} \zeta_{n}+3\left(\zeta_{n}\right)^{2}\right]\left[F_{3}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}\right)-F_{3}\left(\eta_{v}^{\mathrm{F}}-\eta_{e}{ }^{L}-\zeta_{n}\right)\right] \\
& +\left[10\left(\eta_{e}{ }^{L}\right)^{3}+18\left(\eta_{e}^{L}\right)^{2} \zeta_{n}+9 \eta_{e}{ }^{L} \zeta_{n}{ }^{2}+\zeta_{n}{ }^{3}\right]\left[F_{2}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}\right)-F_{2}\left(\eta_{v}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}-\zeta_{n}\right)\right] \\
& +\left[5\left(\eta_{e}{ }^{L}\right)^{4}+12\left(\eta_{e}{ }^{L}\right)^{3} \zeta_{n}+9\left(\eta_{e}{ }^{2}\right)^{2} \zeta_{n}{ }^{2}+2 \eta_{e}{ }^{L} \zeta_{n}^{3}\right]\left[F_{1}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}\right)-F_{1}\left(\eta_{v}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}-\zeta_{n}\right)\right] \\
& +\left[\left(\eta_{e}^{L}\right)^{5}+3\left(\eta_{e}{ }^{L}\right)^{4} \zeta_{n}+3\left(\eta_{e}{ }^{L}\right)^{3} \zeta_{n}{ }^{2}+\left(\eta_{e}{ }^{L}\right)^{2} \zeta_{n}{ }^{3}\right]\left[F_{0}\left(\eta_{e}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}\right)-F_{0}\left(\eta_{v}{ }^{\mathrm{F}}-\eta_{e}{ }^{L}-\zeta_{n}\right)\right] \tag{7d}
\end{align*}
$$

The limit as $\eta_{v}{ }^{\mathbf{F}} \rightarrow \eta_{e}{ }^{\mathbf{F}}+\zeta_{n}$ follows in obvious fashion as in equation (5 g).
In direct analogy with the calculation of stellar lepton capture rates, the rates of stellar neutrino energy emission can be computed by interpolating the appropriate value of $\langle f t\rangle_{e}$ and evaluating equations (7a)-(7d) with appropriate values of $W_{e}{ }^{\mathrm{F}}$ and $W_{v}{ }^{\mathrm{F}}$. We caution readers that where neutrinos are partially trapped and thermalized, so that the full machinery of equation (7d) is used, the neutrino energy emission rate is not equivalent to the energy taken away by neutrinos, the neutrino energy loss rate. In that case the energy loss rate from a particular zone of a star must be computed from a detailed treatment of neutrino transport. In most applications of equations (7a)-(7d) the free streaming neutrino limit, $\eta_{\nu}{ }^{\mathrm{F}}=-\infty$, will be employed, with obvious generalization of equations (6a) and (6b).

We provide an alternative and somewhat more physically illuminating method for computing the neutrino energy emission rate. Just as $\langle f t\rangle_{e}$ is tabulated at each of our temperature and density points, we also tabulate the average neutrino emission energy

$$
\begin{equation*}
\left\langle\epsilon_{v}\right\rangle \equiv \frac{\pi_{v}}{\lambda_{Z+1}} \quad \text { and } \quad\left\langle\epsilon_{\bar{v}}\right\rangle \equiv \frac{\pi_{\bar{v}}}{\lambda_{z-1}} \tag{8}
\end{equation*}
$$

expressed in MeV . Since the energy emission rate closely tracks the rate of electron or positron capture, the value of $\left\langle\epsilon_{v}\right\rangle$ or $\left\langle\epsilon_{\bar{v}}\right\rangle$ is slowly varying with temperature and density, facilitating accurate interpolation. The interpolated value of $\left\langle\epsilon_{v}\right\rangle\left(\left\langle\epsilon_{\bar{v}}\right\rangle\right)$ is multiplied by the appropriate electron (positron) capture rate (computed from an interpolated $\langle f t\rangle_{e}$ and eqs. [2a] and [5a] plus [5d]) to obtain the neutrino (antineutrino) energy emission rate.

Note that $\pi_{v}\left(\pi_{\bar{v}}\right)$ is the total neutrino (antineutrino) energy emission rate from both electron capture and β^{+}decay (positron capture and β^{-}decay), while $\left\langle\epsilon_{\nu}\right\rangle\left(\left\langle\epsilon_{\bar{v}}\right\rangle\right)$ in equation (8) above involves only the capture processes. At fairly low temperature and density, $\pi_{v}\left(\pi_{\bar{v}}\right)$ will be dominated by positron emission (electron emission), and $\left\langle\epsilon_{v}\right\rangle\left(\left\langle\epsilon_{\bar{v}}\right\rangle\right)$ will not reflect the average lepton capture
neutrino emission energy. However, multiplying $\left\langle\epsilon_{v}\right\rangle\left(\left\langle\epsilon_{\bar{v}}\right\rangle\right)$ by the electron (positron) capture rate will still result in the correct total neutrino (antineutrino) energy emission rate. Where lepton capture rates dominate, $\left\langle\epsilon_{v}\right\rangle\left(\left\langle\epsilon_{\bar{v}}\right\rangle\right)$ is indeed the average capture $v(\bar{v})$ energy.

Evaluation of equations (5 b), (5 e), (6), and (7 d) for the purpose of computing a stellar lepton capture rate or neutrino energy emission rate from an interpolated value of $\langle f t\rangle_{e}$ now requires calculations of the relativistic Fermi integrals for appropriate values of $\eta_{e}{ }^{\mathbf{F}}, \eta_{v}{ }^{\mathrm{F}}, \eta_{e}{ }^{L}$, and ζ_{n}.

III. EXPRESSIONS FOR RELATIVISTIC FERMI INTEGRALS

There exist standard expansions for the relativistic Fermi integrals $F_{k}(\eta)$ defined in equation (5f). For $\eta<0$,

$$
\begin{equation*}
F_{k}(\eta)=(k!) e^{\eta} \sum_{i=0}^{\infty}\left(-e^{\eta}\right)^{i} /(i+1)^{k+1} \approx(k!) e^{\eta}\left(1-e^{\eta} / 2^{k+1}+\cdots\right) \sim(k!) e^{n}, \tag{9a}
\end{equation*}
$$

(see Chiu 1968), and for $\eta>1$ the Sommerfeld expansion gives

$$
\begin{equation*}
F_{k}(\eta)=\frac{\eta^{k+1}}{k+1}\left(\sum_{i=0}^{\infty} a_{2 i} \eta^{-2 i}\right) \tag{9b}
\end{equation*}
$$

where

$$
\begin{gathered}
a_{0}=1, \quad a_{2}=\frac{\pi^{2}}{6} k(k+1), \quad a_{4}=\frac{7 \pi^{4}}{360}(k-2)(k-1)(k)(k+1) \\
a_{6}=\frac{31 \pi^{2}}{15120}(k-4)(k-3)(k-2)(k-1)(k)(k+1)
\end{gathered}
$$

and so on. For the computational procedure outlined in this paper we must find approximate expressions for the $F_{k}(\eta)$ which are continuous and convergent across $\eta=0$, and which have continuous derivatives in η across $\eta=0$. In addition, these approximate expressions must be algebraically simple, since they may be evaluated many times in the inner loop of stellar evolution computer codes.

Note that the Sommerfeld expansion of $F_{k}(\eta)$ for $\eta>1$ is known to be slowly convergent for η near unity, and not convergent at all for $0 \leq \eta \leq 1$. By contrast, the nondegenerate expansion, equation (9 a), is very rapidly convergent, even near $\eta=0$. The procedure we follow here is to exploit the rapid convergence of equation (9 a) for $\eta<0$ by using recursion relations for the sum or difference of $F_{k}(\eta)$ and $F_{k}(-\eta)$ to define an approximation for $\eta \geq 0$.

