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Tremendous advances in tissue engineering and regenerative medicine have revealed the
potential of fabricating biomaterials to solve the dilemma of bone and articular defects by
promoting osteochondral and cartilage regeneration. Three-dimensional (3D) bioprinting is
an innovative fabrication technology to precisely distribute the cell-laden bioink for the
construction of artificial tissues, demonstrating great prospect in bone and joint
construction areas. With well controllable printability, biocompatibility, biodegradability,
and mechanical properties, hydrogels have been emerging as an attractive 3D bioprinting
material, which provides a favorable biomimetic microenvironment for cell adhesion,
orientation, migration, proliferation, and differentiation. Stem cell-based therapy has
been known as a promising approach in regenerative medicine; however, limitations
arise from the uncontrollable proliferation, migration, and differentiation of the stem cells
and fortunately could be improved after stem cells were encapsulated in the hydrogel. In
this review, our focus was centered on the characterization and application of stem cell-
laden hydrogel-based 3D bioprinting for bone and cartilage tissue engineering.We not only
highlighted the effect of various kinds of hydrogels, stem cells, inorganic particles, and
growth factors on chondrogenesis and osteogenesis but also outlined the relationship
between biophysical properties like biocompatibility, biodegradability, osteoinductivity,
and the regeneration of bone and cartilage. This study was invented to discuss the
challenge we have been encountering, the recent progress we have achieved, and the
future perspective we have proposed for in this field.
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1 INTRODUCTION

Bone and cartilage defects, a worldwide health problem leaving heavy social and family burdens,
originate from diverse causes like trauma, degenerative diseases, congenital defects, tumor, and
infection (osteomyelitis) (Qasim et al., 2019). More than 900 million reconstructive surgery
operations are performed annually in response to all these leading causes of bone defects, far
more than originally thought (Grasman et al., 2015). Bone and cartilage are two essential
components of the body’s skeletal system, with the self-repair property under internal and
external stimulation. But the self-remodeling process could only meet the demand of adapting

Edited by:
Weili Fu,

Sichuan University, China

Reviewed by:
Xiao-Hua Qin,

ETH Zürich, Switzerland
Chaoming Xie,

Southwest Jiaotong University, China

*Correspondence:
Zhihong Li

lizhihong@csu.edu.cn
Chao Tu

tuchao@csu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Biomaterials,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 30 January 2022
Accepted: 18 April 2022
Published: 17 May 2022

Citation:
Yang Z, Yi P, Liu Z, Zhang W, Mei L,
Feng C, Tu C and Li Z (2022) Stem

Cell-Laden Hydrogel-Based 3D
Bioprinting for Bone and Cartilage

Tissue Engineering.
Front. Bioeng. Biotechnol. 10:865770.

doi: 10.3389/fbioe.2022.865770

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8657701

REVIEW
published: 17 May 2022

doi: 10.3389/fbioe.2022.865770

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.865770&domain=pdf&date_stamp=2022-05-17
https://www.frontiersin.org/articles/10.3389/fbioe.2022.865770/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.865770/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.865770/full
http://creativecommons.org/licenses/by/4.0/
mailto:lizhihong@csu.edu.cn
mailto:tuchao@csu.edu.cn
https://doi.org/10.3389/fbioe.2022.865770
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.865770


to the body burden and repairing old micro-damaged tissues.
Moreover, the solutions to repair bone defects including
orthopedic procedures (bone grafts or substitute surgery) and
medication (Gage et al., 20132018) could not implement
successfully for bone and cartilage reconstruction. Therefore,
the need of bone and cartilage reconstruction has assigned an
extremely great market value to bone grafts and related materials
(Zhang et al., 2018), while the liberalization for these orthopedic
procedures must be achieved. In this case, the engineering of soft
and hard tissues for the repair of bone and cartilage tissues has
emerged as a trend that occupied a key factor to boost the market
value (Pereira et al., 2018).

Three-dimensional (3D) printing was first introduced by Hull
andWarfel (1986). As he described, thin layers of a material could
be cured with ultraviolet light and then be printed in layers to
form a solid 3D structure. Nowadays, it has been considered as a
scientific hot button in the tissue engineering and biomedical field
(Jain et al., 2019). Three-dimensional bioprinting is an
evolutionary form of tissue engineering, which allows many
cells and biomaterials to be dispensed with micrometer
precision (Murphy and Atala, 2014; Moroni et al., 2018).
Various 3D bioprinting technologies have been reported for
the fabrication of different kinds of biological structures such
as blood vessels, liver, bone, and heart (Zhu et al., 2016).
Especially, scientists have produced promising prototypes of
the clinically and mechanically robust bone with a functional
bone marrow (Zhang et al., 2019a). Therefore, 3D bioprinting
technology for bone and cartilage tissue engineering has evolved
into the most promising therapeutic strategy the reconstruction

(Qasim et al., 2019; Ashammakhi et al., 2019; Daly et al., 2017;
Huang et al., 2019) (Figure 1). Three-dimensional bioprinting
refers to using hydrogels to create complex constructs in a rapid
and customizable manner, which has the capability of controlling
cell distribution, high-resolution cell deposition, scalability, and
cost-effectiveness. More importantly, the elements for 3D
bioprinting should be characterized with low viscosity, porous,
nontoxic, biodegradable, biocompatible, and promoting cell
differentiation and tissue regeneration (Polo-Corrales et al.,
2014; Tao et al., 2020). Hydrogels play the most essential role
in 3D bioprinting because they could not only be elaborately
functionalized or modified to replicate the physicochemical
properties of multiple tissues (Gaharwar et al., 2014) but also
provide a 3D environment similar to that of the native
extracellular matrix (ECM) and deliver biological molecules
like growth factors, drugs, and cells (Hayashi et al., 2009;
Askari et al., 2021). Hydrogels can be composed of natural
polymers and synthetic polymers. Alginate, agarose, hyaluronic
acid (HA), collagen, and fibroin are representative examples for
the former group, and poly(ethylene glycol) (PEG), polymer
oligo(poly(ethylene glycol) fumarate) (OPF), and polyvinyl
alcohol (PVA) are some salient materials for the latter group
(Park et al., 2004; Mauck et al., 2006; Yamaoka et al., 2006;
Markstedt et al., 2015; Hong et al., 2020; Wu et al., 2020; Zhao
et al., 2020; Lamparelli et al., 2021; Liu et al., 2021). An ideal
hydrogel network for bone and cartilage engineering should
support cell growth/proliferation, maintain phenotypes of
chondrocytes/osteoblasts, and promote chondrogenic/
osteogenic differentiation of stem cells for recapitulation of the

