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Abstract

An overview is given of physics differences between stellarators and tokamaks, including

magnetohydrodynamic equilibrium, stability, fast-ion physics, plasma rotation, neoclassical

and turbulent transport and edge physics. Regarding microinstabilities, it is shown that the

ordinary, collisionless trapped-electron mode is stable in large parts of parameter space in

stellarators that have been designed so that the parallel adiabatic invariant decreases with

radius. Also, the first global, electromagnetic, gyrokinetic stability calculations performed for

Wendelstein 7-X suggest that kinetic ballooning modes are more stable than in a typical

tokamak.

(Some figures may appear in colour only in the online journal)

1. Introduction

It has been said that, in the early days when fusion research

was classified, much of the work was duplicated in various

laboratories across the world, so that, for instance, the tokamak,

the mirror machine and the Grad–Shafranov equation were

invented or discovered independently in several places. But

there was one exception: only Lyman Spitzer in Princeton

was ingenious enough to think of the stellarator [1]. It has

occupied an important position in the fusion programme for

six decades now, but has spent much of that time in the

shadow of its toroidal cousin, the tokamak. Perhaps for

this reason, the physical properties of stellarators are less

well known than they deserve to be. Historically, many key

concepts in magnetic confinement physics originated from

stellarators [2], and great strides have been taken in their

development in recent years, making the stellarator a very

serious candidate for a fusion reactor. In this paper we present

an overview of similarities and differences between stellarator

and tokamak plasmas, emphasizing conceptual and recent

theoretical developments. No attempt is made to review the

considerable body of experimental results that can be found

in the literature. Most of the material can be found in other

publications, but some of it is new, in particular in the section

on microinstabilities.

2. Magnetic field

As Spitzer realized [3] and Mercier proved mathematically [4],

there are three ways of producing a rotational transform of

a toroidal magnetic field. From an expansion of Maxwell’s

equations in the vicinity of the magnetic axis, the average

number of poloidal turns of a field line in one toroidal

revolution can be expressed as an integral along the length

l once around the magnetic axis [4, 5],

ι = 1

q
= 1

2π

∫ L

0

[

µ0J

2B0

− (cosh η − 1)d ′ − τ

]

dl

cosh η
− N.

(1)

Here J is the current density on the magnetic axis, N is an

integer of topological origin, eη = r2/r1 the elongation of

the flux surfaces, d(l) their tilting angle with respect to the

curvature vector κ = db/dl, where b = B/B is the unit vector

along the magnetic field B, and τ(l) = (dκ/dl) · (b × κ)/κ2

denotes its torsion, see figure 1. The three ways of twisting the

magnetic field are thus

• driving a toroidal current;

• elongating the flux surfaces and making them rotate

poloidally as one moves around the torus;

• making the magnetic axis non-planar, so that τ �= 0.

Tokamaks and reversed field pinches use the first method, LHD

uses the second one, TJ-II and Wendelstein 7-X the last two,
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Figure 1. Flux-surface geometry in the vicinity of the magnetic axis
of LHD. The rotational transform is generated by the poloidal
rotation of the flux-surface cross section as one moves around
the torus.

and NCSX all three. The last method alone was used by the

first stellarators built in Princeton, which had circular cross

section and the magnetic axis bent into the form of a figure

eight.

The first method is simplest in the sense that it allows

the device to be axisymmetric, making it easier to build, but

suffers from the disadvantage of being non-steady-state or

requiring non-inductive current drive. A further advantage of

axisymmetry is that the existence of flux surfaces is guaranteed,

whereas care is needed to avoid large magnetic islands and

stochastic regions in non-axisymmetric magnetic fields.

3. Macroscopic equilibrium and stability

Avoiding a toroidal plasma current brings great advantages

for plasma stability. Indeed, magnetohydrodynamic (MHD)

stability plays a far less prominent role in stellarators than

in tokamaks, where the toroidal current causes kink modes,

sawteeth and resistive and neoclassical tearing modes that all

limit the plasma performance. These instabilities are usually

absent in stellarators for the simple reason that there is no, or

very little, net toroidal plasma current.

There is, of course, a non-zero poloidal plasma current

present to satisfy force balance, J × B = ∇p, and just

like in a tokamak, the requirement ∇ · J = 0 implies the

existence of a Pfirsch–Schlüter current parallel to the magnetic

field, since the perpendicular current J⊥ = (B × ∇p)/B2 is

generally not divergence-free. In addition, at low collisionality

a bootstrap current arises for reasons similar to those in a

tokamak, although the details are different because the particle

orbits are not the same. The total toroidal current arising in this

way is, however, usually substantially smaller than the typical

(Ohmic) current in a tokamak. Of course, it is quite possible to

drive a more substantial current using a transformer, and then

tearing modes can be destabilized [6].

In principle neoclassical tearing modes can also exist in a

stellarator, since these do not depend on a destabilizing Ohmic

current profile for their existence but rather on a non-zero

bootstrap current. The latter is reduced when a magnetic island

forms and the pressure profile is flattened within it, and in

tokamaks this negative current perturbation causes the island

to grow further. In stellarators, however, the (global) magnetic

shear usually has the opposite sign from that in tokamaks, so

that, if an island should form and flatten the pressure profile,

the resulting reduction in the bootstrap current makes the island

shrink rather than grow. Neoclassical tearing modes are thus

nonlinearly stable unless the bootstrap current is negative [7].

(The bootstrap current is taken to be positive if it increases the

rotational transform.) In fact, finite plasma pressure often has

the tendency to ‘heal’ magnetic islands in stellarators [8–10].

Stellarators do not experience plasma-terminating disrup-

tions when, for instance, a stability limit is approached. The

only exception seems to be situations where a transformer is

used to induce so much toroidal current that tearing modes are

destabilized [11]. After 120 000 plasma discharges, LHD has

still not experienced a single current disruption [12].

In stellarators, the plasma density is not limited by the

‘Greenwald’ limit [13] but is instead determined by radiation

losses from the plasma core. It is therefore a ‘soft’ limit

and depends on the concentration and transport of impurities.

Because the Greenwald limit is absent, stellarators often

operate at a higher density than do tokamaks. The record is

held by LHD, where densities ne = 1021 m−3 are reached

in so-called super-dense core plasmas. The question why

stellarators do not have a Greenwald limit cannot be answered

without understanding its origin in tokamaks. A recent

explanation by Gates and Delgado-Aparicio [14] suggests that

the limit is due to the destabilization of magnetic islands (in

the outer regions rather than the core) by radiation losses:

at high enough density these cannot be overcome by local

Ohmic heating, and this leads to further island growth. As the

authors themselves note, this mechanism would not operate in

stellarators.

The pressure limit is also approached in a different way

from that in tokamaks. The limit set by pressure-driven

MHD modes is surprisingly ‘soft’; for instance, LHD routinely

operates far above the ideal-MHD ballooning limit. It is not

entirely clear why this is possible, but it appears that finite-

Larmor-radius effects are playing a stabilizing role. Moreover,

a significant fraction of the plasma pressure can be produced

by suprathermal ions from neutral-beam injection, which has

a stabilizing effect on ballooning modes [15]. By shaping the

plasma appropriately, it is possible to raise the ideal ballooning

limit significantly. In W7-X the volume-averaged normalized

pressure limit is about 〈β〉 = 5%. Because the stability limit

is so high and soft, the equilibrium pressure limit is more

important than in the tokamak. The Shafranov shift limits

the pressure in a classical stellarator to about

βmax ∼ ι2

2A
,

where A denotes the aspect ratio. By optimizing the magnetic-

field geometry so as to reduce the Pfirsch–Schlüter current, it

is possible to reduce the Shafranov shift significantly, and this

has been carried out successfully in the designs of W7-AS [11]

and W7-X. Another equilibrium effect limiting the achievable

pressure is the tendency of the magnetic field to become

stochastic in the edge region at high beta. Figure 2 shows

calculations of this effect in W7-X using the PIES code,

which solves the force balance equation J × B = ∇p

2
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Figure 2. Poincaré sections of two equilibria in W7-X with
different normalized pressures. The pressure profiles are in both
cases of the form p = p0(1 − s)(1 − s4), with s the normalized
toroidal flux coordinate. The Shafranov shift and a stochastization
of the edge region are clearly seen in the 〈β〉 = 5% equilibrium.

without assuming nested flux surfaces [16]. As the volume-
averaged normalized pressure 〈β〉 increases from 1% to 5%,
the confinement region, i.e. the volume inside the largest closed
flux surface, shrinks from 31.7 to 19.3 m3.