We follow Bludman and van Riper (1978) and note that the differential recursion relation $d F_{k}(\eta) / d \eta=k F_{k-1}(\eta)$ can be written

$$
\begin{align*}
F_{k}(\eta) & =F_{k}(0)+k \int_{0}^{\eta} F_{k-1}\left(\eta^{\prime}\right) d \eta^{\prime} \\
F_{k}(-\eta) & =F_{k}(0)+k \int_{0}^{-\eta} F_{k-1}\left(\eta^{\prime}\right) d \eta^{\prime} \tag{10a}
\end{align*}
$$

Since $F_{0}(\eta)$ can be integrated exactly to give $F_{0}(\eta)=\ln \left(1+e^{\eta}\right)=\eta+\ln \left(1+e^{-\eta}\right)$, we have

$$
\begin{equation*}
F_{0}(\eta)-F_{0}(-\eta)=\eta, \tag{10b}
\end{equation*}
$$

and, using equation (10a), we find

$$
\begin{equation*}
F_{1}(\eta)+F_{1}(-\eta)=2 F_{1}(0)+\frac{1}{2} \eta^{2} \tag{10c}
\end{equation*}
$$

Noting that $F_{k}(0)=\left(1-2^{-k}\right)(k!) \zeta(k+1)=\pi^{2} / 12(k=1), 3(1.202) / 2(k=2), 7 \pi^{4} / 120(k=3), 45(1.0369) / 2(k=4)$, and $=\pi^{6} / 645$ ($k=5$), we can continue to integrate equation (10c) to obtain the recursion relations for $k=1,2,3$ (Bludman and van Riper 1978) and for $k=4,5$:

$$
\begin{align*}
& F_{1}(\eta)+F_{1}(-\eta)=\frac{\pi^{2}}{6}+\frac{1}{2} \eta^{2} \tag{11a}\\
& F_{2}(\eta)-F_{2}(-\eta)=\frac{\pi^{3}}{3} \eta+\frac{1}{3} \eta^{3} \tag{11b}\\
& F_{3}(\eta)+F_{3}(-\eta)=\frac{7 \pi^{4}}{60}+\frac{\pi^{2}}{2} \eta^{2}+\frac{1}{4} \eta^{4} \tag{11c}\\
& F_{4}(\eta)-F_{4}(-\eta)=\frac{28 \pi^{4}}{60} \eta+\frac{2}{3} \pi^{2} \eta^{3}+\frac{\eta^{5}}{5} \tag{11d}\\
& F_{5}(\eta)+F_{5}(-\eta)=\frac{31 \pi^{6}}{126}+\frac{7 \pi^{2}}{6} \eta^{2}+\frac{5}{6} \pi^{2} \eta^{4}+\frac{\eta^{6}}{6} \tag{11e}
\end{align*}
$$

For $\eta \leq 0$ we adopt the leading term in equation (9a) for our approximation:

$$
\begin{equation*}
F_{k}(\eta) \approx F_{k}{ }^{<}(\eta)=k!e^{\eta} \quad \eta \leq 0 . \tag{12}
\end{equation*}
$$

In the $\eta>0$ case we use the recursion relations (11a)-(11e) to define an approximation for $F_{k}(\eta)$ in terms of $F_{k}^{<}(\eta)$, equation (12). For example, if $\eta>0$ and $k=1$, then

$$
\begin{equation*}
F_{1}(\eta)=\frac{\pi^{2}}{6}+\frac{1}{2} \eta^{2}-F_{1}(-\eta) \approx \frac{\pi^{2}}{6}+\frac{1}{2} \eta^{2}-e^{-\eta} \equiv F_{1}^{>}(\eta) \quad \eta>0 \tag{13a}
\end{equation*}
$$

whereas for $\eta \leq 0$,

$$
\begin{equation*}
F_{1}(\eta) \approx e^{\eta} \equiv F_{1}<(\eta) \quad \eta \leq 0 \tag{13b}
\end{equation*}
$$

We require that these expressions and their derivatives be continuous at $\eta=0$. Note that while the derivatives are continuous,

$$
\left.\frac{d F_{1}>}{d \eta}\right|_{\eta=0}=1=\left.\frac{d F_{1}^{<}}{d \eta}\right|_{\eta=0}
$$

the functions themselves are not,

$$
F_{1}>(0)=\frac{\pi^{2}}{6}-1 \quad \text { and } F_{1}<(0)=1
$$

If we approximate the $\pi^{2} / 6(\approx 1.645)$ by 2.0 in equation (13a), we find $F_{1}{ }^{>}(0)=F_{1}{ }^{<}(0)$, ensuring continuity in both the function and its derivative at $\eta=0$. For the relativistic Fermi integrals of rank 2 we adopt for $\eta \leq 0$

$$
\begin{equation*}
F_{2}(\eta) \approx F_{2}^{<}(\eta)=2 e^{\eta} \quad \eta \leq 0 \tag{14a}
\end{equation*}
$$

so that for $\eta>0$ equation (11b) implies

$$
\begin{equation*}
F_{2}(\eta) \approx F_{2}^{>}(\eta)=\frac{\pi^{2}}{3} \eta+\frac{1}{3} \eta^{3}+2 e^{-\eta} \quad \eta>0 \tag{14b}
\end{equation*}
$$

Note that these expressions for $F_{2}(\eta)$ are continuous at $\eta=0$, but their first derivatives are not. By approximating the coefficient of the linear term in η in equation (14b) $\pi^{2} / 3(\approx 3.289)$ by 4.0 , both equations $(14 a)$ and $(14 b)$ and their derivatives are continuous across $\eta=0$. We have continued this procedure for $k=3,4,5$ to obtain the following approximations for $F_{k}(\eta)$:

$$
\begin{align*}
& F_{0}(\eta)=\ln \left(1+e^{\eta}\right) \approx\left\{\begin{array}{ll}
e^{\eta} & \text { for } \eta \ll 0 \\
\eta & \text { for } \eta \gg 0
\end{array},\right. \tag{15a}\\
& F_{1}(\eta) \approx\left\{\begin{array}{l}
e^{\eta} \\
\frac{\eta^{2}}{2}+2-e^{-\eta}
\end{array}\right. \tag{15b}\\
& F_{2}(\eta) \approx\left\{\begin{array}{l}
2 e^{\eta} \\
\frac{\eta^{3}}{3}+4 \eta+2 e^{-\eta},
\end{array}\right. \tag{15c}\\
& F_{3}(\eta) \approx\left\{\begin{array}{l}
6 e^{\eta} \\
\frac{\eta^{4}}{4}+\frac{\pi^{2}}{2} \eta^{2}+12-6 e^{-\eta}
\end{array},\right. \tag{15~d}\\
& F_{4}(\eta) \approx\left\{\begin{array}{l}
24 e^{\eta} \\
\frac{\eta^{5}}{5}+\frac{2}{3} \pi^{2} \eta^{3}+48 \eta+24 e^{-\eta}
\end{array},\right. \tag{15e}\\
& F_{5}(\eta) \approx\left\{\begin{array}{l}
120 e^{\eta} \\
\frac{\eta^{6}}{6}+\frac{5}{6} \pi^{2} \eta^{4}+\frac{7 \pi^{2}}{6} \eta^{2}+240-120 e^{-\eta}
\end{array},\right. \tag{15f}
\end{align*}
$$

where equation (15a) is exact and in equations (15b)-(15f) the upper expressions are for $\eta \leq 0$ and the lower expressions are for $\eta \geq 0$. These are the expressions for $F_{k}(\eta)$ we have used in equations (5a) plus (5e) and (2a) to tabulate $\langle f t\rangle_{e}$ from our previous rate calculations. As a consequence, the user must employ these expressions for $F_{k}(\eta)$ in a reconstruction of $\lambda_{Z \pm 1}$ from $\langle f t\rangle_{e}$ in order to avoid inaccuracies.

The approximations $(15 \mathrm{~b})-(15 \mathrm{f})$ for $F_{1}(\eta)$ through $F_{5}(\eta)$ are asymptotically exact for $|\eta| \gg 0$. The largest error between the exact F_{k}
and the equation (15) approximation is for $0 \leq \eta \leq 1$. In the approximation for $F_{1}(\eta)$, the largest error occurs near $\eta=0.4$ where the approximation is $\sim 24 \%$ larger than the exact F_{1}. The approximation for F_{2} has its largest error ($\sim 17 \%$ high $)$ near $\eta=1$. The approximation for F_{3} has its largest error $(\sim 6 \%)$ near $\eta=0$, while that for F_{4} has its largest error ($\sim 4 \%$) near $\eta=0.8$. The expressions for F_{5} differs from the exact value by no more than a few percent near $\eta=0$. In all cases equation (15b)-(15f) approximations accurately track the temperature and density dependence of the exact Fermi integrals over many orders of magnitude. Equation (15 d) for $F_{4}(\eta)$, for instance, gives $F_{4}(-10.00) \approx 1.090 \times 10^{-3}$ ("exact" numerical integration differs by less than 0.02%); $F_{4}(-2) \approx 3.248$ (exact $F_{4}=3.235$); $F_{4}(+0.4) \approx 35.71$ (exact $F_{4} \approx 34.38$); $F_{4}(+10.00) \approx 2.706 \times 10^{4}$ (exact $F_{4} \approx$ 2.703×10^{4}).