FIGURE 1 | Schematic illustration of 3D bioprinting of hydrogels scaffold for repair of bone and cartilage defect. Pre-processing: prepare a mixture using hydrogel,
stem cells, and growth factors; bioprinting: successful 3D bioprinting of biomaterials with physiological cell density in a designed way; post-processing: crosslinking of
bioprinted constructs by UV-ray.
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osteochondral interface or cartilage tissues (Yang et al., 2017).
Bioprinted cells are crucial for correct functioning of the
fabricated construct. More importantly, the cell type and the
number are key important factors in bioprinting. Stem cells are a
promising cell type because of their ability to proliferate in an
undifferentiated but a multipotent state (self-renewal) and their
capability to generate multiple functional tissue-specific cell
phenotypes (Rastogi and Kandasubramanian, 2019). Modified
hydrogels could mimic the microenvironment to guide the
differentiation and maturation of stem cells into functional
tissue constructs, which have great potential to challenge the
regeneration of bone and cartilage defects by promoting
osteogenesis and chondrogenesis (Xu et al., 2019a). The most
commonly studied stem cells include mesenchymal stem cells
(MSCs), induced pluripotent stem cells, embryonic stem cells
(ESCs), and peripheral blood mononuclear cells (PBMCs) (Xu
et al., 2019a; Antich et al., 2020; Guo et al., 2020; Fryhofer et al.,
2021). Levato R et al. obtained MSC-laden polylactic acid
microcarriers via static culture or spinner flask expansion and
encapsulating MSCs in gelatin methacrylamide–gellan gum
bioinks. This bioprinting approach could not only enhance the
stiffness of the hydrogel constructs but also promote cell
adhesion, osteogenic differentiation, and bone matrix
deposition by MSCs (Levato et al., 2014). Thus, stem cell-
laden hydrogel-based 3D bioprinting is a remarkable system to
provide promising therapeutic strategies for bone and cartilage
reconstruction.

Unlike conventional 3D printing techniques that have been
used to print temporary cell-free scaffolds for use in surgery, 3D
bioprinting is a relatively new technology compatible with
depositing living cells. Three-dimensional bioprinting is being
developed not only for transplantation but also for use in drug
discovery, analysis of chemical, biological and toxicological
agents, and basic research. Nowadays, this platform has been
applied to bone and cartilage tissue engineering and is expected to
solve the problematic issues and help to meet the future demands
of cartilage and bone tissue repair. This review focused on the
characterization and application of stem cell-laden hydrogel-
based 3D bioprinting for bone and cartilage tissue engineering.
We first introduce the current prevailing 3D bioprinting
materials, techniques, and main process. Then, emphasis is put
on the process and application of different subtypes of hydrogel
scaffolds with various stem cells or growth factors in repairing
bone and cartilage defects. Then we specifically summarize the
cellular and molecular mechanisms of osteogenesis/
chondrogenesis in bone and cartilage repairing. Finally, we
discussed the challenges we are encountering and proposed
some advice and prospects on improving the stem cell-laden
hydrogel system for the field of bone and cartilage tissue
bioprinting.

2 Strategy of Fabrication of Stem
Cell-Laden Hydrogel-Based 3D Bioprinting
2.1 Materials for 3D Bioprinting
The “raw materials” of bioprinting are formulations of printable
biomaterials known as “bioinks” (Barrs et al., 2020). Hydrogels

present immense superiority in tissue engineering and have
emerged as the most common biomaterials used for 3D
bioprinting. In 1954, Wichterle and Lim synthesized the first
hydrogel (Ruiz et al., 2008). Nowadays, the most widely used
definition for hydrogel is “hydrogel is a water-swollen and cross-
linked polymeric network, produced by the simple reaction of one
or more monomer/polymer/cross-linker units.” They possess a
highly hydrated polymeric structure, which can be easily
modified in response to various physical and biological stimuli
such as temperature, light, pH, ions, and other biochemical
signals (Xu et al., 2008; Gaharwar et al., 2014). As
aforementioned, hydrogels can be further categorized as
natural or synthetic, depending on their source. Naturally
derived hydrogels originate from a biological source, with the
advantage of inherent bioactivity. Generally, researchers show a
preference for natural hydrogels in bone and cartilage tissue
engineering because of their incomparable properties of
biocompatibility, the biodegradability of hydrogel that is
similar to the native bone or cartilage. Synthetic hydrogels are
based on hydrated networks of polymers synthesized using
chemical methods (Qin et al., 2018). Synthetic hydrogels are
favored for their user-defined functionalities because they can be
tailored with specific chemical and physical properties to meet the
specific application requirement. Cross-linking is a key procedure
in controlling these properties of the printed constructs, and
various cross-linking methods have been applied for 3D
bioprinting of hydrogels, such as covalent bonding,
photopolymerization, thermo-gelation, cryo-gelation, and other
noncovalent bonding (Huang et al., 2017). However, challenges
in the use of synthetic hydrogels include poor biocompatibility,
toxic degradation products, and loss of mechanical properties
during degradation. Synthetic hydrogels are attractive for 3D
bioprinting due to the ease of controlling their physicochemical
properties during synthesis.

A wide range of hydrogels possess relevant properties and
superiorities in different tissue engineering applications. Moreover,
an ideal hydrogel should have proper biocompatibility, mechanical,
rheological, biological, and chemical characteristics (Lee et al., 2015)
because they act as a structural scaffold and provide a
microenvironment for encapsulated cells (Khetan et al., 2013;
Gjorevski et al., 2016). First, biocompatibility refers to the
coexistence of the transplant and endogenous tissues, which is a
basic design parameter for bioprinted tissues (Yilmaz et al., 2019). In
addition, the hydrogel scaffold should bemechanically strong to create
an environment that is compatible with cellular activities, such as cell
viability, migration, and proliferation. Specially, it is important for
bone and cartilage tissue engineering because these tissues mainly rely
on the mechanical properties to provide solid physical support. These
mechanical properties include strain, shear stress, compressive
modulus, and mass swelling ratio. Moreover, scientists have made
great effort to strengthen the mechanical properties of the hydrogel
scaffold. For example, hydroxyapatite and graphene oxide were used
to provide adequate mechanical properties for bone regeneration
(Sivashankari andPrabaharan, 2020). Rheological character is theflow
properties of materials under external forces, which is essential for
fidelity and cell viability (Knowlton et al., 2018). Biological and
chemical characteristics refer the tissue-specific modification of the
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printed scaffolds, which are crucial because they are related to cell
growth, differentiation, and organization by direct contact. Moreover,
osteoconduction for scaffold and osteoinduction for bioinks are
important in bone and cartilages tissue engineering.