Fast-ion-driven modes, such as toroidal Alfvén eigen-
modes (TAEs), have been observed in most stellarators. Such
modes arise in the gaps of the continuous Alfvén spectrum
that form when a plasma cylinder is bent into a torus. In stel-
larators, the breaking of axisymmetry gives rise to additional
gaps and discrete modes lying therein. There are therefore
more types of Alfvén eigenmodes in stellarators than in toka-
maks, e.g. helicity- and mirror-induced Alfvén eigenmodes,
there are more wave–particle resonances, and thus more scope
for instability [17]. For instance, while in a circular tokamak
with large aspect ratio the main TAE resonances are v‖ = vA

and v‖ = vA/3, where vA is the Alfvén speed, it is possi-
ble to have resonances with v‖ > vA in stellarator geometry.
On the other hand, the alpha-particle pressure in a reactor is
proportional to the slowing-down time,

pα ∼ τs ∼ T 3/2
e /ne,

which is expected to be smaller in stellarators than in tokamaks,
thanks to the ability of the former to operate above the
Greenwald limit. The fast-particle drive for Alfvénic modes
can thus be smaller in the stellarator, if an operating point with
high density can be chosen. Note that at constant thermal
pressure, p ∼ neTe or fusion power Pfus ∼ n2

eT
2

i , the alpha-

particle pressure scales as pα ∼ n
−5/2
e , so increasing the

plasma density by a factor of 2.5 leads to ten times lower alpha-
particle pressure.

3.1. More mathematical issues

45 years ago, Grad [18] pointed out that general scalar-pressure
MHD equilibria are likely to be very complicated when the

plasma is not axisymmetric. Unless awkward conditions

are satisfied, the pressure gradient must vanish on every

rational surface, and flux surfaces will not exist throughout

the plasma in general. Toroidal magnetic fields without a

continuous symmetry are composed of a fractal mix of chaotic

field lines, magnetic islands and intact flux surfaces. It has

been argued that the only nontrivial solutions to the equation

J×B = ∇p in chaotic regions contain an uncountable infinity

of discontinuities in both ∇p and J , and on these grounds

fundamental criticism can be raised against codes that attempt

to solve this equation numerically [19].

There appear to be three ways out of this dilemma. The

most common one is the method chosen by the VMEC code

[20], which insists on the existence of nested flux surfaces

and computes the equilibrium by minimizing the MHD energy

subject to the mathematical constraints that follow. In general,

there will then be an infinite Pfirsch–Schlüter current density

on most rational surfaces, diverging as 1/x with the distance

x from the surface. (Alternatively, the pressure gradient could

vanish on all rational surfaces). In practice, however, the

numerical resolution is usually sufficiently limited that most

of these singularities are not noticeable.

The second way is to allow magnetic surfaces to break

up and form islands and stochastic regions, but to ignore the

infinity of singularities that these imply, e.g. by letting them be

washed out by finite spatial resolution. Physically, this might

be justified by arguing that the MHD equilibrium condition

J × B = ∇p is modified by kinetic effects (leading to finite

viscosity and flow) on small scales.

Finally, one can insist on solving orthodox force balance,

J × B = ∇p, implying B · ∇p = 0, so that the pressure

vanishes exactly in chaotic regions. Dewar, Hudson and

co-workers have shown that it is possible to make the problem

tractable by taking the pressure profile to be ‘stepped’. That

is, the pressure is prescribed to be piecewise constant and to

change discontinuously at a finite number of irrational flux

surfaces, between which the field is assumed to be in a Taylor-

relaxed state. The mathematical problem of finding such

an equilibrium can be formulated as a variational principle

suitable for numerical solution, see [21] and papers cited

therein.

Mathematical subtleties specific to non-axisymmetric

plasmas also arise in the theory of ballooning modes [22]. The

ballooning equation predicts different stability properties for

different field lines on the same flux surface in a stellarator,

and it is not straightforward to construct global modes, since

the solutions to the ray equations generally are chaotic. There

are parallels to the semi-classical theory of quantum systems

with chaos [23].

4. Neoclassical transport

The advantages of stellarators discussed above—steady state,

high density, the absence of current-driven instabilities and

disruptions—come not only at the price of complicated

geometry. As Gibson and Taylor observed [24], there are

generally unconfined particle orbits regardless of the magnetic-

field strength. This is not only problematic for the confinement

3
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of alpha particles, whose orbits are practically collisionless, but

can also lead to prohibitively high neoclassical transport of the

thermal particle species.

4.1. Typical collisionality regimes

There are several different collisionality regimes for

neoclassical transport in stellarators, and in contrast to the

situation in tokamaks the electrons and ions are often in

different regimes. These have been reviewed in great detail

elsewhere [25–29], and it has been established that the

neoclassical heat flux is very significant in the plasma core

of most experiments. At low collisionality, the electrons are

usually in the 1/ν-regime, where the diffusivity is inversely

proportional to the collision frequency ν,

De ∼ ǫ
3/2
eff v2

d

νe

, (2)

and thus scales as

De ∝ ǫ
3/2
eff T

7/2
e

neB2R2
.

Here ǫeff is a geometric quantity characterizing the confinement

qualities of trapped-particle orbits, vd is their drift velocity,

Te is the electron temperature and R is the major radius of

the device. Because of the strong Te scaling, the neoclassical

losses are expected to dominate at high electron temperature,

and this is indeed observed to be the case. In W7-AS, the

transport followed neoclassical predictions in roughly half the

plasma volume if the temperature was high enough (�1 keV)

and was attributed to turbulence in the outer regions of the

plasma [11].

The scaling (2) has a simple origin. In a classical

stellarator, the particles responsible for the transport are

trapped in local magnetic wells of depth δB/B ∼ ǫh, the

helical magnetic ripple, and drift radially at the velocity vd.

Collisions scatter the particles in and out of the wells on

the time scale of the inverse effective collision frequency,

�t ∼ 1/νeff ∼ ǫh/ν. They therefore undergo a random walk

with step size �r = vd�t , and the diffusion coefficient (2)

results from multiplying the estimate �r2/�t by the fraction of

locally trapped particles ǫ
1/2
h (taking ǫeff ∼ ǫh). In stellarators

that have been optimized for low neoclassical transport, the

trapped particles have reduced radial drift velocities, and the

parameter ǫeff in equation (2) is substantially smaller than

the fraction of trapped particles, see figure 3.

If the collisionality is so low that the step size �r becomes

comparable to the radial scale length, the transport is no longer

radially local [30]. This is a qualitative difference to the

tokamak, where the neoclassical random-walk step size is

always limited from above by the banana width, so that, as

long as the latter is thinner than the gradient length scale, the

transport is always local in nature.