IV. EFFECTIVE f-VAlues

The weak interaction transition rates of a nucleus in the stellar interior are, in general, sensitive functions of the lepton distribution functions and the nuclear level structure. The reader is referred to the earlier papers in this series ($\mathrm{F}^{2} \mathrm{~N}$ I, II, III) for an in depth discussion of these points. The electron and positron continuum capture rates are extremely sensitive functions of temperature and density. It is difficult to interpolate in the $\mathrm{F}^{2} \mathrm{~N}$ III rate tables and tapes to find, for instance, electron capture rates at high density to a level of accuracy commensurate with that of the nuclear data which went into the calculations of the rate tables. We have presented above a method to remove most of the temperature and density variation of the lepton capture rates and to yield tables of slowly varying effective $\log \langle f t\rangle_{e}$-values, in which it is considerably easier to interpolate accurately. As outlined above, the similarly rapid temperature and density dependence of the neutrino energy emission rate tables is removed by tabulating average neutrino (antineutrino) energy per decay, $\left\langle\epsilon_{v}\right\rangle\left(\left\langle\epsilon_{\bar{v}}\right\rangle\right)$, instead of energy emission rate.

Where they are important, the electron and positron emission rates of the nuclei considered here are relatively slowly varying, so that rates may be accurately interpolated in temperature and density. Consider the electron decay rate of the transition ${ }^{56} \mathrm{Mn}\left(e^{-} \bar{v}\right){ }^{56} \mathrm{Fe}+4.2064 \mathrm{MeV}$. The log base 10 of this rate at $\rho=10^{6} \mathrm{~g} \mathrm{~cm}^{-3}$ and $T_{9}=0.5$ is $\log \lambda_{\beta^{-}}=-2.498$, while for the same temperature and a density of $\rho=10^{8} \mathrm{~g} \mathrm{~cm}^{-3}$, the value is $\log \lambda_{\beta-}=-3.206$. There is quite a slow variation in density until the electron Fermi energy becomes of the order of the electron emission Q-value for this decay, $Q_{n} \approx 4.2064 \mathrm{MeV}$, at which point most of the lower energy transitions in ${ }^{56} \mathrm{Mn}\left(e^{-} \bar{v}\right)^{56} \mathrm{Fe}$ will be Pauli blocked. At $\rho=10^{9} \mathrm{~g} \mathrm{~cm}^{-3}$ the electron total Fermi energy is $W_{e}^{\mathrm{F}}=5.176 \mathrm{MeV}>Q_{n}$ and $\log \lambda_{\beta^{-}}=-10.766$, a relatively large decrease from the rate at $\rho=10^{8} \mathrm{~g} \mathrm{~cm}^{-3}$. Note, however, that the rate is very small here and relatively unimportant compared to the reverse rate of continuum electron capture $\log \lambda_{e^{-}}=-2.628$. Whenever Pauli blocking of electron emission at high density occurs and it is difficult to interpolate in our tables, the rates are very small, and the inverse capture rates are dominant.

Effective $\log \langle f t\rangle_{e}$ values can be defined for continuum electron and positron capture as outlined above using equation (2a) to write

$$
\begin{equation*}
\log \langle f t\rangle_{e} \equiv \log (\ln 2)+\log I_{e}-\log \lambda_{Z \pm 1}+\log \alpha \tag{16}
\end{equation*}
$$

where $\lambda_{z_{ \pm 1}}$ is taken from our original rate tables and I_{e} is evaluated as explained in the last two sections. In the calculation of $\langle f t\rangle_{e}$ from the $\bar{F}^{2} \mathrm{~N}$ rate tables the quenching factor, α, has been set equal to 1 . Table 1 presents values of $\log \langle f t\rangle_{e}$ for continuum electron and positron capture for some selected example nuclei on an abbreviated grid of temperature and density. Table 1 also contains the logarithms of the average neutrino and antineutrino energies $\left\langle\epsilon_{v}\right\rangle$ and $\left\langle\epsilon_{\bar{v}}\right\rangle$ for each decay pair. These are designated by log $\langle v\rangle$ and $\log \langle\bar{v}\rangle$, respectively. Similar information is available for the full range of nuclei and temperatures and densities treated in $\mathrm{F}^{2} \mathrm{~N}$ I, II, III in computer readable form upon request.

Where dashes appear in Table 1 in lieu of numerical entries the logarithm of the corresponding rates is less than -99.999 . For these cases we have not computed values for $\log \langle f t\rangle_{e^{-}}, \log \langle f t\rangle_{e^{+}}, \log \langle v\rangle$, or $\log \langle\bar{v}\rangle$. Estimates for these extremely low rates can be obtained by reasonable extrapolation of adjacent entries in the tables.

It is well known that only roughly one-half of the shell model Gamow-Teller strength is seen in high energy (p, n) experiments (see Bloom and Goodman 1982). This quenching factor is, as yet, not well determined, but we have included α in equation (16) as a simple means of taking account of quenching. At relatively lower temperatures and densities ($k T<1 \mathrm{MeV}, \rho Y_{e} \leqq 10^{9}$), where our rate calculations are dominated by experimentally determined information, $\alpha=1$ should be employed. At higher temperatures and densities where the Gamow-Teller resonances dominate, the user is encouraged to select a value of α according to his personal prejudice, remembering that α is identical to 1 for free nucleons. However, it should be kept in mind that the $F^{2} N$ II calculation of the resonance energies places the strength slightly higher than more sophisticated shell model calculation (Bloom and Fuller 1984), implying that the shell model strength is already slightly quenched. All measurements of Gamow-Teller strength to date employ (p, n) reactions and thus measure $T^{>} \rightarrow T^{<}$transitions, whereas most of the electron capture transitions treated in $\mathrm{F}^{2} \mathrm{~N}$ are $T^{<} \rightarrow T^{>}$ transitions. We refer the reader to Ajzenberg-Selove et al. (1984) for an experimental discussion of quenching in this direction.

In the standard physics of nuclear β-decay the $f t$-value is an inverse measure of the matrix element for a particular transition between individual states of the parent and daughter nuclei. Equations (I.2a) and (I.2b) give the relation between the $f t$-value and the Fermi and Gamow-Teller matrix elements. The effective $\langle f t\rangle_{e}$ values defined here are inverse measures of the total matrix element strength contributing to the total transition rate between parent and daughter, representing the contributions of transitions involving many nuclear states of both nuclei.

Thus many transitions may contribute in such a weak decay; for example, electron capture on thermally populated parent states going to highly excited states of the daughter. These transitions each have, in general, a different Q-value, yet the phase space factor I_{e} used in equation (16) employs only the ground-state to ground-state Q-value. In a sense $\langle f t\rangle_{e}$ is then only an accurate measure of the total matrix element strength available to the extent that the important transitions have Q-values similar to the ground-state to ground-state Q-value.