The choice of cells is crucial for the correct functioning of
bioprinted construct. Current options for 3D bioprinting
cells involve either the deposition of multiple primary cell
types into patterns that represent the native tissue or printing
stem cells that can proliferate and differentiate into required
cell types. Stem cells are widely used because they may
enhance the imitation ability of materials secondary to
their unique features such as their paracrine activity and
the immune-privileged status. Isolated cells can be stabilized
by cross-linking during or immediately after the bioprinting
process to form the final structure of the intended construct.
More importantly, it is well established that the features of
materials have a large influence on bioprinted cells, for
example, cell attachment, size, shape, proliferation, and
differentiation. Maintaining cell viability and bioactivity
should be kept in sight to obtain a good biocompatibility
for bioprinted constructs. In this regard, scientists have made
great effort to decrease the force damages during the printing
process and design an ideal scaffold to preserve cell viability.
In addition, a variety of growth factors/peptides have been
incorporated into bioinks to obtain superior properties for
the bioprinted construct.

2.2 Strategies for 3D Bioprinting
Currently, 3D bioprinting techniques could be divided into four
main categories: extrusion-based bioprinting, inkjet-based
bioprinting, laser-assisted bioprinting, and stereolithography-
based bioprinting (Figure 2). Extrusion-based bioprinting
(EBB) is the most popular technique to build hydrogel
scaffolds, this method uses pneumatic-, piston-, or screw-
driven actuators to extrude bioinks through a nozzle onto a
printing substrate. Almost all types of hydrogel pre-polymer
solutions of varying viscosity as well as aggregates with high
cell density can be printed with extrusion bioprinters. One of the
advantages of this technique is the high structural integrity
because of continuous deposition and a wide range of speed
(Skardal and Atala, 2015). In addition, it has a high flexibility and
enables the production of 3D bioprinted constructs with high cell
density and viability (Ostrovidov et al., 2019). While beneficial,
this method is limited by printing resolution, which is about
100 um (Derakhshanfar et al., 2018). Inkjet-based bioprinting
consists of the thermal, piezoelectric, electrostatic, acoustic,
hydrodynamic, and microvalves mechanisms, using either
electrical heating to produce air-piezoelectric-pressure pulses
to propel droplets from the nozzle. The drop-by-drop bioink
deposition through the nozzle is synchronized with a motorized
stage, allowing the fabrication of 3D constructs (Gudapati et al.,
2016). The advantages of inkjet-based bioprinting include low
cost, high printing speed, and high cell viability. However, it

FIGURE 2 | Schematic images of (A) extrusion-based, (B) inkjet-based, (C) laser-assisted, and (D) stereolithography 3D bioprinting system. (A) Extrusion-based
3D bioprinting: extrusion bioprinters use pneumatics, piston, or screw force to continuously extrude a liquid cell-hydrogel solution. (B) Inkjet-based 3D bioprinting: the
printer heads are deformed by a thermal or piezoelectric actuator and squeezed to generate droplets of a controllable size. (C) Laser-assisted 3D bioprinting: laser
bioprinters use a laser to vaporize a region in the donor layer (top) forming a bubble that propels a suspended bioink to fall onto the substrate. (D) Stereolithography
3D bioprinting: stereolithographic printers use a digital UV or visible light projector to selectively cross-link bioinks plane-by-plane.
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usually requires low viscosity (<10 mPa s) for bioinks (Matai
et al., 2020). Laser-assisted printing is a platform that forces
bioinks onto a collector substrate with pressures generated by
lasers focused on an absorbing substrate (Murphy and Atala,
2014). It is a costly and fast printing technique, and it can achieve
high cell viability. It allows high precision in bioink deposition;
however, it has more requirements, such as rapid gelation kinetics
and relatively low flow rates. Stereolithography-based bioprinting
is based on light to selectively solidify bioinks in a layer-by-layer
process that additively builds up objects (Moroni et al., 2018).
This technology offers superior speed, resolution, scalability, and
flexibility for printing a 3D structure with micrometer resolution
(Ligon et al., 2017). Importantly, EBB is the most commonly used
bioprinting technique in bone and cartilages tissue engineering.
For example, biphasic calcium phosphate (BCP) and matrigel/
alginate hydrogel composites were synthesized by EBB to induce
osteogenesis of incorporated MSCs as an osteoinductive bone
filler at the area of bone defects (Fedorovich et al., 2011). In
addition, volumetric 3D bioprinting is a light-mediated
technique, which enables excellent cell viability, structural
fidelity, and tissue maturation potential (Rizzo et al., 2021). It
has been reported that volumetric tomographic bioprinting of a
bone model could promote osteocytic differentiation, which
would be a powerful tool for biofabrication of 3D bone-like
tissues (Gehlen et al., 2021).

2.3 3D Bioprinting Process
Bioprinters cannot print without instruction. As aforementioned,
appropriate bioinks are important for creating bioprinted tissues
successfully. In addition, a correct design and planning of
printing paths, control the bioprinter and post-printing
operations are necessary. The bioprinting process is complex
and error-prone; therefore, many researchers have utilized
computer-aided design/computer-aided manufacturing
technologies to obtain anatomically correct tissues (Jung et al.,
2016). Computer-aided design can accelerate the speed of the
whole bioprinting process, and computer-aided manufacturing
can guarantee the quality of what is printed (Mandrycky et al.,
2016).

A fundamental step for the transition to clinical application
is the good integration of various bioinks, which mimic the
specific geometry of tissues of interest. The general bioprinting
process is as follows (Qasim et al., 2019): designers draw the
specific design taking into account the function that this
structure should have in vivo, different operating
temperatures, and appropriate printing times, in which to
insert the cells by computer-aided design (Grasman et al.,
2015); designers prepare and load appropriate bioinks (Gage
et al., 20132018); and the bioprinter builds structures and
follows the predesigned path by computer automation
systems. Furthermore, post-printing modification is often
used to increase or trim the scaffold performance. Such
modifications not only improve differentiation and growth
of stem cells in vitro but also enhance histocompatibility after
transplantation. Therefore, post-printing is important to
maintain the bioprinted structures viable. Moreover, some
special approaches to fabricate tensegrity structures acting

as an external stabilizations system without further process
after printing, which can pave the way toward more
algorithmic designs of 3D bioprinting (O’Bryan et al., 2017;
Lee et al., 2020a; Chiesa et al., 2020).