The diffusion coefficient (2) is much larger for ions than

for electrons and would therefore violate ambipolarity. An

inward-pointing radial electric field therefore arises and serves

to confine the ions and reduce their transport to the electron

level (whilst increasing the electron transport somewhat). The

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1

r/a

εeff

LHD
W7-X
HSX

NCSX
TJ-II

Figure 3. Neoclassical confinement quality parameter ǫeff versus
minor radius in various stellarators: TJ-II, LHD (R0 = 3.60 m
configuration), W7-X (standard configuration), NCSX and HSX.

way this happens is that the electric field gives rise to a

poloidal E × B drift that prevents the locally trapped ion

orbits from drifting all the way to the wall. Instead, the

radial excursion of the bounce-averaged ion orbits becomes

of order �r ∼ vd/�E , where �E ∼ Er/rB is the frequency

of the poloidal drift. In the absence of collisions, these orbits

are thus confined (if �r < r), but will undergo a random

walk with the step size �r when collisions are present and

scatter the particles in and out of the local trapping regions.

The effective collision frequency for such scattering depends

quadratically on the distance �ξ (in terms of pitch angle)

to the trapping boundary in velocity space, νeff ∼ ν/�ξ 2.

Multiplying νeff�r2 by the fraction of participating particles

(∼�ξ ) gives the diffusion coefficient estimate

Di ∼ ν

�ξ

(

vd

�E

)2

,

which diverges as �ξ → 0, indicating that the most important

role is played by particles close to the trapping boundary. The

width of this boundary layer is limited from below by the

requirement νeff � �E , which implies �ξ � (ν/�E)1/2 and

results in the diffusion coefficient

Di ∼ ν1/2v2
d

�
3/2
E

in what is, accordingly, called the
√

ν-regime.

When a shallowly trapped ion orbit is convected poloidally

by the E × B drift into a region of lower magnetic mirror

ratio, it will undergo collisionless detrapping, and when it is

convected back into the region with higher mirror ratio, it will

again ultimately become trapped. The collisional scattering

of ions with such orbits results in a random walk with a

diffusion coefficient proportional to the collision frequency,

so that the
√

ν-regime metamorphoses into a ν-regime at low

collisionality.

This situation, with a negative radial electric field, the

electrons in the 1/ν-regime (2) and the ions in the
√

ν-regime

(or ν-regime), is typical but does not always apply. The

ambipolarity equation (electron flux = ion flux) determining

4



Plasma Phys. Control. Fusion 54 (2012) 124009 P Helander et al

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ν*

10
-3

10
-2

10
-1

10
0

10
1

D
* 11

Tokamak

W7-X

√ν  

  
Plateau PS

Figure 4. The so-called ‘mono-energetic’ diffusion coefficient
(see [29] for details) versus collisionality, ν∗ = νR/ιv, where ν is
the mono-energetic pitch-angle-scattering frequency, R is the major
radius and v is the speed of the particles, in the standard
configuration of W7-X (bold) and a tokamak (dashed) with similar
aspect ratio (r/R = 0.255/5.527) and an elongation of 1.5. The
asymptotic regimes are indicated by dotted straight lines. In the
order of increasing collisionality: the

√
ν-regime, the 1/ν-regime,

the plateau regime and the Pfirsch–Schlüter regime. At very low
collisionality (below the range shown) the transport again becomes
proportional to ν. The diffusivity has been normalized to the plateau
value in a circular tokamak, and the radial electric field has been
chosen as Er/vB = 3 × 10−5, where B is the magnetic-field
strength.

the radial electric field is highly nonlinear and generally has

three roots for the electric field. The ‘ion root’ corresponds to

the scenario just described, one root is always unstable, and

the ‘electron root’, with Er > 0, is typically realized when the

electrons are subject to strong and localized heating. Finally,

it should be mentioned that there are also other collisionality

regimes, and that the different regimes are not always well

separated from each other. In practice, therefore, it is usually

necessary to calculate the neoclassical transport numerically

[29]. Figure 4 shows the typical result of such a calculation,

with the different regimes indicated by straight lines.

4.2. Plasma rotation

All of this is very different from axisymmetric devices, where

the neoclassical transport is usually small and intrinsically

ambipolar in lowest order. The physics of plasma rotation is

therefore qualitatively different in tokamaks and stellarators.

An axisymmetric plasma is essentially free to rotate as it

pleases. The angular momentum is a conserved quantity,

just like mass and energy, and can only change because it

is transported radially. The rotation profile is determined

by this transport and by the sources (NBI) and sinks

(friction against neutral atoms) of angular momentum, and

the relaxation towards a steady-state rotation profile occurs

on the confinement time scale. The toroidal rotation velocity

frequently reaches a considerable fraction of the ion thermal

speed, vTi
, even in the absence of deliberate momentum

sources.

In stellarators, however, it follows immediately from

the drift-kinetic equation that such fast rotation is generally

impossible [31]. In fact, this conclusion is reached already

in zeroth order of the gyroradius expansion and is therefore

independent of any turbulent fluctuations, regardless of their

nature, as long as they are small. Moreover, plasma rotation

turns out to be impeded even in quasisymmetric stellarators

[32, 33].

Proceeding to the next order in ρ∗ = ρi/L, where ρi

is the ion gyroradius and L is the macroscopic length, one

may ask what governs plasma rotation comparable to the

diamagnetic velocity V ∼ ρ∗vTi
. Again, the situation is very

different in stellarators and in tokamaks. In stellarators, the

rotation is set by the requirement that the transport should be

ambipolar. Because the turbulent transport is automatically

ambipolar in the gyrokinetic approximation [34], regardless

of the magnetic geometry and of whether the transport is

electrostatic or electromagnetic, it is the neoclassical transport

that determines the radial electric field on length scales

exceeding the gyroradius [35]. Zonal flows are still possible,

but have qualitatively different characteristics from those in

tokamaks [36, 37]. In tokamaks, the neoclassical transport

is automatically ambipolar, so one must proceed yet one

order higher in the ρ∗-expansion, where the rotation is set by

neoclassical and turbulent momentum transport. An exception

occurs if the axisymmetry is broken by error fields. The

neoclassical transport then becomes non-ambipolar and sets

the rotation—a phenomenon somewhat misleadingly referred

to as neoclassical toroidal viscosity.

4.3. Quasisymmetric and quasi-isodynamic stellarators

Nearly all the differences between stellarators and tokamaks

concerning neoclassical transport disappear in one important

limit, namely, when the stellarator is exactly quasi-

axisymmetric [38] or quasi-helically symmetric [39, 40].

There are a number of equivalent mathematical definitions of

these concepts, e.g.

• B(ψ, θ, ϕ) = |B| should be expressible as a function

of the flux-surface label ψ and a single helicity angle,

mθ − nϕ, where m and n are integers, and (θ, ϕ) are

Boozer or Hamada angles;

• [(B × ∇ψ) · ∇B]/(B · ∇B) should depend only on ψ ;

• B · ∇B should be a function only of ψ and B;

• B should be a periodic function of the arc length on each

flux surface, B(ψ, l + L(ψ)) = B(ψ, l).

Each of these statements is equivalent to all the others if

the rotational transform is irrational and the flow is small,

V ∼ ρ∗vTi
, and they all then imply that the usual drift-

kinetic equation is isomorphic to that in a tokamak [41].

The neoclassical transport properties are therefore similar to

lowest order in ρ∗. Thus, in the exactly quasisymmetric

limit, there are no regimes of 1/ν- or
√

ν-transport, and

the neoclassical transport is intrinsically ambipolar. The

transport coefficients are numerically different from those in a

tokamak—the bootstrap current can for instance be negative—

but they do not need to be calculated anew; there is a

simple recipe for converting them between axisymmetric and

quasisymmetric configurations [41, 43]. However, it is not

possible to achieve exact quasisymmetry [42], and a small

violation of the symmetry can sometimes lead to substantially

5
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enhanced transport. For instance, all stellarator designs have

a clear 1/ν-regime, even those that have been optimized to be

quasisymmetric, but the coefficient in front of this scaling can

be made to be much smaller than in a classical stellarator [29].