$p \rightarrow n$							$\mathrm{n} \rightarrow \mathrm{p}$					
	6	7	8	9	10	11	6	7	6	9	10	11
T	$\log \beta^{+}$						$\log \beta^{-}$					
0.4	-	-	-	-	-	-	-3.137	-4.997	-20.216	-54.694		
1	-						-3.105	-4.303	-10.400	24.209	-54. 136	
1.5	-	-	-		-	-	-3.07	-3.962	-8.026	17.258	-37.226	80.287
2	-	-			-		-3.054	-3.734	-6.779	13.722	-28.711	61.020
3	-		-				-3.029	-3.457	-5.468	-10.138	-20.157	41.704
10	-	-	-				-3.043	-3.215	-4.345	-7.217	-13.266	26.215
30	-	-	-	-	-	-	-3.112	-3.139	-3.469	-4.926	-8.041	-14.560
100	-	-	-	-	-	-	-3.247	-3.247	-3.219	-3.375	-4.384	-6.695 -3.737
$\log \langle f\rangle{ }^{-}$							$\log \left\langle\mathrm{ft}^{\text {> }}\right.$					
0.4	3.051	3.058	3.037	3.028	3.026	3.025	3.528	3.527	3.528	3.526	-	-
1	3.050	3.082	3.038	3.028	3.025	3.025	3.324	3.327	3.328	3.331	3.335	
1.5	3.046	3.062	3.040	3.028	3.028	3.025	3.243	3.243	3.243	3.247	3.251	3.258
2	3.043	3.055	3.042	3.028	3.025	3.025	3.191	3.193	3.192	3.194	3.197	3.202
3	3.040	3.048	3.045	3.028	3.026	3.025	3.131	3.131	3.130	3.131	3.133	3.137
5	3.034	3.040	3.052	3.028	3.026	3.025	3.087	3.080	3.077	3.078	3.079	3.001
10	3.034	3.034	3.051	3.033	3.026	3.025	3.061	3.059	3.049	3.046	3.046	3.048
30	3.035	3.035	3.036	3.044	3.034	3.026	3.051	3.051	3.050	3.044	3.037	3.037
100	3.037	3.037	3.037	3.038	3.039	3.042	3.040	3.046	3.048	3.048	3.046	3.038
$\log \langle\nu\rangle$							$\log \langle\bar{\nu}\rangle$					
0.4	-0.963	-0.960	-0.036	0.500	0.908	1.273	-0.399	-0.924	-1.013	-1.014	-	
1.	-0.537	-0.530	-0.015	0.502	0.908	1.273	-0.369	-0.619	-0.671	-0.671	-0.670	
1.5	-0.343	-0.335	0.015	0.506	0.909	1.274	-0.350	-0.506	-0.554	-0.554	-0.554	-0.554
2	-0. 203	-0.196	0.052	0.509	0.909	1.273	-0.317	-0.440	-0.487	-0.487	-0.187	-0.488
3	-0.004	0.002	0.136	0.521	0.912	1.274	0.096	-0.217	-0.305	-0.306	-0.307	-0.306
5	0.247	0.250	0.301	0.558	0.919	1.275	0.485	0.447	0.381	0.375	0.375	0.375
10	0.504	0.585	0.594	0.686	0.948	1.282	0.719	0.717	0.712	0.710	0.710	0.710
30	1.096	1.096	1.096	1.101	1.151	1.339	1.142	1.142	1.141	1.138	1.135	1.135
100	1.634	1.634	1.634	1.634	1.634	1.650	1.647	1.647	1.647	1.647	1.646	1.643
${ }^{46} \mathrm{Co} \longrightarrow{ }^{46} \mathrm{~K}$							${ }^{46} \mathrm{~K} \rightarrow{ }^{44} \mathrm{Co}$					
	$\log \rho / \mu_{0}$											
	6	7	0	9	10	11	6	7	0	9	10	II
T.	$\log \beta^{*}$						$\log \beta^{-}$					
0.4	- 4	-	-	-	-	-	-0.878	-0.899	-1.050	-2.104	-38.373	-
	-89.498	-89.496	-89.496	-89.498	-89.496	-89.496	-0.670	-0.646	-0.760	-1.541	-18.730	83.322
1.5	-59.098	-59.098	-59.098	59.098	-59.098	-59.096	-0.504	-0.518	-0.620	-1.339	-14.057	57.118
2	-43.876	-43.876	-43.876	-43.876	-43.876	-43.076	-0.442	-0.455	-0.553	-1.245	-11.435	43.743
	-28.639	-28.639	-28.639	-28.639	-28.639	-28.639	-0.387	-0.399	-0.491	-1.150	-8.503	30.050
	-16.440	-16.438	-16.437	-16.437	-16.437	-16.437	-0.351	-0.360	-0.442	-1.045	-5.820	18.770
10	-7.413	-7.409	-7.394	-7.389	-7. 389	-7.389	-0.341	-0.344	-0.393	-0.831	-3.383	-9.902
30	-1.489	-1.489	-1.487	-1.475	-1.460	-1.459	-0.411	-0.112	-0.418	-0.497	-1.236	-3.493
100	1.039	1.839	1.840	1.841	1.858	1.927	-0.524	-0.524	-0.524	-0.527	-0.563	-0.958
$\log \left\langle\mathrm{ft}^{\prime}\right\rangle^{\prime}$							$\log \left\langle t_{t}\right\rangle^{\text {e }}$					
0.4	-	-	-	4.556	32.122	53.841	6.387	6.386	6.387	0.385	-	
1	4.267	4.265	4.270	4.269	14.757	24.851	5.879	5.882	5.883	5.886	5.890	-
1.5	4.091	4.092	4.096	4.092	10.945	18.241	5.671	5.671	5.671	5.675	5.678	5.605
2	3.976	3.975	3.980	3.980	8.900	14.725	5.540	5.549	5.548	5.550	5.553	5.558
3	3.840	3.839	3.840	3.846	6.820	11.023	5.409	5.408	5.409	5.110	5.412	5.416
5	3.708	3.709	3.709	3.712	5.207	7.929	5.287	5.281	5.280	5.280	5.281	5.283
10	3.651	3.651	3.655	3.677	4.177	5.571	5.165	5.161	5.149	5.145	5.146	5.147
30	3.724	3.724	3.725	3.742	3.916	4.452	4.546	4.546	4.545	4.542	4.537	4.537
100	3.201	3.201	3.201	3.201	3.206	3.256	3. 169	3.169	3.169	3.169	3.168	3.166
$\log \langle\nu\rangle$							$\log \langle\overline{\mathrm{T}}$ 〉					
0.4	-0.576	-0.576	-0.575	-0.981	0.278	1.088	0.481	0.469	0.404	0.294	-0.989	- 5
1.	-0.576	-0.576	-0.575	-0.573	0.286	1.089	0.529	0.520	0.470	0.284	-0.596	-0.596
1.5	-0.395	-0.395	-0.394	-0.394	0.325	1.096	0.545	0.536	0.489	0.285	-0.425	-0.425
2	-0.265	-0.265	-0.265	-0.263	0.350	1.102	0.550	0.542	0.497	0.290	-0.305	-0.306
3	-0.081	-0.081	-0.081	-0.078	0.402	1.108	0.555	0.548	0.505	0.303	-0.140	-0.141
5	0.158	0.158	0.158	0.160	0.480	1.117	0.559	0.553	0.516	0.340	0.057	0.058
10	0.532	0.533	0.530	0.511	0.654	1.138	0.608	0.589	0.549	0.429	0.284	0.285
130	1.201	1.200	1.201	1.210	1.253	1.381	1.105	1.105	1.104	1.094	1.050	1.039
100	1.725	1.725	1.725	1.725	1.727	1.746	1.586	1.586	1.566	1.565	1.565	1.564

TABLE 1-Continued

The case of electron capture on ${ }^{56} \mathrm{Fe}$ is illustrative of these points. The ground-state to ground-state Q-value for ${ }^{56} \mathrm{Fe}\left(e^{-}, v\right){ }^{56} \mathrm{Mn}$ is $Q_{n}=-4.2064$, and is therefore a threshold transition. In $\mathrm{F}^{2} \mathrm{~N}$ II, the ${ }^{56} \mathrm{Fe}\left(e^{-}, v\right)^{56} \mathrm{Mn}$ transition was calculated to have a total Gamow-Teller sum rule of $\log (f t)=2.58$ and a Gamow-Teller resonance excitation energy estimated to be 3.777 MeV in ${ }^{56} \mathrm{Mn}$, implying a resonance Q-value of $Q_{R}=-4.2064-3.7770=-7.9834 \mathrm{MeV}$. At low temperature and high density, where $W_{e}^{\mathrm{F}}<$ $\left|Q_{R}\right|$, we expect the electron capture transition rate to be dominated by discrete transitions. At densities for which $W_{e}^{\mathrm{F}}>\left|Q_{R}\right|$ we expect the ${ }^{56} \mathrm{Fe}$ (ground state) $\rightarrow{ }^{56} \mathrm{Mn}$ (resonance state) to be the dominant transition. Consequently, $\langle f t\rangle_{e}$ should reflect the average values of $f t$ for discrete transitions for $W_{e}^{F}<\left|Q_{R}\right|$ and should approximate the resonance $f t$-values for $W_{e}^{\mathrm{F}}>\left|Q_{R}\right|$.