Three-dimensional bioprinting could combine functions and
properties of various hydrogels to generate high-resolution,
multi-component living constructs, which developed exciting
perspectives in the area of stem cell therapy for tissue
engineering (Negro et al., 2018). Three-dimensional
bioprinting represents a formidable technology in tissue
engineering (Matai et al., 2020). However, a lot of problems
and challenges remain to be solved. For instance, the limited
materials and printing systems could not meet the stringent
demand of hydrogel composite systems. We need to do
further research to find an ideal material with high cross-
linking efficiency. Moreover, substandard technology would
bring out agglomeration of reinforcements inside the hydrogel
matrix, resulting in poor performance of the hydrogel composite.
Moreover, it becomes more complex to find out the most optimal
bioink design in case of 3D bioprinting of bone, as it is a tough
task to strike the correct balance between biocompatibility and
mechanical strength. Thus, we need to take a greater effort to
improve 3D printing techniques of hydrogel composites in the
aspects of the material design and printing systems.

3 Hydrogel for 3D Bioprinting
As aforementioned, 3D bioprinting of hydrogel has been
increasingly applied in tissue engineering and regenerative
medicine over the past years (Yue et al., 2015; Naahidi et al.,
2017). Moreover, it is a very attractive carrier for encapsulating
cells because of the hydrophilic nature with the high water
content, heightening the application of stem cell-laden
hydrogel in the tissue engineering area (Li and Mooney, 2016).
Accordingly, the ideal stem cell-laden hydrogel that is used for 3D
bioprinting should possess the following capacity: 1) well
printability—the ability to produce the 3D structure scaffold
with high shape integrity and fidelity; 2) proper
degradability—the scaffold printed and implemented in the
bone or cartilage should be degraded in a speed similar to the
native extracellular environment; 3) sufficient mechanical
property—enough mechanical property can not only support
the structure but also enhance cell viability and stimulate the
differentiation of stem cells; 4) bioactivation—both in vivo and
in vitro bioprinting materials should be nontoxic and no
immunogenic effect to boost the cytocompatibility; and 5)
differentiation of the encapsulated stem cells—the stem cells
that are loaded in hydrogel should undergo osteogenic or
chondrogenic differentiation with the stimuli of the mimetic
environment, such as the growth factor (Schuurman et al.,
2013; Li et al., 2017a; Wang et al., 2018).

However, another two intrinsic features restrict the usage of
hydrogel, one is the weak mechanical property, which hampers
the shape fidelity of hydrogel and the 3D printing process, the
other is the performance of being prone to degradation as a bioink
(Jang et al., 2018). To address these issues, the strategies have
emerged to reinforce the mechanical property and bioactive
feature of the biomaterial. This part overviews the recent
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progress of the 3D printing scaffold with stem cell-laden as the
representative of the polysaccharide-based natural hydrogels
(alginate, agarose, and HA) and protein-based natural
hydrogels (gelatin, collagen, and silk) (Table 1).

3.1 Alginate-Based Hydrogel and Their
Derivatives
Alginate, a kind of polysaccharide, consists of two different
uronic acids that occur naturally in the cell wall of algae and
capsule of Azotobacter and Pseudomonas, and therefore can be
obtained from brown seaweed and the bacterial ones (Trica
et al., 2019; Ahmad Raus et al., 2020). Owing to its promising
physiological properties such as biocompatibility,

biodegradability, and the capability of forming gel, alginate
has been widely applied in various biomedical areas, like
wound dressing, drug delivery, and tissue engineering
(Reakasame and Boccaccini, 2018; Rastogi and
Kandasubramanian, 2019) Supplement with divalent cations
such as Ca2+ turns the alginate into an ideal bioink for 3D
printing (Song et al., 2011).

Stem cell-laden alginate-based 3D bioprinting structures have
been used in different tissues including bones, cartilage, cardiac, and
blood vessels (Choe et al., 2019; Chu et al., 2021; De Santis et al.,
2021).However, twomain disadvantages challenge the development:
one is the loss of the shape fidelity and integrity after being printed
due to the weak mechanical property and the other is the
impairment to the adhesion and proliferation of the stem cell. To

TABLE 1 | Hydrogel, stem cell, growth factor, cross-linking method, and 3D bioprinting method used for CTE and BTE.

Domain Hydrogel
type

Application Stem
cell
type

Growth
factor

Cross-linking
method

3D
bioprinting
method

In vivo
model

Reference

Polysaccharide Alginate CTE
and BTE

hBM-MSCs
and hAD-
MSCs

- Dual cross-linking (Ca2+, UV) Extrusion - Olate-Moya et al. (2020),
Lee et al. (2020b), Jeon et al.
(2019)

BM-MSCs,
and AD-
MSCs

- CC (Ca2+) Caprine
and mouse

Apelgren et al., 2017,
Critchley et al. (2020)

hBM-MSCs
and hMSCs

- CC (Ca2+) - Choe et al. (2019), Ojansivu
et al. (2019), Xu et al.
(2019b)

Agarose BTE hBM-MSCs - NA Inkjet - Duarte Campos et al. (2016)
CTE hBM-MSCs TGF-β3 Physical (temperature) Extrusion - Daly et al. (2016)

HA CTE hAD-MSCs - Double cross-linking
(noncovalent bonding, Ca2+)

Extrusion - Nedunchezian et al. (2021)

hBM-MSCs
and eBM-
MSCs

- Dual cross-linking (Ca2+, UV) - Stichler et al. (2017)

BTE hMSCs - Physical (temperature) - Lee et al. (2018)
hBM-MStCs BMP-2 Photo-cross-linking (UV) - Poldervaart et al. (2017)

CTE hTMSCs TGF-β and
BMP-2

Physical cross-linking (self-
assembly)

Rabbit Shim et al. (2016)
BTE

Protein Collagen BTE DP-MSCs BMP-2 CC (methacrylic anhydride) Extrusion Rat Fahimipour et al. (2019)
hAD-MSCs - Genipin - Kim and Kim (2019)

Gelatin BTE rBM-MSCs - CC (Ca2+), dual cross-linking
(DHT, ribose)

Extrusion Rat Liu et al. (2020), Helgeland
et al. (2021)

CTE hBM-MSCs - Physical cross-linking (self-
assembly)

NA Rabbit Shi et al. (2017)

CTE hBM-MSCs TGF-β1 NA Inkjet Rabbit Han et al. (2021)
CTE hUCB-MSCs - Enzymatic cross-linking

(transglutaminase）
Extrusion Pig Huang et al. (2021)

CTE, BTE raBM-MSCs - NA DMD
technique

Rabbit Jiang et al. (2021)

BTE BM-MSCs - Photo-cross-linking (UV) Extrusion - Dong et al. (2021)
Silk fibroin CTE hAD-MSCs - Enzymatic cross-linking and

covalent cross-linking
Extrusion Rabbit Li et al. (2021)

BM-MSCs - Double-cross-linking
(physical and chemical)