Unlike quasi-axisymmetry and quasi-helical symmetry,

it is not possible to achieve quasi-poloidal symmetry to any

particularly high degree of approximation, at least not in the

vicinity of the magnetic axis, where the pressure gradient

vanishes in the expression

κ = µ0∇p

B2
+

∇⊥B

B
,

implying that the magnetic-field strength increases in the

direction of the curvature vector κ and therefore cannot be

independent of the poloidal angle θ .

Whilst quasisymmetry makes a stellarator as similar as

possible to a tokamak, in some sense, it is not a necessary

condition for achieving good neoclassical confinement.

Mathematically, what is required is that the parallel adiabatic

invariant,

J =
∫

mv‖ dl,

should be (approximately) constant on flux surfaces for all

trapped orbits, where the integral is taken along the field

between two consecutive bounce points. Differentiation of

J at constant energy and magnetic moment gives the bounce-

averaged drift

ψ̇ = 1

Zeτb

∂J

∂α
, (3)

α̇ = − 1

Zeτb

∂J

∂ψ
, (4)

where τb is the bounce time, Ze is the charge, the magnetic field

has been written as B = ∇ψ ×∇α, and an overbar denotes the

bounce average. Here ψ measures the toroidal flux and α =
θ − ιϕ labels the different field lines on each flux surface. A

configuration with vanishing bounce-averaged drift, ∂J/∂α =
0, is called omnigenous [44], and if the contours of constant

magnetic-field strength are poloidally, but not toroidally,

closed one speaks of quasi-isodynamic configurations [45, 46].

W7-X is the first stellarator to approach quasi-isodynamicity

(close to the axis at high beta) but substantially more quasi-

isodynamic designs have been found in recent years [47],

although exact quasi-isodynamicity is impossible to achieve

[48]. Whereas the neoclassical transport coefficients generally

have to be calculated numerically in most stellarators, the

exactly omnigenous or quasi-isodynamic limit is amenable to

analytical treatment [49].

The bootstrap current is positive in quasi-axisymmetric

stellarators, negative in quasi-helically symmetric ones, and

is close to zero in quasi-isodynamic devices [29, 50, 51]. The

latter have the additional property that the Pfirsch–Schlüter

current closes within each period of the configuration [47].

This property follows from the fact that the streamlines of

the current are tangential to the level curves of maximum

magnetic-field strength, and therefore close poloidally. Quasi-

isodynamic stellarators therefore have small Shafranov shift.

4.4. Particle transport

When stellarators are optimized for low neoclassical transport

the goal is, of course, to bring it down to a level comparable

to (or below) that expected from the turbulence. Because of

the strong temperature scaling in the 1/ν-regime, neoclassical

transport tends to dominate in the centre of the plasma, and

sometimes in almost the entire plasma volume [52]. But even

if the magnitude of the neoclassical transport has been reduced

to an acceptable level, it may nevertheless cause problems

concerning particle confinement.

The neoclassical particle flux of each species a is of the

form

〈Γa · ∇r〉 = −na

∑

b

[

Dab
1

(

d ln nb

dr
+

eb

Tb

dφ

dr

)

+ Dab
2

d ln Tb

dr

]

,

(5)

where r is an arbitrary flux-surface label and the sum is taken

over all the species b present in the plasma. The terms with

b �= a are due to the friction along B between the different

species and are in stellarators negligible in comparison with the

b = a term at low collisionality. In contrast to tokamaks, the

radial electric field, Er = −dφ/dr , enters as a thermodynamic

force. As already mentioned, Er is determined by the

requirement of ambipolarity and is negative under the usual

ion-root conditions. For heavy impurities, whose charge

ea = Ze is large, the electric field thus tends to cause impurity

accumulation. This is a stronger effect than neoclassical

impurity accumulation in tokamaks, which is caused by the

friction force between bulk ions and impurities and leads to an

inward flux of the latter at a rate proportional to the density

and temperature gradients of the former [53].

The second potential problem caused by neoclassical

particle transport has to do with the fact that, in all stellarator

collisionality regimes, Dab
2 is positive, so that the temperature

gradient in equation (5) causes outward particle flux and thus

tends to create a hollow density profile [54]. Such profiles have

been observed on LHD and may necessitate central particle

fuelling in a reactor.

It may be possible to solve both these problems by making

the magnetic field approximately quasi-isodynamic, so that the

outward thermodiffusion and the radial electric field are very

small [55]. Very good collisionless particle-orbit confinement

is also necessary for confining fast ions. W7-X enjoys good

fast-particle confinement only at high beta and close to the

magnetic axis.

5. Microinstabilities and turbulence

5.1. Analytical considerations

Although the neoclassical transport is much larger than in

tokamaks, turbulence also contributes significantly to the

transport in stellarators, particularly in cooler parts of the

plasma, where 1/ν-transport does not occur. The study of

stellarator microinstabilities is, however, still in its infancy,

and there is not much in the way of analytical theory in the

literature. In a generic stellarator, one expects broadly the

same microinstabilities to be present as in a tokamak, but

6
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their strength can be different, and the freedom to design the

magnetic field appropriately may make it possible to reduce

their growth rates [56].

To keep the discussion as simple as possible, we restrict

our attention to collisionless instabilities in the electrostatic

approximation. (For a general background to the mathematical

apparatus in the tokamak context, see, e.g. [57]). We adopt the

ballooning representation [22], writing for each perturbation

φ(ψ, θ, ϕ) =
∞

∑

k=−∞
φ̃(ψ, θ − 2πk, ϕ), (6)

which automatically ensures periodicity in θ , whatever the

choice of the function φ̃, and we write

φ̃(ψ, θ, ϕ) = φ̂(ψ, θ, ϕ)eiS(ψ,α), (7)

where φ̂ varies slowly in all directions and S is constant

along the magnetic field but varies rapidly across it. The

functions φ̂(ψ, θ, ϕ) and eiS(ψ,α) = eiS(ψ,θ−ιϕ) need not be

periodic in θ but are supposed to be 2π -periodic in ϕ, so that

φ(ψ, θ, ϕ) also acquires this periodicity. The wave vector is

k⊥ = kψ∇ψ + kα∇α, where kψ = ∂S/∂ψ and kα = ∂S/∂α.

The gyrokinetic equation for the non-adiabatic part of the

distribution function of each species, ga = fa1 + (eaφ/Ta)fa0,

now becomes

iv‖∇‖ĝa + (ω − ωda)ĝa = eaφ̂

Ta

J0(k⊥v⊥/�a)
(

ω − ωT
∗a

)

fa0,

where ωda = k⊥ · vda denotes the drift frequency and ωT
∗a =

ω∗a[1 + ηa(x
2 − 3/2)], with ω∗a = (Takα/naea)dna/dψ ,

ηa = d ln Ta/d ln na , �a = eaB/ma and x2 = mav
2/2Ta .

The system is closed by the quasineutrality condition

∑

a

nae
2
a

Ta

φ̂ =
∑

a

ea

∫

ĝaJ0d3v. (8)

In the usual drift-wave ordering,

k‖vTi
≪ ω ≪ k‖vTe

, (9)

k⊥ρe ≪ k⊥ρi ∼ O(1),

it is straightforward to solve the gyrokinetic equation for ions

and trapped electrons, respectively,

ĝi = ω − ωT
∗i

ω − ωdi

eJ0φ̂

Ti

fi0, (10)

ĝtr
e = −ω − ωT

∗e

ω − ωde

eφ̂

Te

fe0, (11)

where an overbar again denotes the bounce average. For

circulating electrons the non-adiabatic response is a factor

ω/k‖vTe
smaller than ĝtr

e and will be neglected.