An examination of ${ }^{56} \mathrm{Fe}\left(e^{-}, v\right)^{56} \mathrm{Mn}$ in Table 1 shows that at a density of $\rho Y_{e}=10^{6} \mathrm{~g} \mathrm{~cm}^{-3}$ and a temperature of $T_{9}=1.0$ $\left(W_{e}^{\mathrm{F}} \approx 0.672 \mathrm{MeV}\right), \log \langle f t\rangle_{e}=3.726$. Note that here $W_{e}^{\mathrm{F}}<\left|Q_{n}\right|$, so that most of the electron capture proceeds on excited states of ${ }^{56} \mathrm{Fe}$ which have smaller values of $\left|Q_{n}\right|$ than does the ground-state transition. Electron capture transitions from highly excited states would have larger phase factors than the value I_{e} chosen for the calculation of $\langle f t\rangle_{e}$. For a given electron capture rate in which these other transitions contribute, $\langle f t\rangle_{e}$ must be smaller than the average physical discrete transition $f t$-values $[\log (f t) \approx 5.0]$ in order to compensate for the unrealistically small value of I_{e}.

At higher density, and higher electron Fermi energy, the situation is different. For $5.29 \times 10^{8} \leqq \rho Y_{e}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right) \lesssim 3.68 \times 10^{9}$, then $\left|Q_{n}\right| \leqslant W_{e}^{\mathrm{F}} \leqslant\left|Q_{R}\right|$ for ${ }^{5} \mathrm{Fe}\left(e^{-}, v\right)^{56} \mathrm{Mn}$. In this range of density the dominant electron capture transitions will be from the ground state to discrete daughter states below $\sim 3.8 \mathrm{MeV}$ excitation, and we expect $\langle f t\rangle_{e}$ to reflect the average discrete state transition $f t$-value, $\log (f t) \approx 5.0$. Indeed, Table 1 gives $\log \langle f t\rangle_{e}=4.844$ for ${ }^{56} \mathrm{Fe}\left(e^{-}, v\right)^{56} \mathrm{Mn}$ at $T_{9}=1.0$ and $\rho Y_{e}=10^{9} \mathrm{~g} \mathrm{~cm}^{-3}$, corresponding to $W_{e}^{\mathrm{F}}=5.176 \mathrm{MeV}$. For $T_{9}=1.0$ and $\rho Y_{e}=10^{11} \mathrm{~g} \mathrm{~cm}^{-3}, W_{e}^{\mathrm{F}}=23.93 \mathrm{MeV}>\left|Q_{R}\right|$, so we expect $\langle f t\rangle_{e}$ to be roughly the resonance $f t$-value. Table 1 gives $\log \langle f t\rangle_{e} \approx 2.554$, slightly smaller than the resonance value of $\log f t \approx 2.58$. At a temperature of $T_{9}=1.0$ and a density of $\rho Y_{e}=10^{10} \mathrm{~g} \mathrm{~cm}^{-3}$ the total electron Fermi energy is $W_{e}^{\mathrm{F}}=11.114 \mathrm{MeV}>\left|Q_{R}\right|$, so we expect the Gamow-Teller resonance to dominate the transition. However, since W_{e}^{F} is not too much larger than $\left|Q_{R}\right|$, the difference between $\left|Q_{R}\right|$ and $\left|Q_{n}\right|$ is not negligible in the phase space factor. Since $\left|Q_{n}\right|$ is used for computing I_{e} and $\langle f t\rangle_{e}$, we expect $\langle f t\rangle_{e}$ to be larger than the resonance $f t$-value; Table 1 for ${ }^{56} \mathrm{Fe}\left(e^{-}, v\right)^{56} \mathrm{Mn}$ at this grid point gives $\log \langle f t\rangle_{e} \approx 3.219$.

At a fixed low density $\langle f t\rangle_{e}$ decreases as the temperature rises. This is due to thermal population of the parent states, particularly the Gamow-Teller resonance state (which then can serve as an electron capture target state, allowing a transition to the daughter ground state). In the case of ${ }^{56} \mathrm{Fe}\left(e^{-}, v\right)^{56} \mathrm{Mn}, \log \langle f t\rangle_{e}$ decreases monotonically from 3.726 at $T_{9}=1.0$ and $\rho Y_{e}=10^{6} \mathrm{~g} \mathrm{~cm}{ }^{-3}$ to 2.591 at $T_{9}=30.0$ and the same density.

In the introduction the problem of interpolation was presented with an example rate for the electron capture transition ${ }^{56} \mathrm{Fe}\left(e^{-}, v\right){ }^{56} \mathrm{Mn}$. The effective $f t$-value procedure eliminates the large variation in rate between neighboring grid points, with a much smaller variation in $\langle f t\rangle_{e}$. For instance, as pointed out in the introduction the electron capture transition ${ }^{56} \mathrm{Fe}\left(e^{-}, v\right)^{56} \mathrm{Mn}$ has a rate which changes by nearly 11 orders of magnitude between $T_{9}=1.0$ and $\rho Y_{e}=10^{8} \mathrm{~g} \mathrm{~cm}^{-3}$ and $T_{9}=1.0$ and $\rho Y_{e}=10^{9} \mathrm{~g}$ cm^{-3}. By contrast, $\log \langle f t\rangle_{e}$ changes from 4.052 at the first grid point to 4.844 at the latter grid point: a change of a little more than a factor of 6 in $\langle f t\rangle_{e}$.

V. NEUTRINO BLOCKING OF ELECTRON CAPTURE, NEUTRINO CAPTURE, AND THE APPROACH TO BETA EQUILIBRIUM

The effective $f t$-values, $\langle f t\rangle_{e}$, have been calculated from the $\mathrm{F}^{2} \mathrm{~N}$ tables of capture rates, $\lambda_{z_{ \pm 1}}$, using equation (16). In so doing, I_{e} was calculated employing $\eta_{e}{ }^{F}$ from the $\mathrm{F}^{2} \mathrm{~N}$ tabulation and setting $\eta_{v}{ }^{\mathrm{F}}=\eta_{\overline{\mathrm{p}}}{ }^{\mathrm{F}}=-\infty$. In other words, the effective $\langle f t\rangle_{e}$ were computed in the free-streaming neutrino limit in which the occupation probability per neutrino phase space state is zero. Since $\langle f t\rangle_{e}$ is really a measure of the nuclear transition matrix element and is relatively insensitive to changes in lepton phase space distributions as outlined above, the capture rate in the presence of a nonvanishing thermal distribution of neutrinos can be calculated by employing the ambient value of $\eta_{v}{ }^{\mathrm{F}}$ and $\eta_{\bar{v}}{ }^{\mathrm{F}}$ in the calculation of I_{e} (eq. [5]) in equation (16) and solving for $\lambda_{Z \pm 1}$. This gives the effect of neutrino (antineutrino) blocking on the continuum electron (positron) capture rate. In what follows we restrict our discussion to neutrino blocking, since the application to antineutrino blocking follows quite simply. In this section we let subscript e refer to processes involving electrons, and subscript e^{+}to processes involving positions.

Most stellar collapse computer calculations will compute a neutrino chemical potential once neutrino trapping has set in ($\rho Y_{e}>10^{11} \mathrm{~g} \mathrm{~cm}^{-3}$). The distribution of neutrinos is very nearly Fermi-Dirac in character. Holes in the Fermi-Dirac neutrino distribution are quickly filled by weak processes (Arnett 1982). If a rough estimate for the neutrino chemical potential $W_{v}{ }^{\text {F }}$ exists, then equations (5) and (16) and the table of effective $f t$-values allow an estimate of the neutrino-blocked lepton capture rate.

Where a thermal distribution of neutrinos exist, v-capture can be important. The computational machinery for calculating the neutrino capture rate has been presented above: use equation (2 b) with I_{v} being calculated from equations (5 b) and (5 e). This procedure requires a knowledge of $\langle f t\rangle_{v}$, which is not related in any obvious manner to $\langle f t\rangle_{e}$; however, there is a simple way to compute directly the neutrino (antineutrino) capture rate from the electron (positron) capture rate using detailed balance.