- Ni et al. (2020)

hMSCs TGF-β3 CC (Ca2+) - Trucco et al. (2021)

AD-MSCs: adipose-derived mesenchymal stem cells, BMP-7D: BMP-7-derived peptides, BM-MSCs: bone marrow-derived mesenchymal stem cells, BTE: bone tissue engineering, CC:
chemical cross-linking, CTE: cartilage tissue engineering, DHT: dehydrothermal, DMD: digital micro-mirror device, DP-MSCs: dental pulp mesenchymal stem cells, eBM-MSCs: equine
bone marrow-derived mesenchymal stem cells, HA: hyaluronic acid, hAD-MSCs: human adipose-derived mesenchymal stem cells, hBM-MSCs: human bone marrow-derived
mesenchymal stem cells, hBM-MStCs: human bonemarrow-derivedmesenchymal stromal cells, hMSCs: humanmesenchymal stromal cells, hUCB-MSCs: human umbilical cord blood-
derivedmesenchymal stem cells, hTMSCs: human turbinate-derivedmesenchymal stromal cells, NA: not available, rBM-MSCs: rat bonemarrow-derivedmesenchymal stem cells, raBM-
MSCs: rabbit bone marrow-derived mesenchymal stem cells, TGF-β: transforming growth factor-beta, and UV: ultraviolet.
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TABLE 2 | Characteristics of various hydrogels and applications in CTE and BTE.

Hydrogel
type

Origin Constitute Property Disadvantage Reinforcement
material/factor

Reinforced
effect

In vivo
model

Application Reference

Alginate Cell wall of algae and
capsule of
Azotobacter and
Pseudomonas

Guluronic acid and
mannuronic acid

Biocompatibility Fragility and
instability

Nanofibrillated
cellulose

Excellent shear thinning
properties

Mouse CTE Apelgren et al.
(2017)

Biodegradability and
low cost

Low mechanical
strength, printability,
and stability

Graphene oxide Increased printability and
structural stability

- BTE Choe et al.
(2019)

Low toxicity cross-
linking ability

Low processability Graphene oxide,
gelatin, and
chondroitin sulfate

Enhanced printability and
anisotropic structures,
cytocompatibility, and
chondroinductive effect

- CTE Olate-Moya et al.
(2020)

Low bioactivity Supplementing with
Ma-dECM

Improved printability, cell
viability, and OD

- BTE Lee et al.
(2020b)

Low mechanical
property

OMA Long-term storage - CTE, BTE Jeon et al. (2019)

Low mechanical
property and CD

PCL Mechanically reinforced
and CD

Caprine
mouse

CTE, BTE Critchley et al.
(2020)

Weak printability Wood-based CNF
and BaG

Improved gelation and
printability

- BTE Ojansivu et al.
(2019)

Low mechanically
stability and
biological supportive
ability

Gelatin and PCL Improved mechanically
stability, viability, hBM-MSC
proliferation, and CD

- CTE Xu et al. (2019b)

Agarose Red algae 1,3-linked β-D-galactose
and 1,4-linked 3,6-
anhydro-α-L-galactose

Biocompatibility, high
stability, low cost

Low cell adhesion Collagen type I Promoted cell spreading
and OD

- BTE Duarte Campos
et al. (2016)

Poor mechanical
property

PCL Increased mechanical
property

- CTE Daly et al. (2016)

HA ECM of many tissues α-1,4-D glucuronic acid
and N-acetyl-D-
glucosamine

Biocompatible Poor viscoelasticity
and gelation ability

Modified with biotin
and streptavidin

Improved printability, shape
integrity, cell viability, and
chondrogenic formation

- CTE Nedunchezian
et al. (2021)

Antioxidant Low mechanical
stiffness and shape
fidelity

MeHA Increased mechanical
stiffness, long-term stability,
and OD

- BTE Poldervaart et al.
(2017)

Anti-inflammation Low mechanical
property and
printability

Thiol-functionalized
HA, P(AGE-co-G)

Increased printability, shape
fidelity, and CD

- CTE Stichler et al.
(2017)

Chemical cross-
linking

Low mechanical
property and
printability

Modification of CB [6]
and DAH,
atelocollagen,
and PCL

Improved printability, CD, OD,
and cartilage regeneration

Rabbit CTE, BTE Shim et al.
(2016)

Promote CD and
proliferation

Integrity of the
fabricated structures

Modified with
tyramine

Increased mechanical integrity
and OD

- BTE Lee et al. (2018)

Collagen ECM of most tissues Chains of polypeptide Biocompatibility and
biodegradability ECM
component

Low mechanical and
contraction
properties

Bioceramic, modified
with heparin

Increased mechanical
property, elasticity, and OD

Rat BTE Fahimipour et al.
(2019)

Promote CD Low mechanical
property and
osteogenic activity

Bioceramic (β-TCP) Reinforced mechanical
property and OD

- BTE Kim and Kim
(2019)

(Continued on following page)
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TABLE 2 | (Continued) Characteristics of various hydrogels and applications in CTE and BTE.

Hydrogel
type

Origin Constitute Property Disadvantage Reinforcement
material/factor

Reinforced
effect

In vivo
model

Application Reference

Gelatin Fishes and skins of
animals and
hydrolysis product of
collagen

Glycosaminoglycans Biocompatibility,
biodegradability, and
low immunogenicity

Weak structures and
degrade rapidly

Silk fibroin Improved mechanical
properties, degradation, BM-
MSC proliferation,
differentiation, and ECM
production

Rabbit CTE Shi et al. (2017)

Low mechanical
strength

HAP Improved gelation kinetics,
rheological property, and
printability

Pig CTE Huang et al.
(2021)

Printability PLGA Increased printability and
formability

Rabbit CTE Han et al. (2021)

Low mechanical
strength and poor
osteoinductive
ability

Nanosilicate and
alginate

Improved printability,
mechanical strength, and OD

Rat BTE Liu et al. (2020)

Cytotoxicity of
chemical of physical
cross-linking

DHT and ribose Nontoxic and CD Rat BTE Helgeland et al.
(2021)

Limited cell
infiltration

Methacrylate, platelet-
rich plasma

Enhanced proliferation,
migration, and OD and CD, M2
polarization

Rabbit CTE, BTE Jiang et al.
(2021)

Shape fidelity Methacrylate and
laponite
nanocomposite

Improved rheological
properties, the degradation
stability, and the mechanical
strength, BM-MSC
proliferation and OD

- BTE Dong et al.
(2021)