The purely curvature-driven ion-temperature-gradient

(ITG) mode results from making these approximations and,

additionally, neglecting the non-adiabatic electron response

altogether, i.e. setting ge = 0. The dispersion relation obtained

from equations (8) and (10) is then identical to that in a tokamak

with the same local drift frequency ωdi, and has been treated,

e.g., in [58]. Because of the locality assumption, k‖vTi
≪ ω,

there is no difference between a tokamak and a stellarator

with the same local radius of curvature of the magnetic field.

However, the validity of the approximation is more restricted

in stellarators, because the connection length along B between

regions with different physical conditions tends to be shorter.

In the tokamak, this length is of order qR = R/ι whereas in

stellarators it is rather the toroidal extent of one period of the

device. One therefore expects ITG modes to be less curvature-

driven and more slab-like—an expectation that is indeed borne

out in numerical simulations.

Collisionless trapped-electron modes (TEMs) are obtained

by retaining the response (11), in particular the resonance in the

denominator. The simplest description is obtained by treating

the trapped-particle fraction as small and neglecting the mag-

netic drift frequency by taking ωdi/ω ≪ 1 [59]. Thus, in

leading order inserting

ĝi =
(

1 − ωT
∗i

ω

)

eJ0φ̂

Ti

fi0,

and ge = 0 in equation (8) gives the drift-wave dispersion

relation
ω

ω∗e

= Ŵ0 + ηi(Ŵ1 − Ŵ0)

τ (1 − Ŵ0) + 1
, (12)

where τ = Te/Ti, Ŵn = In(b)e−b, In is a modified Bessel

function and b = k2
⊥Ti/(mi�

2
i ). The asymptotic forms are [60]

ω ≃ ω∗e, b ≪ 1,

ω

ω∗e

≃ 1 − ηi/2

(1 + τ)
√

2πb
, b ≫ 1,

and one finds numerically from equation (12) that ω/ω∗e is

always positive if 0 < ηi < 1.64, so that the drift wave

then propagates in the electron diamagnetic direction for all

wave numbers. Its stability is determined in the next order

of our expansion in the number of trapped particles, where

the denominator in the electron response (11) provides the

possibility of a resonant drive. But this resonance, ω = ωde,

only exists if ω∗eωde > 0 (assuming ηi < 1.64), so that

the electrons precess in the same direction that drift waves

propagate. For modes with kψ = 0, or in omnigenous

configurations, where according to equation (4)

ωde = kαvde · ∇α = kα

eτb

∂J

∂ψ
,

this requires

ω∗eωde = − k2
αTe

nee2τb

∂J

∂ψ

dne

dψ
> 0.

In maximum-J configurations, i.e. where ∂J/∂ψ < 0, one does

thus not expect collisionless TEMs, at least not in their usual

guise. (Any instability would have to be driven by a resonance

with the ions or subthermal electrons with v‖ ∼ ω/k‖ ≪
vTe

.) Physically, the requirement ∂J/∂ψ < 0 means that

the bounce-averaged curvature is favourable, which according

7
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to equation (4) leads to reversal of the precessional drift. In

tokamaks, this requirement is met by trapped particles whose

bounce points lie sufficiently far into the inboard side of the

torus that the particles spend most of their time in the good-

curvature region. But deeply trapped particles have positive

∂J/∂ψ in a typical tokamak, reflecting the circumstance that

the bad-curvature region coincides with the trapping region.

This need not be the case in stellarators, and, indeed, perfectly

quasi-isodynamic stellarators are maximum-J devices. As we

have just seen, the simplest form of the TEM is not present

in such configurations, and in [61] it is shown from basic

energy considerations that any particle species with k‖vT a ≫ ω

and 0 < ηa < 2/3 exerts a stabilizing influence on arbitrary

electrostatic, collisionless instabilities. Physically, the point is

that, because J is an adiabatic invariant, if an instability with

ωτb ≪ 1 results in the radial movement �ψ of a particle, then

�J = ∂J

∂ψ
�ψ +

∂J

∂E
�E = 0,

where E is the kinetic energy and ∂J/∂E > 0. The particle

must therefore gain an amount of energy equal to

�E = −∂J/∂ψ

∂J/∂E
�ψ,

at the expense of the instability in question. The condition

∂J/∂ψ < 0 thus promotes stability if dn/dψ < 0.

We are thus led to the conclusion that density-gradient-

driven TEMs should be stable within the usual ordering (9),

whose limitations should, however, not be forgotten. Since

ω ∼ ω∗e ∼ k⊥ρivTi
/Ln, where Ln is the length scale of the

radial density profile, we have

ω

k‖vTe

∼ k⊥ρi

k‖Ln

√

me

mi

.

If the density gradient or the parallel wavelength is sufficiently

large, this quantity will not be much smaller than unity and the

ordering (9) will be violated.

5.2. Gyrokinetic simulations

Only relatively recently have gyrokinetic codes for stellarator

geometry become available [62–66], and not enough informa-

tion has accumulated from these to say anything definite about

the turbulence properties of various configurations. Most of the

codes operate in flux-tube geometry or have only very recently

become able to treat an entire flux surface, and others only

solve the linear gyrokinetic equation. Nearly all the simula-

tions have been made in the electrostatic approximation, most

of them with adiabatic electrons, and none have (to our knowl-

edge) included collisions. Nevertheless, from those simula-

tions that have been carried out, some important differences

between stellarators and tokamaks appear to be emerging.

The EUTERPE code [62] has in recent months performed

the first global and electromagnetic, but linear, gyrokinetic

simulations of a stellarator, and preliminary results are shown

in figure 5. These simulations treat both the ions and

the electrons kinetically, with the correct mass ratio, and

the geometry is that of the high-mirror configuration of

0 1 2 3 4 5
β[%]

0
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0.1

0.15

0.2
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0.35
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γ 
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0
6
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Figure 5. Growth rate of the fastest-growing mode versus 〈β〉 in
Wendelstein 7-X, calculated by the global, electromagnetic,
gyrokinetic code EUTERPE. Unlike the typical situation in a
tokamak, there is no sign of rapidly growing kinetic ballooning
modes at high 〈β〉.

Wendelstein 7-X, with constant density, electron temperature

Te = 8.2 keV, and an ion temperature profile given by

ln
Ti(s)

Ti(s0)
= − κT

1 − sech2 s0

w

×
[

w tanh

(

s − s0

w

)

− (s − s0)sech2 s0

w

]

,

where s ∈ [0, 1] is the normalized toroidal flux, κT = 3.5, s0 =
0.5, w = 0.3, and Ti(s0) = 8.2 keV. The code solves an

initial-value problem, and figure 5 shows the growth rate of

the resulting fastest-growing linear mode in the system. As in

tokamaks, the growth rate is seen to drop with increasing beta,

but unlike the situation in a typical tokamak this trend continues

all the way to 〈β〉 = 5% and is not interrupted by the growth

of kinetic ballooning modes, presumably because the device

has been optimized for good ideal-MHD stability and the

ideal-MHD ballooning threshold is considerably higher than

in most tokamaks. As 〈β〉 increases, the equilibrium changes

because of plasma diamagnetism in the direction of becoming

more quasi-isodynamic, which would have a stabilizing effect

on microinstability even if the electromagnetic terms were

ignored in the gyrokinetic equation.