Consider the rate of electron capture, $\lambda_{e}{ }^{i j}$ from the i th state of the parent nucleus X to the j th state of the daughter nucleus Y,

$$
\begin{equation*}
e^{-}+X^{i} \Leftrightarrow Y^{j}+v+Q_{i j}, \tag{17a}
\end{equation*}
$$

with

$$
\begin{equation*}
Q_{i j}=E_{i}-E_{j}+Q_{00} \tag{17b}
\end{equation*}
$$

where E_{i} and E_{j} are the excitation energies of parent state i and daughter state j, respectively, so that $\zeta_{i j}=Q_{i j} / k T$, and $\zeta_{n}=Q_{00} / k T$. The rate between parent state i and daughter state j is just

$$
\begin{equation*}
\lambda_{e}^{i j}=\ln 2 \frac{I_{e}^{i j}}{(f t)_{i j}}, \tag{17c}
\end{equation*}
$$

where $(f t)_{i j}$ is the appropriate $f t$-value between these states and $I_{e}{ }^{i j}$ is evaluated from equation (5) with neutrino blocking. The total electron capture rate is given by a sum over daughter states and a sum over parent states, weighting each by a Boltzman factor

$$
\begin{equation*}
P_{i}=\left(2 J_{i}+1\right) \exp \left(-E_{i} / k T\right) / G_{X}, \tag{17~d}
\end{equation*}
$$

where J_{i} is the spin of state i and G_{X} is the nuclear partition function of parent X, so that

$$
\begin{equation*}
\lambda_{e}=\sum_{i} P_{i} \sum_{j} \lambda_{e}^{i j} \tag{17e}
\end{equation*}
$$

In like manner we can proceed to calculate the reverse neutrino capture rate in equation (17a) and sum over states as

$$
\begin{equation*}
\lambda_{v}=\sum_{j} P_{j} \sum_{i} \lambda_{v}{ }^{j i} \tag{18a}
\end{equation*}
$$

where, following the above notation,

$$
\begin{equation*}
\lambda_{v}{ }^{j i}=\ln 2 \frac{I_{v}{ }^{j i}}{(f t)_{j i}} \tag{18b}
\end{equation*}
$$

and now

$$
\begin{equation*}
P_{j}=\left(2 J_{j}+1\right) \exp \left(-E_{j} / k T\right) / G_{Y} . \tag{18c}
\end{equation*}
$$

Whereas we could not immediately use detailed balance to relate $\langle f t\rangle_{v}$ to $\langle f t\rangle_{e}$ because these quantities involve averaging over states, we can invoke detailed balance between individual parent and daughter states. In particular, for states i and j we have

$$
\begin{equation*}
(f t)_{j i}=\left(\frac{2 J_{j}+1}{2 J_{i}+1}\right)(f t)_{i j} \tag{18d}
\end{equation*}
$$

Note that from equation (5d) we have

$$
\begin{equation*}
I_{v}{ }^{j i}=I_{e}^{i j} \exp \left(\eta_{v}^{\mathbf{F}}-\eta_{e}^{\mathbf{F}}-\zeta_{i j}\right) \tag{18e}
\end{equation*}
$$

Equations (18d) and (18e) can be used in equation (18a) to obtain

$$
\begin{equation*}
\lambda_{v}=\frac{\exp \left(\eta_{v}{ }^{\mathrm{F}}-\eta_{e}{ }^{\mathrm{F}}-\zeta_{n}\right)}{G_{Y}} \sum_{i}\left(2 J_{i}+1\right) \exp \left(\frac{E_{i}}{k T}\right) \sum_{j} \frac{\ln 2 I_{e}^{i j}}{(f t)_{i j}}, \tag{18f}
\end{equation*}
$$

where the first sum is clearly G_{X}, and we obtain

$$
\begin{equation*}
\lambda_{v}=\frac{G_{X}}{G_{Y}} \exp \left(\eta_{v}{ }^{\mathrm{F}}-\eta_{e}{ }^{\mathrm{F}}-\zeta_{n}\right) \lambda_{e} . \tag{18~g}
\end{equation*}
$$

We emphasize that $\zeta_{n}=Q_{00} / k T$.
The generalization to positrons and antineutrinos is obvious. If we know the total electron (positron) capture rate in the presence of neutrino (antineutrino) blocking, then we can obtain the total reverse neutrino (antineutrino) capture rate in the presence of electron (positron) blocking using equation $(18 \mathrm{~g})$. The values of the partition functions G_{X} and G_{Y} can be computed from simple fitting formulae given by Woosley et al. (1978) for the nuclei considered by $\mathrm{F}^{2} \mathrm{~N}$ I, II, III.

The tables of effective $\log (f t)$-values allow calculation of continuous electron (positron) capture rates and, through equation $(18 \mathrm{~g})$, the reverse neutrino (antineutrino) capture rates for the free nucleons and all of the nuclei considered in $\mathrm{F}^{2} \mathrm{~N}$ I, II, III. Note that the use of the detailed balance relation $(18 \mathrm{~g})$ does not require either beta equilibrium or nuclear statistical equilibrium. It only requires that the nuclear levels be thermally populated according to the Boltzmann distributions (17d) and (18c), a situation satisfied under almost all circumstances of astrophysical interest (see Ward and Fowler 1979). With both the forward, lepton capture rates and the reverse, neutrino capture rates in hand, it is logical to ask what the total neutronization (or protonization) rates are.

The number of electrons per baryon Y_{e} is defined as

$$
\begin{equation*}
Y_{e}=\frac{n_{e m}}{\rho N_{\mathrm{A}}} \tag{19a}
\end{equation*}
$$

where N_{A} is Avogadro's number and $n_{e m}$ is the number of matter electrons. We hereby denote by Y_{-}the total number of electrons, n_{e}, per baryon, including pair electrons. Similarly, we take Y_{+}to be total number of positrons per baryon, so that in general

$$
\begin{equation*}
Y_{e}=Y_{-}-Y_{+}, \tag{19b}
\end{equation*}
$$

Consider now the reactions

$$
\begin{equation*}
e^{-}+p \Leftrightarrow n+v \tag{20a}
\end{equation*}
$$

The rate of change of the total number of electrons due to these reactions, $\left(\partial n_{e} / \partial t\right)^{f}$, is

$$
\begin{equation*}
\left(\frac{\partial n_{e}}{\partial t}\right)^{f}=-\rho N_{\mathrm{A}} X_{p} \lambda_{e}^{f p}+\rho N_{\mathrm{A}} X_{n} \lambda_{v}^{f n} \tag{20b}
\end{equation*}
$$

where $\lambda_{e}{ }^{f p}$ is the electron capture rate on free protons, $\lambda_{v}{ }^{f n}$ is the neutrino capture rate on free neutrons, f denotes free nucleons, and where X_{p} and X_{n} are the free proton and neutron mass fractions, respectively. We denote the total neutronization rate by $\dot{Y}_{-}=d Y_{-} / d t$ and the contribution to the neutronization rate from electron capture on free protons plus neutrino capture on free neutrons as $\left(\dot{Y}_{-}{ }^{f}\right)=\left(\partial n_{e} / \partial t\right)^{f}$. We then have

$$
\begin{equation*}
\dot{Y}_{-}{ }^{f n}=X_{n} \lambda_{\nu}{ }^{f n}-X_{p} \lambda_{e}{ }^{f p} \tag{20c}
\end{equation*}
$$

We can generalize equation (20c) to the case of electron capture on a heavy parent nucleus and neutrino capture on a daughter nucleus:

$$
\begin{equation*}
\dot{Y}_{-}^{h}=\frac{X_{D}^{h}}{A} \lambda_{v}{ }^{h}-\frac{X_{P}^{h}}{A} \lambda_{e}^{h}, \tag{20d}
\end{equation*}
$$

where $\lambda_{e}{ }^{h}$ is the electron capture rate on the parent nucleus (mass fraction $X_{P}{ }^{h}$) in the presence of neutrino blocking, $\lambda_{v}{ }^{h}$ is the rate of neutrino capture on the daughter nucleus (mass fraction $X_{D}{ }^{h}$) in the presence of electron blocking, and A is the atomic mass of the parent or daughter nucleus.