Silk fibroin Silkworms and
spiders

A light chain and a heavy
chain linked by a disulfide
bond

Biocompatibility,
biodegradability, and
abundant source

Limited cell growth
and tissue formation
ability

Tyramine-substituted
gelatin

Reinforced structural stability,
mechanical properties,
degradation rate, stem cell
aggregates, and CD

Rabbit CTE Li et al. (2021)

Low mechanical
property

HPMC-MA Excellent biocompatibility and
mechanical properties

- CTE Ni et al. (2020)

Printability and
stability

Gelatin Printability and the elastic
modulus

- CTE Trucco et al.
(2021)

BaG: bioactive glass, BM-MSCs: bone marrow-derived mesenchymal stem cells, β-TCP: beta-tricalcium phosphate powder, BTE: bone tissue engineering, CB[6]: cucurbit[6]uril, CD: chondrogenic differentiation, CNF: cellulose nanofibrils,
CTE: cartilage tissue engineering, DAH: 1,6-diaminohexane, ECM: extracellular matrix, HA: hyaluronic acid, HAP: hydroxyapatite, hBM-MSCs: human bone marrow-derived mesenchymal stem cells, HPMC-MA: hydroxy propyl methyl
cellulose of methacrylation, Ma-dECM: methacrylated decellularized extracellular matrix, MeHA: methacrylated hyaluronic acid, OD: osteogenic differentiation, OMA: oxidized andmethacrylated alginate, P(AGE-co-G): poly(allyl glycidyl ether-
co-glycidyl), PCL: polycaprolactone, and PLGA: poly(lactic-co-glycolic acid).
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address the issues, distinct biomaterials were blended with alginate
forming alginate composite to improve the property and meet the
requirement of tissue engineering (Venkatesan et al., 2015; Apelgren
et al., 2017; Hernández-González et al., 2020).

Compared to the pure alginate hydrogel, mixing type I
collagen (COL I) and agarose into alginate could enhance the
mechanical strength, while the COL I could also facilitate cell
adhesion, proliferation, and expression of cartilage-specific genes
(Yang et al., 2018). To improve printability and structural
stability, Goeun Choe et al. added the graphene oxide into the
alginate as a composite for bioink, revealing that the addition of
graphene oxide could enhance printing and structure, viability
and proliferation of MSCs, and osteogenic differentiation. As a
result, the best balance of alginate and graphene oxide were
identified as 3% and 0.5 mg ml−1, respectively (Choe et al.,
2019) (Table 2). Similarly, adding graphene oxide into a
tailor-made alginate-based hydrogel not only highlighted the
shape fidelity and resolution of 3D scaffolds but also induced
chondrogenic differentiation of human adipose-derived
mesenchymal stem cells (hAD-MSCs) (Olate-Moya et al.,
2020). Another attempt was to combine alginate and the
decellularized extracellular matrix (dECM) derived from bone
tissue of porcine, with an appropriate concentration of dECM;
consequently, the printability and viability of hAD-MSCs
encapsulated in the scaffold as well as the osteogenic
differentiation was greatly improved (Lee et al., 2020b).

In addition, supplementation with other material, especially
modified alginate might be another selection. The stem cell-laden
dual cross-linkable alginate microgels consist of oxidized and
methacrylated alginate (OMA) directly assembled into the 3D
structure and cryopreserved for long-term storage, while the stem
cells could maintain equivalent after recovery compared with the
freshly processed stem cells, which has provided a new paradigm
for 3D printing (Jeon et al., 2019).

Although the physiology of a weak mechanical property and
inferior capability for cell attachment and proliferation has
affected the tissue engineering application (Ahmad Raus et al.,
2020), several strategies have been explored to improve the
embarrassing situation, including 1) supplementing with other
materials such as graphene oxide (Li et al., 2020a) and
polycaprolactone (PCL) (Critchley et al., 2020); 2) modifying
the alginate-based bioink (Ojansivu et al., 2019); and 3)
optimizing the fabrication method of stem cell-laden 3D-
printed hydrogel (Xu et al., 2019b).

3.2 Agarose-Based Hydrogel and Their
Derivatives
Agarose, a sort of natural polysaccharide, is extracted from red algae
and composed of alternating β-D-galactopyranosyl and 3,6-anhydro-
α-L-galactopyranosyl units (Krömmelbein et al., 2021). Agarose, along
with its blend-based hydrogel, has been extensively used in cartilage
formation and bone regeneration because of its good biocompatibility
and biodegradability (Tabata et al., 2003; Zarrintaj et al., 2018).
Moreover, the porous structure, tunable mechanical strength as
well as the stiffness of agarose-based hydrogel facilitate the tuning

of 3D scaffolds for cell culture, allowing agarose to be a promising cell-
laden 3D printing hydrogel (Ulrich et al., 2010; López-Marcial et al.,
2018; Salati et al., 2020).

The agarose and alginate hydrogel composites demonstrated
similar effects inmechanical and rheological properties compared
to pluronic hydrogel, a kind of hydrogel with well-printed
capability, but exhibited better cell viability and matrix
production during a 28-day culture period (López-Marcial
et al., 2018). To address the problem of the dissatisfactory
bioink and the limited size of the printed construct, Daniela
et al. encapsulated the hMSC and MG-63 cells into agarose
hydrogel and submerged in high-density fluorocarbon when
printing, manufacturing the stem cell-laden scaffold with
variable shapes and sizes, and maintaining viable cells after
21 days culture (Duarte Campos et al., 2013). To balance the
contradiction between 3D printability and optimal
cytocompatibility, Marius et al. developed a novel blend
hydrogel of agarose and Col I with the encapsulation of
human umbilical artery smooth muscle cells (HUASMCs),
finding the blend hydrogel with a concentration of 0.5%
agarose, and 0.2% Col I exhibited better stiffness, printing
accuracy, and cell spreading and attachment (Köpf et al., 2016).

By contrast with native agarose, the carboxylated agarose-
derived hydrogel has been regarded as a more appropriate stem
cell-laden scaffold because of the significant higher human
MSC survival rate (95:62%) (Forget et al., 2017). Neha Arya
et al. explored that a human articular chondrocyte-laden
extrudable carboxylated agarose-derived hydrogel, and
discovered that the stiffness of carboxylated agarose-derived
hydrogel and integrin-binding peptide sequence
(GGGGRGDSP) could affect chondrocyte differentiation,
indicating carboxylated agarose served as high suitable
bioink in the cartilage area (Arya et al., 2019). To fabricate
materials like the osteochondral interface that could imitate
anisotropic tissues, Merve Kuzucu et al. worked out an
extrusion-based 3D bioprinting platform based on
carboxylated agarose hydrogel, and cell centration gradient
and the stiffness gradient scaffold could be printed with this
bioink (Kuzucu et al., 2021), laying the foundation for the
manufacture of tissue with gradients, such as cartilage.