The GENE and GS2 codes were both originally developed

to operate in tokamak flux-tube geometry, but have later been

extended to be able to treat stellarator flux tubes [64, 66].

GS2 found the linear threshold for ITG modes with adiabatic

electrons in NSCX to be a/LTi
≃ 1–2, where a is the

minor radius and LTi
the ITG scale length, and electrostatic

simulations with kinetic electrons also found density-gradient-

driven TEMs, in agreement with earlier simulations using the

FULL code [63].

The stellarator version of GENE has now been developed

a step further so that it can make simulations of an entire

flux surface (or, more commonly, of one period thereof) but

still makes a local approximation in the radial direction. The

Japanese GKV code has undergone a similar extension [67],

which appears necessary since, in stellarators, different flux

8
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tubes (of finite length) on the same flux surface can have

different microinstability properties. The most unstable flux

tube in a stellarator is usually the one that crosses the outboard

midplane in one of the up–down symmetric poloidal cross

sections, in W7-X and NCSX in the bean-shaped cross section.

From the full-surface version of GENE, it appears that the flux

surface as a whole is somewhat more stable than the most

unstable flux tube: the latter may support a locally growing

mode even though the flux surface as a whole is linearly

stable. On the other hand, from nonlinear simulations of

ITG modes with adiabatic electrons it appears that turbulence

may still be present in such situations. That is, stellarator-

specific ‘subcritical’ turbulence may be present if the gradients

are chosen in the interval where some flux tubes are locally

unstable but the flux surface as a whole is not.

The mode structure of microinstabilities depends on the

magnetic-field geometry and is thus different in tokamaks and

stellarators [68–70]. In both types of devices, the curvature

is usually most unfavourable on the outboard side of the

device, and the turbulent fluctuations are observed to peak

there, see figure 6. However, the local magnetic shear tends

to be much larger in stellarators and serves to localize the

fluctuations; in fluid simulations of W7-X a sudden drop

in fluctuation amplitude is observed where a magnetic field

line crosses the ‘helical edge’ [71]. In the context of a

Figure 6. Root-mean-squared electrostatic potential on a W7-X flux
surface in GENE simulations of ITGs with adiabatic electrons in
W7-X. The turbulence peaks on the outboard side, where the
magnetic-field curvature is unfavourable, and the fluctuations extend
for about one period along the magnetic field.

Figure 7. The same quantity as in figure 6 as a function of the toroidal and poloidal Boozer angles. Also plotted (in black) are level curves
of |∇α|2, from which it appears that the turbulence does not penetrate into regions where this quantity is large.

GENE simulation with adiabatic electrons, this effect is further

illustrated by figure 7, which shows level curves of root-mean-

squared potential fluctuations as functions of the poloidal and

toroidal Boozer angles. These structures are elongated along

the magnetic field, but substantially less so than in a typical

tokamak. Instead of extending all the way around the torus,

each one of them is limited to about one period of the device.

In the figure, level curves of |∇α|2 are also shown, and it

appears that the turbulence shuns regions where this quantity

is large, i.e. where the flux tubes are strongly compressed in

the direction of ∇α.

Most stellarators have negative (or very small) global

magnetic shear according to the tokamak definition, q ′ =
−ι′/ι2 < 0, which tends to be stabilizing for curvature-

driven modes. That this is the case also in stellarators was

observed in nonlinear fluid turbulence simulations by Kleiber

and Scott [71]. Antonsen et al [72] suggested a physical

mechanism based on the poloidal tilting of turbulent eddies

induced by the magnetic shear, and figure 8 shows evidence

of this phenomenon. As seen in the figure, the eddies are

horizontal at α = 0, which corresponds to the outboard

midplane in the bean-shaped cross section and ‘fan out’ from

this region in the manner envisaged by Antonsen et al. Similar

observations have been made in simulations of tokamaks with

negative magnetic shear [73].

In summary, it is too early to say whether gyrokinetic

turbulence is more benign in stellarators than in tokamaks.

It appears that stellarators should benefit from their negative

global magnetic shear, their large local shear (which assumes

both positive and negative values, and peaks where the flux

surface is strongly bent), and the fact that trapping regions do

not necessarily overlap with regions of bad curvature. On the

other hand, they suffer from a larger area-to-volume ratio and

from zonal-flow damping through electron collisions because

of non-ambipolar neoclassical transport.

6. Edge and divertor physics

The differences between tokamak and stellarator divertor

physics have recently been reviewed by Feng et al [74], and will

therefore only be outlined briefly here. Only two stellarators,

9
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W7-AS and LHD, have operated with proper divertors, and

these are geometrically very different from each other. LHD

has a helical divertor with a partially stochastic magnetic field,

whereas W7-AS used the naturally occurring chain of magnetic

islands beyond the last closed flux surface to divert the escaping

plasma to divertor plates, see figure 9. W7-X is also being built

with an island divertor based on this concept, which makes the

connection length to the target an order of magnitude longer

than in similarly shaped tokamaks. In the latter, the magnetic

field is diverted by a poloidal field of comparable magnitude

to that produced by the plasma current, Bθ/B ∼ 0.1. In

contrast, an island divertor uses a small but resonant radial

magnetic field, Br/B ∼ 10−3, to produce the chain of magnetic

islands used for the divertor. In LHD, the connection length

varies widely from field line to field line, but is also very long

for most of the stochastic edge. This circumstance makes

the perpendicular transport much more important than in the

tokamak scrape-off layer. Whereas in tokamaks most of the
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Figure 8. Snapshot of potential fluctuations in GENE simulations
with adiabatic electrons of W7-X, as a function of the local radial
coordinate x = r − r0 and Clebsch-angle y = α = θ − ιϕ.

Figure 9. The island divertor of W7-AS.

heat flux across the scrape-off layer is carried to the targets

by parallel heat conduction, especially in the electron channel,

the perpendicular transport can in stellarators either be more

or less important than the parallel one.

The greater importance of cross-field transport could be

beneficial for impurity retention in the divertor [74]. Coulomb

collisions between heavy impurity ions (Z) and bulk plasma

ions (i) lead to two forces on the former: a friction force

proportional to the velocity difference Vi‖ − VZ‖, which tends

to flush the impurities towards the target, and a thermal force

proportional to the bulk-ion temperature gradient ∇‖Ti, which

drives the impurities towards the hot core plasma. In tokamaks,

the latter force tends to be stronger, but in stellarators

numerical modelling suggests that a friction-dominated regime

is accessible in LHD as well as in W7-AS and W7-X [75].

Another obvious difference between the poloidal divertor

in a tokamak and the island divertor in a stellarator is that

the latter have many more X-points, which, in contrast to

the tokamak, are not axisymmetric but are wound around the

torus. Regions of strong plasma radiation tend to be located

in the vicinity of such points, perhaps because the wider flux-

surface separation reduces the cross-field heat flux, and the

larger number of X-points thus help to spread the radiation

more evenly over the first wall. On the other hand, the very

fact that stellarators are non-axisymmetric of course makes the

radiation pattern, as well as the divertor heat flux, toroidally

non-uniform.

Numerical simulations [76] suggest that about 3/4 of

the power in W7-AS could be radiated away by carbon

impurities outside the separatrix, and even higher radiative

fractions were recorded experimentally [11]. This is in

stark contrast to tokamaks, where such strong radiative

losses are associated with MARFE formation resulting in

highly localized deposition, and where much of the radiation

originates from inside the separatrix.