In beta equilibrium the chemical potentials of the interacting leptons are related in a special way to the chemical potentials of the neutron and proton. This relationship can be seen in the stoichiometry of reaction (20a). We define

$$
\begin{equation*}
\Delta \equiv\left(W_{e}^{\mathrm{F}}-W_{v}^{\mathbf{F}}\right)-\left(W_{n}^{c}-W_{p}^{c}\right)=\left(W_{e}^{\mathbf{F}}-W_{v}^{\mathbf{F}}\right)-\left(U_{n}^{c}-U_{p}^{c}+M_{n}-M_{p}\right), \tag{21a}
\end{equation*}
$$

where the W^{\prime} 's are the total chemical potentials as defined above (Fermi energies for leptons), $U_{n}{ }^{c}$ and $U_{p}{ }^{c}$ are the neutron and proton kinetic chemical potentials, respectively, and M_{n} and M_{p} are the neutron and proton masses, respectively. Note that our $U_{n}{ }^{C}$ and $U_{p}{ }^{c}$ correspond to the Bethe et al. (1979) μ_{n} and μ_{p}, respectively. We can divide by $k T$ to obtain

$$
\begin{equation*}
\delta \equiv \frac{\Delta}{k T}=\left(\eta_{e}^{\mathbf{F}}-\eta_{v}^{\mathbf{F}}\right)-\left(\mu_{n}^{c}-\mu_{p}^{\mathrm{C}}+\frac{\delta M}{k T}\right) \tag{21b}
\end{equation*}
$$

where our $\mu_{n}{ }^{c} \equiv U_{n}{ }^{c} / k T, \mu_{p}{ }^{c} \equiv U_{p}{ }^{c} / k T$, and $\delta M \equiv M_{n}-M_{p} \approx 1.293 \mathrm{MeV}$.
In beta equilibrium we must have $\Delta=0$, or $\delta=0$. The same condition on the lepton and nucleon chemical potentials in beta equilibrium results from the reactions

$$
\begin{equation*}
e^{+}+n \Leftrightarrow p+\bar{v} \tag{22}
\end{equation*}
$$

when the equilibrium conditions $W_{e^{+}}{ }^{\mathrm{F}}=-W_{e^{-}}{ }^{\mathrm{F}}$ and $W_{\bar{v}}{ }^{\mathrm{F}}=-W_{v}{ }^{\mathrm{F}}$ are used. The same equilibrium conditions hold for processes similar to equations (20a) and (22) but proceeding on heavy nuclei. It is useful to cast total neutronization rates in terms of Δ.

From equation $(18 \mathrm{~g})$ we can relate λ_{v} for neutrino capture on free neutrons to λ_{e} for electron capture on free protons. Substituting in equation (20c) we obtain for the neutronization rate due to free nucleons,

$$
\begin{equation*}
\dot{Y}_{-}{ }^{f}=\left[X_{n} \exp \left(\eta_{v}{ }^{\mathrm{F}}-\eta_{e}{ }^{\mathrm{F}}+\frac{\delta M}{k T}\right)-X_{p}\right] \lambda_{e}{ }^{f p}, \tag{23a}
\end{equation*}
$$

where $\left(\zeta_{n}\right)^{f}=-\delta M$ and where we note that the ratio of the partition functions in equation $(18 \mathrm{~g})$ is unity for the free nucleons. Using the definition of δ in equation (21a), we obtain

$$
\begin{equation*}
\dot{Y}_{-}^{f}=\left[X_{n} \exp \left(-\delta-\delta \mu^{C}\right)-X_{p}\right] \lambda_{e}^{f p} \tag{23b}
\end{equation*}
$$

where $\delta \mu^{c} \equiv \mu_{n}^{c}-\mu_{p}^{c}=\hat{\mu} / k T$ and $\hat{\mu}$ is the Bethe et al. (1979) difference in kinetic chemical potential between neutrons and protons. Over the typical range of temperatures and densities of interest in the stellar collapse problem the free neutrons and protons are nondegenerate, so that

$$
\begin{equation*}
X_{p} \approx X_{n} \exp \left(-\delta \mu^{c}\right) \tag{23c}
\end{equation*}
$$

Equation (23b) then becomes

$$
\begin{equation*}
\dot{Y}_{-}^{f} \approx X_{p} \lambda_{e}^{f p}[\exp (-\delta)-1] \tag{23d}
\end{equation*}
$$

In the beta equilibrium limit $\delta \rightarrow 0$, so that $\dot{Y}_{-}{ }^{f} \rightarrow 0$. The analogous protonization rate for reaction (22) follows in a similar manner:

$$
\begin{align*}
\dot{Y}_{+}{ }^{f} & =\lambda_{e^{+}}{ }^{f n}\left[X_{p} \exp \left(\delta \mu^{c}+\delta\right)-X_{n}\right] \tag{24a}\\
& \approx X_{n} \lambda_{e^{+}}{ }^{f n}[\exp (\delta)-1], \tag{24b}
\end{align*}
$$

and has the same zero limit as beta equilibrium is approached.
We can generalize the above neutronization and protonization rates for the case of heavy nuclei. Starting with equation (20d) for the neutronization rate, we define the parent nucleus to be X and the daughter Y (as in eq. [17a]), with mass fractions X_{X} and X_{Y}, respectively, and use equation (18g) to obtain

$$
\begin{equation*}
\dot{Y}_{-}{ }^{h}=\left[\frac{X_{Y}}{A} \frac{G_{X}}{G_{Y}} \exp \left(\eta_{v}{ }^{\mathbf{F}}-\eta_{e}{ }^{\mathbf{F}}-\zeta_{n}\right)-\frac{X_{X}}{A}\right] \lambda_{e}{ }^{h} . \tag{25a}
\end{equation*}
$$

We can now employ nuclear statistical equilibrium (NSE) to relate the abundances of species X and Y. Following Burbidge et al. (1957),

$$
\begin{equation*}
\frac{X_{Y}}{X_{X}}=\frac{X(N+1, Z-1)}{X(N, Z)} \approx \frac{G_{Y}}{G_{X}} \frac{X_{n}}{X_{p}} \exp \left(\frac{\Delta Q}{k T}\right) \tag{25b}
\end{equation*}
$$

where ΔQ is the difference between the nuclear Q-values for Y and X. The nuclear Q-value is defined as

$$
\begin{equation*}
Q(N, Z)=Z M_{p}+N M_{n}-M(Z, N) \tag{25c}
\end{equation*}
$$

where $M(Z, N)$ is the nuclear mass of a nucleus with charge Z and atomic number $A=Z+N$, so that

$$
\Delta Q=Q(N+1, Z-1)-Q(N, Z)=Q_{n}+\delta M
$$

We can show then that on substitution of the NSE relation (25b) into equation (25a), one obtains

$$
\begin{equation*}
\dot{Y}_{-}^{h} \approx \frac{X_{X}}{A} \lambda_{e}^{h}[\exp (-\delta)-1] \tag{25~d}
\end{equation*}
$$

and, in similar fashion,

$$
\begin{equation*}
\dot{Y}_{+}^{h} \approx \frac{X_{Y}}{A} \lambda_{e^{+}}^{h}[\exp (\delta)-1] \tag{25e}
\end{equation*}
$$

Each expression has the appropriate zero limit as beta equilibrium $(\delta=0)$ is approached.
The total neutronization rate is given by the sum of the contributions from free nucleons and heavy nuclei,

$$
\begin{equation*}
\dot{Y}_{-}=\dot{Y}_{-}^{f}+\sum_{h} \dot{Y}_{-}^{h} \tag{26}
\end{equation*}
$$

If the user of Table 1 knows $\eta_{e}{ }^{\mathbf{F}}, \eta_{\nu}{ }^{\mathrm{F}}, U_{n}{ }^{c}$, and $U_{p}{ }^{c}$, then the capture rate on each nucleus can be calculated as outlined in the previous section, δ can be computed, and the contribution to the neutronization rate can be computed for each species using equations (23 d) and (25 d).

Many current efforts to compute models of stellar collapse and explosion cannot implement our rate tables, either because the computer codes are not large enough to internalize our tables or because the special conditions considered run beyond the limits of our grid of temperatures, densities, or nuclear masses. We encourage the full use of our tables and the fitting procedures considered above wherever possible, because this insures the most accurate weak interaction rates. Where this is simply not possible, usually in the high temperatures and high densities of stellar collapse, we now provide typical average values of Q_{n} and $\log \langle f t\rangle_{e}$ which will
allow a good estimate of lepton capture rates to be made by employing the appropriate phase space factors $\left(I_{e}, I_{v}\right)$ presented in this paper.