Though agarose-based hydrogel is an ideal cell-laden 3D
printing hydrogel, the immigration and differentiation of stem
cells encapsulated in agarose-based hydrogel alone is difficult.
To address this problem, Daniela et al. added Col I into the
agarose hydrogel, and discovered that the addition of collagen
I promoted the cell spreading and osteogenic differentiation,
and the effect was more obvious with the increase of collagen I
in a range (Duarte Campos et al., 2016). Beyond that,
mechanical compression might be another selection to
induce osteogenesis. Dynamic mechanical compression
could induce osteogenic differentiation of human synovium-
derived mesenchymal stem cells (SMSCs) encapsulated in
agarose and maintain the cartilage phenotype, providing an
approach for stem cell-laden hydrogel-based cartilage therapy
was found by Ge et al. (2021). Specifically, it is easier for the
MSCs seeded in 3D-printed agarose hydrogel to differentiate
into hyaline-like cartilage after 28-day culturing, with the
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presence of the transforming growth factor-beta 3 (TGF-β3),
similar to alginate, while the differentiation fate of MSCs in
GelMA tended to be fibrocartilage (Daly et al., 2016),
providing a reference of bioink selection when printing
different cartilaginous tissues.

3.3 Hyaluronic Acid-Based Hydrogel and
Their Derivatives
Hyaluronic acid (HA), a high molecular hydrophilic natural
glycosaminoglycan, is abundant in the ECM of many tissues,
as well as the most abundant component in cartilage (Fraser et al.,
1997; Yang et al., 2017). HA exerts its biological functions via
antioxidant properties, biocompatibility, the presence of cell
receptors, and so on (Nedunchezian et al., 2021). HA can also
facilitate cell attachment, migration, and regulate differentiation
of MSCs, making HA-based hydrogel a very promising stem cell-
laden material for bone tissue engineering (BTE) and cartilage
tissue engineering (CTE) (Zhu et al., 2006).

However, the limited viscoelastic properties of natural HA
during the bioprinting process precludes its application in the
3D-printed area, while chemical modification such as
methacrylate or glycidyl methacrylate makes it suitable for
cross-linking, which could meet the requirement of 3D
printing. For example, the mechanical stiffness and shape
stability of a modified methacrylated HA-based 3D-printed
scaffold could be strengthened by photo-cross-linking,
evaluated by the assessment of rheology and mechanical tests,
and the cell viability of human bone marrow-derived
mesenchymal stromal cells incorporated into the modified
hydrogel maintained 64.4% after 21-day culturing, while the
osteogenesis of human bone marrow-derived mesenchymal
stromal cells could be further enhanced (Poldervaart et al.,
2017). Given this, researchers applied two approaches to
enlarge the usage of HA-based hydrogel and their derivatives,
and were applying the cross-linking strategy to increase the
mechanical property; the other was integrating biological
functions into physical structures by mixture with other
modifications or materials.

Swathi Nedunchezian et al. developed a kind of adipose-
derived mesenchymal stem cell (AD-MSC)-laden HA
hydrogel-based 3D bioprinting applied for chondrogenic
engineering by the double cross-linked strategy (Nedunchezian
et al., 2021). Specifically, AD-MSC-laden HA was partially cross-
linked into HA–biotin–streptavidin (HBS) hydrogel through
noncovalent bonding via biotin and streptavidin to enhance
the viscoelastic property and shape fidelity, and then the
partially cross-linked hydrogel was printed to a 3D scaffold
after mixed with sodium alginate and immersed in CaCl2

solution subsequently to heighten the final stability through
the second step ion transfer cross-linking. As a result, the AD-
MSC-laden HA-based 3D scaffold exhibited improved
printability, shape integrity, cell viability, and chondrogenic
formation compared to the HA hydrogel. Similarly, allyl-
functionalized poly(glycidol)s (P(AGE-co-G)) was added into
thiol-functionalized HA as a cytocompatible cross-linker, and
the chemical cross-linking could be induced by UV via thiol-ene

coupling generated by thiol and allyl groups of the two materials.
The hybrid hydrogel loaded with the 3D-printed equine or
human bone marrow-derived mesenchymal stem cell (BM-
MSC) scaffold demonstrated higher cell viability and
promising chondrogenesis after 21 days of observation, tested
by live/dead cell staining, safranin-O staining for
glycosaminoglycans (GAG) and immunohistochemistry (IHC)
for aggrecan, Col I, and type collagen II (Col II) (Stichler et al.,
2017). However, Jin-Hyung Shim et al. exploited a novel 3D
bioprinting multilayered mechanical stable scaffold via the
host–guest chemistry-based strategy according to the two
preprocessed hydrogel supramolecular HA and atelocollagen
with human turbinate-derived mesenchymal stromal cells
(hTMSCs) encapsulated, avoiding the affection to the cell
viability of the chemical agent and physical stimulation during
cross-linking or the post-printing cross-linking process, and the
in vivo study of this hTMSC-laden hydrogel-based 3D-printed
multilayered structures for knee articular cartilage injury of
rabbits proved it to be an appropriate and promoted approach
according to the gross morphology, Hematoxylin and eosin
staining (H&E staining), safranin-O staining, and
immunohistochemistry for Col II and type collagen X (Col X)
(Shim et al., 2016).

Another disadvantage of HA-based hydrogel is the long-term
gelation process. In terms of this issue, Jaeyeon Lee et al.
produced a hybrid bioink with tyramine-conjugated for
improved printability, mechanical integrity, and fast gelation
while BMP-7-derived peptides (BMP-7D) and osteopontin
immobilized for osteogenesis, with shorter gelation time
(<200 s), higher hMSC viability encapsulated in the 3D-
printed scaffold (>90%), and favorable osteogenic
differentiation (Lee et al., 2018).