10
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The edge magnetic structure in helical devices is
determined by the rotational transform in the edge region.
Because of the low shear in W7-X, a resonant field of order
δB/B ∼ 10−4–10−3 can generate divertor-relevant islands.
Any additional perturbation field of the same order, either from
error fields or from plasma currents, can modify the island
structure significantly. In addition, the radial location of the
resonance on which the divertor island resides is sensitive to the
net toroidal plasma current, and thus to the bootstrap current.
Thus, error-field compensation and plasma current control are
essential for the island divertor, whereas a divertor with larger
shear and a stronger, richer intrinsic field spectrum like the
LHD divertor should be more robust against variations in the
plasma current.

A final difference between tokamak and stellarator
divertors is that the geometry of the plasma flow is more
complex in the latter, making it more likely that counter-
streaming plasma flows come close to each other, whereas
in the tokamak the flows to the inner and outer targets are
well separated. Because of the momentum exchange between
such counter-streaming flows, the (thermal + kinetic) pressure
need not be constant along the field. This is believed to
explain why no high-recycling regime is observed in LHD
or W7-AS. In W7-X, however, the islands are larger and the
plasma flows around them sufficiently well separated that a
high-recycling regime is predicted [74]. In contrast, one does
not expect that an increase in size would sufficiently separate
counter-streaming flows in a helical divertor of the LHD type.
Because of the large magnetic shear, multiple island chains
exist and overlap to form a stochastic zone. Overlapping
islands with different mode numbers have different poloidal
phases, and counter-streaming flows on neighbouring island
chains approach each other radially at poloidal positions where
they are oppositely phased.

7. Conclusions

The stellarator has both advantages and disadvantages
compared with the tokamak. Intrinsic steady state and
freedom from disruptions are great advantages, technical
complexity a disadvantage. Macroscopic stability is better
than in the tokamak, neoclassical confinement is worse,
whereas turbulence and edge plasma performance are probably
comparable and perhaps better. But above all, stellarator
plasma physics is less well understood, and the number of
possible configurations is much larger than for tokamaks.
Boozer has estimated the number of degrees of freedom
to be about 4 for axisymmetric systems and ∼50 for non-
axisymmetric ones [77]. So far, this freedom has mainly been
used to improve MHD stability and neoclassical confinement.
If the remaining freedom can be exploited to reduce turbulence
and optimize edge behaviour, stellarators would become even
more attractive for fusion power production.
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Supercomputing Center (JSC) and the Helios supercomputer

in Japan.

References

[1] Spitzer L Jr 1951 Project Matterhorn Report PM-S-1
NYO-993, Princeton University

[2] Shafranov V D 1980 Nucl. Fusion 20 1075
[3] Spitzer L 1958 Phys. Fluids 1 253
[4] Mercier C 1964 Nucl. Fusion 4 213
[5] Lortz D and Nührenberg J 1976 Z. Naturf. 31 1277
[6] WVII-A Team 1980 Nucl. Fusion 20 1093
[7] Hegna C C and Callen J D 1994 Phys. Plasmas 1 3135
[8] Hayashi T, Sato T, Merkel P, Nührenberg J and Schwenn U

1994 Phys. Plasmas 1 3262
[9] Narushima Y, Watanabe K Y, Sakakibara S, Narihara K,

Yamada I, Suzuki Y, Ohdachi S, Oyabu N, Yamada H,
Nakamura Y and LHD Experimental Group 2008 Nucl.
Fusion 48 075010

[10] Hegna C C 2012 Phys. Plasmas 19 056101
[11] Hirsch M et al 2008 Plasma Phys. Control. Fusion 50 053001
[12] Yamada H 2012 private communication
[13] Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27
[14] Gates D A and Delgado-Aparicio L 2012 Phys. Rev. Lett.

108 165004
[15] Cooper W A, Brocher L, Graves J P, Narushima Y and

Watanabe K Y 2010 Contrib. Plasma Phys. 50 713
[16] Drevlak M, Monticello D and Reimann A 2005 Nucl. Fusion

45 731
[17] Kolesnichenko Ya I, Könies A, Lutsenko V V and

Yakovenko Yu V 2011 Plasma Phys. Control. Fusion
53 024007

[18] Grad H 1967 Phys. Fluids 10 137
[19] Hudson S R and Nakajima N 2010 Phys. Plasmas 17 052511
[20] Hirshman S P, van Rij W I and Merkel P 1986 Comput. Phys.

Commun. 43 143
[21] Hudson S R, Dewar R L, Hole M J and MacGann M 2012

Plasma Phys. Control. Fusion 54 014005
[22] Dewar R L and Glasser A H 1983 Phys. Fluids 26 3038
[23] McMillan B F and Dewar R L 2006 Nucl. Fusion 46 477
[24] Gibson A and Taylor J B 1967 Phys. Fluids 10 2653
[25] Galeev A A and Sagdeev R Z 1979 Reviews of Plasma Physics

ed M A Leontovich (New York: Consultants Bureau) vol 7
p 307

[26] Kovrizhnykh L M 1984 Nucl. Fusion 24 435
[27] Ho D D-M and Kulsrud R M 1987 Phys. Fluids 30 442
[28] Mynick H E 2006 Phys. Plasmas 13 058102
[29] Beidler C D et al 2011 Nucl. Fusion 51 076001
[30] Tribaldos V and Guasp J 2005 Plasma Phys. Control. Fusion

47 545
[31] Helander P 2007 Phys. Plasmas 14 104501
[32] Simakov A N and Helander P 2011 Plasma Phys. Control.

Fusion 53 024005
[33] Sugama H, Watanabe T-H, Nunami M and Nishimura S 2011

Phys. Plasmas 18 082505
[34] Sugama H, Okamoto M, Horton W and Wakatani M 1996

Phys. Plasmas 3 2379
[35] Helander P and Simakov A N 2008 Phys. Rev. Lett.

101 145003
[36] Sugama H and Watanabe T-H 2006 Phys. Plasmas 13 012501

Sugama H and Watanabe T-H 2007 Phys. Plasmas 14 079902
[37] Helander P, Mishchenko A, Kleiber R and Xanthopoulos P

2011 Plasma Phys. Control. Fusion 53 054006
[38] Nührenberg J, Lotz W and Gori S 1996 Theory of Fusion

Plasmas (Bologna: Editrice Compositori) p 3

11

http://dx.doi.org/10.1088/0029-5515/20/9/005
http://dx.doi.org/10.1063/1.1705883
http://dx.doi.org/10.1088/0029-5515/4/3/008
http://dx.doi.org/10.1088/0029-5515/20/9/008
http://dx.doi.org/10.1063/1.870505
http://dx.doi.org/10.1063/1.870478
http://dx.doi.org/10.1088/0029-5515/48/7/075010
http://dx.doi.org/10.1063/1.3694042
http://dx.doi.org/10.1088/0741-3335/50/5/053001
http://dx.doi.org/10.1088/0741-3335/44/8/201
http://dx.doi.org/10.1103/PhysRevLett.108.165004
http://dx.doi.org/10.1002/ctpp.200900501
http://dx.doi.org/10.1088/0029-5515/45/7/022
http://dx.doi.org/10.1088/0741-3335/53/2/024007
http://dx.doi.org/10.1063/1.1761965
http://dx.doi.org/10.1063/1.3431090
http://dx.doi.org/10.1016/0010-4655(86)90058-5
http://dx.doi.org/10.1088/0741-3335/54/1/014005
http://dx.doi.org/10.1063/1.864028
http://dx.doi.org/10.1088/0029-5515/46/4/008
http://dx.doi.org/10.1063/1.1762089
http://dx.doi.org/10.1088/0029-5515/24/4/004
http://dx.doi.org/10.1063/1.866395
http://dx.doi.org/10.1063/1.2177643
http://dx.doi.org/10.1088/0029-5515/51/7/076001
http://dx.doi.org/10.1088/0741-3335/47/3/010
http://dx.doi.org/10.1063/1.2789989
http://dx.doi.org/10.1088/0741-3335/53/2/024005
http://dx.doi.org/10.1063/1.3624483
http://dx.doi.org/10.1063/1.871922
http://dx.doi.org/10.1103/PhysRevLett.101.145003
http://dx.doi.org/10.1063/1.2149311
http://dx.doi.org/10.1063/1.2748056
http://dx.doi.org/10.1088/0741-3335/53/5/054006


Plasma Phys. Control. Fusion 54 (2012) 124009 P Helander et al

[39] Nührenberg J and Zille R 1988 Phys. Lett. A 129 113
[40] Boozer A H 1995 Plasma Phys. Control. Fusion 37 A103
[41] Boozer A H 1983 Phys. Fluids 26 496
[42] Garren D A and Boozer A H 1991 Phys. Fluids B 3 2822
[43] Landreman M and Catto P J 2011 Plasma Phys. Control.