Where nuclear statistical equilibrium obtains and where the values of the nuclear chemical potentials are known, then a good approximation for the average electron capture Q_{n} for the mean nucleus is

$$
\begin{equation*}
Q_{n} \approx-\left(U_{n}^{C}-U_{p}^{C}+M_{n}-M_{p}\right) \tag{27}
\end{equation*}
$$

while for neutrino capture Q_{n} is the negative of equation (27). See definitions after equation (21a).
Where the mean nucleus is unblocked (neutron number less than 40 and proton number greater than 20), the lepton captures will proceed principally through the GT-resonances which will be roughly at an excitation of 3.0 MeV above the daughter ground state. We suggest taking an effective $f t$-value typical of ${ }^{56} \mathrm{Fe}$, where $\log \langle f t\rangle_{e} \approx 3.2$ for $W_{e}^{F}<\left|Q_{R}\right| \approx\left|Q_{n}\right|+3.0 \mathrm{MeV}$, and $\log \langle f t\rangle_{e} \approx$ 2.6 for $W_{e}^{F}>\left|Q_{R}\right|$. For a typical blocked nucleus we take an effective $f t$-value based on the simple temperature-dependent unblocking model of Fuller (1982). A blocked mean nucleus will have a Q_{n} given by equations (27) but may have a Q_{R} different from the unblocked case. In applying our fitting formulae we recommend using Q_{n} from equation (27) for the unblocked cases and $Q_{n}-5 \mathrm{MeV}$ in place of Q_{n} for the blocked cases. Recall that usually $Q_{n}<0$ for electron capture and $Q_{n}>0$ for neutrino capture. This information is summarized as

$$
\log \langle f t\rangle_{e} \approx \begin{cases}\Rightarrow 3.2 \quad W_{e}^{\mathrm{F}}<\left|Q_{R}\right| \tag{28}\\ \Rightarrow 2.6 \quad W_{e}^{\mathrm{F}}>\left|Q_{R}\right| \\ \Rightarrow 2.6+25.9 / T_{9} & \text { unblocked: use } Q_{n} \text { in } I_{e} \text { or } I_{v} \\ \Rightarrow & \text { blocked: use } Q_{n}-5 \mathrm{MeV} \text { in } I_{e} \text { or } I_{v}\end{cases}
$$

The expressions in equation (28) follow on taking $\left|M_{G T}\right|^{2}=10$ for the total amount of possible Gamow-Teller strength and noting that the strength available for lepton capture depends on thermal unblocking. Since it costs $\sim 5.13 \mathrm{MeV}$ to pull a neutron out of a filled $1 f_{5 / 2}$ orbit and place it in the $g d$-shell, the available strength will be roughly $\left|M_{G T}\right|^{2} \approx 10 \exp (-5.13 / k T) \approx$ $10 \exp \left(-59.53 / T_{9}\right) \approx \operatorname{dex}\left(1-25.9 / T_{9}\right)$ at temperature T_{9}.

The $\log \langle f t\rangle_{e}$ given in equation (28) is consistent with the thermal unblocking result of Fuller (1982). Recently Cooperstein and Wambach (1985) have shown that there may be more thermal unblocking near the blocking point, so that the coefficient of $\left(T_{9}\right)^{-1}$ in the blocked case of equation (28) will be smaller. However, some of the values for $\log \langle f t\rangle_{e}$ given in equation (28) have not been corrected for Gamow-Teller quenching which could increase the numerical constant 2.6 to as much as 2.9 . The numerical constant 3.2 is based on experimental data and should not be changed.

In many circumstances of stellar evolution, collapse, and explosion, the lepton capture rates on free neutrons and protons will dominate those on nuclei. This is particularly true in the high entropy environments of supernova shock passage (see Brown, Bethe, and Baym 1982). Our fitting formulae allow accurate calculation of the lepton weak rates for free nucleons within a few percent of our actual numerical calculation. We recommend employing $\log \langle f t\rangle_{e}=3.035$ for all processes involving free nucleons.

Frequently the rate of change of entropy corresponding to a given lepton capture rate is a desired quantity. If the entropy per baryon, S, is given in units of Boltzmann's constant then for a given species i,

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{S}{k}\right)=\left[\frac{\left(\bar{\epsilon}_{v}\right)_{i}-\Delta}{k T}\right] \dot{Y}_{-}^{i} \tag{29}
\end{equation*}
$$

where k is Boltzmann's constant, $\dot{Y}_{-}{ }^{i}$ is the neutronization rate due to species i, and $\left(\bar{\epsilon}_{v}\right)^{i}$ is the energy of the escaped neutrino. Where neutrinos are trapped and thermalized, $\left(\bar{\epsilon}_{v}\right)_{i}=0$ for all species i, and with $\delta=\Delta / k T$ one has

$$
\begin{equation*}
\frac{\dot{S}}{k}=-\delta\left(\dot{Y}_{-}{ }^{i}\right) \tag{30}
\end{equation*}
$$

which holds for each species i independently, where $\dot{Y}_{-}{ }^{i}$ is the neutronization rate corresponding to electron capture on i and \dot{S} / k is the entropy change due to that process. Equation (30) also holds for the total neutronization rate, \dot{Y}_{-}in equation (26), where then \dot{S} / k is the total entropy change rate.

VI. CONCLUSION

We have presented here effective $f t$-values for continuum electron (positron) capture and average neutrino (antineutrino) emission energies. These quantities are relatively slowly varying compared with the bare capture and neutrino loss rates, facilitating rapid and accurate computer interpolation. The lepton capture rates can be reconstructed easily with the approximate phase space factor expressions presented above. These expressions contain most of the rapid temperature and density variation associated with the capture rates. We have also presented a means of calculating the effect of neutrino (antineutrino) blocking on the electron (positron) capture rates. A simple formula based on detailed balance enables the computation of a neutrino (antineutrino) capture rate once the electron (positron) capture rate has been calculated from our tables. The approach to beta equilibrium is briefly considered. Tables of effective $f t$-values and average neutrino energies in computer readable form on magnetic tape can be obtained by writing to Michael J. Newman.

We would like to acknowledge useful conversations with W. D. Arnett, T. A. Weaver, and S. E. Woosley. This work was supported in part by NSF AST 81-08509 at UCSC, NSF AST 81-16750 at the University of Chicago, and NSF PHY 82-15500 at Caltech. G. M. F. wishes to acknowledge support from a McCormick Fellowship at the University of Chicago.

REFERENCES

Ajzenberg-Selove, F., Brown, R. E., Flynn, E. R., and Sunier, J. H. 1984, Nucl.	Cooperstein, J., and Wambach, J. 1985, Nucl. Phys., in press.
Phys., in press.	Fowler, W. A., and Hoyle, F. 1964, Ap. J. Suppl., 9, 201.
Arnett, W. D. 1982, private communication.	Fuller, G. M. 1982, Ap. J., 252, 741.
Bethe, H. A., Applegate, J., and Brown, G. E. 1980, Ap. J., 241, 343.	Fuller, G. M., Fowler, W. A., and Newman. M. J. 1980, Ap. J. Suppl., 42, 447
Bethe, H. A., Brown, G. E., Applegate, J., and Lattimer, J. M. 1979, Nucl. Phys. $A, 324,487$.	($\mathrm{F}^{2} \mathrm{~N}$) .
Bloom, S. D., and Fuller, G. M. 1984, Nucl. Phys., submitted.	. 1982b, Ap. J. Suppl., 48, 279 (F²N III).
Bloom, S. D., and Goodman, C. D. 1982, in Proc. Internat. Conf. on Spin Excitations in Nuclei (New York: Plenum), p. 587 .	Ward, R. A., and Fowler, W. A. 1980, Ap.J., 238, 266.
Excitations in Nuclei (New York: Plenum), p. 587. Bludman, S. A., and van Riper, K. A. 1978, Ap. J., 224, 631.	Weaver, T. A., Woosley, S. E., and Fuller, G. M. 1984, in Numerical Astro-
Bludman, S. A., and van Riper, K. A. 1978, Ap. J., 224, 631.	physics, ed. J. Centrella, J. LeBlanc, and R. Bovers (Boston: Jones and
Brown, G. E., Bethe, H. A., and Baym, G. 1982, Nucl. Phys. A, 375, 481.	
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F. 1957, Rev. Mod. Phys., 29, 547.	Woosley, S. E., Fowler, W. A., Holmes, J., and Zimmerman, B. A. 1978, Atomic Data Nucl. Data Tables, 22, 371.

William A. Fowler: W. K. Kellogg Radiation Laboratory, 106-38, California Institute of Technology, Pasadena, CA 91125
George M. Fuller: Lick Observatory, University of California, Santa Cruz, CA 95064
Michael J. Newman: X-2, MS 220, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545