Fusion 53 015004
[44] Hall L S and McNamara B 1975 Phys. Fluids 18 552
[45] Gori S, Lotz W and Nührenberg J J 1996 Theory of Fusion

Plasmas (Bologna: Editrice Compositori) p 335
[46] Nührenberg J 2010 Plasma Phys. Control. Fusion 52 124003
[47] Subbotin A A et al 2006 Nucl. Fusion 46 921
[48] Cary J R and Shasharina S 1997 Phys. Plasmas 4 3323
[49] Landreman M and Catto P J 2012 Phys. Plasmas 19 056103
[50] Helander P and Nührenberg J 2009 Plasma Phys. Control.

Fusion 51 055004
[51] Helander P, Geiger J and Maaßberg H 2011 Phys. Plasmas

18 092505
[52] Turkin Y, Beidler C D, Maaßberg H, Murakami S, Tribaldos V

and Wakasa A 2011 Phys. Plasmas 18 022505
[53] Helander P and Sigmar D J 2002 Collisional Transport in

Magnetized Plasmas (Cambridge: Cambridge University
Press)

[54] Maaßberg H, Beidler C D and Simmet E E 1999 Plasma Phys.
Control. Fusion 41 1135

[55] Nührenberg J, Zille R, Mikhailov M I and Shafranov V D 2008
Plasma Phys. Rep. 34 525

[56] Mynick H E, Pomphrey N and Xanthopoulos P 2010 Phys.
Rev. Lett. 105 095004

[57] Connor J W, Hastie R J and Taylor J B 1980 Plasma Phys.
22 757

[58] Biglari H, Diamond P H and Rosenbluth M N 1989 Phys.
Fluids B 1 109

[59] Adam J C, Tang W M and Rutherford P H 1976 Phys. Fluids
19 561

[60] Connor J W, Hastie R J and Helander P 2006 Plasma Phys.
Control. Fusion 48 885

[61] Proll J H E, Helander P, Connor J W and Plunk G G 2012
Phys. Rev. Lett. 108 245002

[62] Kornilov V, Kleiber R, Hatzky R, Villard L and Jost G 2004
Phys. Plasmas 11 3196

[63] Rewoldt G, Ku L-P and Tang W M 2005 Phys. Plasmas
12 102512

[64] Xanthopoulos P and Jenko F 2007 Phys. Plasmas 14 042501
[65] Watanabe T H, Sugama H and Ferrando-Margalet S 2007

Nucl. Fusion 47 1383
[66] Baumgaertel J A, Belli E A, Dorland W, Guttenfelder W,

Hammett G W, Mikkelsen D R, Rewoldt G, Tang W M and
Xanthopoulos P 2011 Phys. Plasmas 18 122301

[67] Watanabe T H, Sugama H and Nunami M 2011 Nucl. Fusion
51 123003

[68] Waltz R E and Boozer A H 1993 Phys. Fluids B 5 2201
[69] Kendl A, Scott B D and Wobig H 2000 Plasma Phys. Control.

Fusion 42 L23
[70] Rafiq T, Kleiber R, Nadeem M and Persson M 2002 Phys.

Plasmas 9 4929
[71] Kleiber R and Scott B 2005 Phys. Plasmas 12 102507
[72] Antonsen T M, Drake J F, Guzdar P N, Hassam A B,

Lau Y T, Liu C S and Novakovskii S V 1996 Phys. Plasmas
3 2221

[73] Peterson J L et al 2012 Phys. Plasmas 19 056120
[74] Feng Y, Kobayashi M, Lunt T and Reiter D 2011 Plasma Phys.

Control. Fusion 53 024009
[75] Kobayashi M et al 2009 J. Nucl. Mater. 390–391 325

Feng Y et al 2009 Nucl. Fusion 49 095002
Kobayashi M et al 2010 Fusion Sci. Technol. 58 220

[76] Feng Y, Sardei F, McCormick K, Kisslinger J and Reiter D
2006 Nucl. Fusion 46 807

[77] Boozer A H 2004 Rev. Mod. Phys. 76 1071

12

http://dx.doi.org/10.1016/0375-9601(88)90080-1
http://dx.doi.org/10.1088/0741-3335/37/11A/007
http://dx.doi.org/10.1063/1.864166
http://dx.doi.org/10.1063/1.859916
http://dx.doi.org/10.1088/0741-3335/53/1/015004
http://dx.doi.org/10.1063/1.861189
http://dx.doi.org/10.1088/0741-3335/52/12/124003
http://dx.doi.org/10.1088/0029-5515/46/11/006
http://dx.doi.org/10.1063/1.872473
http://dx.doi.org/10.1063/1.3693187
http://dx.doi.org/10.1088/0741-3335/51/5/055004
http://dx.doi.org/10.1063/1.3633940
http://dx.doi.org/10.1063/1.3553025
http://dx.doi.org/10.1088/0741-3335/41/9/306
http://dx.doi.org/10.1134/S1063780X0806010X
http://dx.doi.org/10.1103/PhysRevLett.105.095004
http://dx.doi.org/10.1088/0032-1028/22/7/013
http://dx.doi.org/10.1063/1.859206
http://dx.doi.org/10.1063/1.861489
http://dx.doi.org/10.1088/0741-3335/48/6/012
http://dx.doi.org/10.1103/PhysRevLett.108.245002
http://dx.doi.org/10.1063/1.1737393
http://dx.doi.org/10.1063/1.2089247
http://dx.doi.org/10.1063/1.2714328
http://dx.doi.org/10.1088/0029-5515/47/9/041
http://dx.doi.org/10.1063/1.3662064
http://dx.doi.org/10.1088/0029-5515/51/12/123003
http://dx.doi.org/10.1063/1.860754
http://dx.doi.org/10.1088/0741-3335/42/11/101
http://dx.doi.org/10.1063/1.1510665
http://dx.doi.org/10.1063/1.2075007
http://dx.doi.org/10.1063/1.871928
http://dx.doi.org/10.1063/1.4718456
http://dx.doi.org/10.1088/0741-3335/53/2/024009
http://dx.doi.org/10.1016/j.jnucmat.2009.01.147
http://dx.doi.org/10.1088/0029-5515/49/9/095002
http://dx.doi.org/10.1088/0029-5515/46/8/006
http://dx.doi.org/10.1103/RevModPhys.76.1071

	1. Introduction
	2. Magnetic field
	3. Macroscopic equilibrium and stability
	3.1. More mathematical issues

	4. Neoclassical transport
	4.1. Typical collisionality regimes
	4.2. Plasma rotation
	4.3. Quasisymmetric and quasi-isodynamic stellarators
	4.4. Particle transport

	5. Microinstabilities and turbulence
	5.1. Analytical considerations
	5.2. Gyrokinetic simulations

	6. Edge and divertor physics
	7. Conclusions
	 Acknowledgments
	 References