3.4 Collagen-Based Hydrogel and Their
Derivatives
As the most abundant protein family of the ECM, collagen
accounts for two-thirds of the dry mass of adult articular
cartilage (Eyre, 2004). Specifically, Col II makes up the most
proportion of the articular cartilage and is accompanied by the
other minor collagens to provide the tensile strength and physical
property of the matrix of the cartilage (Luo et al., 2017), while
bone is made of an organic matrix that consists of about 90% of
Col I, which contributes to the prominent mechanical properties
(Depalle et al., 2021). Both the bone marrow-derived
mesenchymal stem cell (BM-MSC)-embedded Col I hydrogel
and the blend collagen (Col I/II = 3:1) hydrogel exhibited
chondrogenic differentiation; however, the GAG production is
higher in the blend collagen hydrogel group, suggesting the
enhancement of Col II in the production of GAG in vitro,
while histochemical staining demonstrated that the blend
collagen hydrogel group manifested a favorable effect of
cartilage repair of the defects in the rabbit’s femur after
13 weeks treatment (Kilmer et al., 2020). Compared to MSCs
in 2D culture in a collagen hydrogel, the 3D culture exhibited a
stronger capability of differentiation of MSCs into osteoblasts
both in vitro and in vivo of rat (Naito et al., 2013).
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Though stem cells encapsulated in collagen hydrogel are
widely used in BTE and CTE, 3D printing of stem cells and
collagen remains challenged, whose obstacles rely on
stabilizing the soft and dynamic biomaterial, and achieving
the shape fidelity of the complex scaffold required the 3D
printing process (Lee et al., 2019). Researchers have
developed different approaches including additive
manufacturing techniques and complex structure design to
improve it. To reinforce the support of the scaffold,
tricalcium phosphate (TCP)-based bioceramic was added
by the additive layer manufacturing technique, both the
compressive strength and the compressive modulus
increased, forming an ideal scaffold construct (Fahimipour
et al., 2019). The water solubility and photochemical cross-
linking ability of collagen derivatives were greatly improved
after modified with glycidyl methacrylate, demonstrating the
advantage of enhancing cell adhesion, proliferation, and
promoting osteogenic differentiation of BM-MSCs, and
providing another approach to fabricate stem cell-laden
collagen 3D bioprinting (Zhang et al., 2019b). The
mechanical stiffness and printed constructs could be
improved by adding thermo-responsive agarose into Col I
while the 3D-printed agarose and collagen blend hydrogels
with a high collagen ratio favor the osteogenic differentiation
of human bone marrow-derived mesenchymal stem cells
(hBM-MSCs) in it, demonstrated by two-photon
microscopy, alizarin red staining (ARS), and real-time
polymerase chain reaction (RT-PCR) (Duarte Campos
et al., 2016). In addition to the mechanical properties,
inducing chondrogenesis and osteogenesis has been
another challenge in this area. Various studies reported the
impact of physical–chemical cues to hydrogel materials on
differentiation (Yang et al., 2021), while the effect of 3D
scaffold microstructure on stem cell differentiation remains
to be seen. Yang et al. designed two BM-MSC-laden collagen
hydrogels and named them fibrous network and porous
network, respectively, according to the microstructure of
collagen, and the fibrous network induced more
chondrogenic differentiation of the encapsulated BM-
MSCs, revealing that the microstructure of the hydrogel
may be a pivotal feature for BM-MSC chondrogenic
differentiation (Yang et al., 2019).

Furthermore, collagen can cover the shortage of another kind
of materials according to its advantage. For example, as a
promising material for bone regeneration, the application of
bioactive hydroxyapatite (HAP) was limited by inefficient
mineralization, mechanical instability, and incomplete
osteointegration, but was greatly improved by the HAP and
collagen hybrid fiber hydrogel, promoting the adhesion,
proliferation, and osteogenic differentiation of rabbit BM-
MSCs in vitro and osteoinductivity and mineralization (Li
et al., 2020b).

Collagen hydrogel exhibits unique superiority based on its
similarity to the ECM of the native bone and cartilage. Though
some disadvantages still exist, different approaches have been
developed to address the shortcoming: 1) design and process of
the appropriate bioink can be mechanically modified, 2) creation

and production of focus on the microstructure of the scaffold, and
3) optimized fabrication method and techniques (Kim and Kim,
2019; Marques et al., 2019).

3.5 Gelatin-Based Hydrogel and Their
Derivatives
Gelatin is a hydrolysate of collagen, as well as a major component
in most tissues including bone and cartilage (Yue et al., 2015). As
a derivative of collagen, gelatin inherits its superior advantages of
good biocompatibility, degradability, and bioactivity of collagen
as a biomedical scaffold. In addition, the lower immunogenicity
and more feasible compatibility by comparison with collagen
amplify the application of gelatin-based hydrogel as a cell-laden
scaffold (Lien et al., 2009; Yue et al., 2015; Gao et al., 2019). Above
all, the sequence arginine–glycine–aspartic among the gelatin
could interact with stem cells, hence facilitating cell proliferation,
adhesion, and migration (Echave et al., 2017; Bello et al., 2020).

The instability of the physically cross-linked gelatin-based
hydrogel precluded its application, while the chemical cross-
linking gelatin-based hydrogel demonstrated greater potential
despite the inevitable disadvantage of weakness and degradability
(Sakai et al., 2009). To make up for the weak strength and rapid
degradability of gelatin, silk fibroin was blended in, and the
appropriate mechanical and degradable properties could be
adjusted by the concentration and ratios of gelatin and silk
fibroin to fit in the native cartilage environment (Rodriguez
et al., 2017). By comparison, the gelatin–silk fibroin bioink
with a ratio of 2:1 was proven to be favorable (Huang et al.,
2014). Furthermore, to optimize the function of 3D-printed BM-
MSC-laden gelatin–silk fibroin, conjugating the BM-MSC affinity
peptide F7 onto the 3D-printed scaffold enhanced the BM-MSC
homing in vitro and in vivo, as shown of the predominant
chondrogenic differentiation of the encapsulated BM-MSCs of
the scaffold (Shi et al., 2017). Here is a study that applied both of
the strategies mentioned earlier. Transglutaminase cross-links
gelatin to stabilize the structure to sustain the 3D scaffold, while
HAP was blended to strengthen the hydrogel, then the human
umbilical cord blood-derived mesenchymal stem cells (hUCB-
MSC) encapsulated HAP doped, enzyme cross-linked gelatin
hydrogel-based 3D-printed scaffold exhibited an effect of the
scaffold enhancing proliferation and chondrogenic
differentiation of hUCB-MSC in vitro and cartilage
regeneration in vivo, revealing the potential application of 3D-
printed gelatin hydrogels in tissue engineering (Huang et al.,
2021). In addition to silk fibroin and HAP, poly(lactic-co-glycolic
acid), alginate, and nanosilicate can also be addictive to improve
the property of gelatin (Liu et al., 2020; Han et al., 2021).

Apart from adding other materials, modulating the
modification method could be another strategy. Yu et al.
applied melt electro-writing technology to print BMSC laden
high porosity and high precision scaffolds to enhance cartilage
repair (Han et al., 2021). While Helgeland et al. (2021) compared
three different cross-linking methods including dehydrothermal
(DHT), ribose glycation, and dual cross-linking (DHT and ribose
treatments), and revealed that dual cross-linking exhibited the
great advantage of promoting cell proliferation and rBMSC
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differentiation of 3D-printed gelatin scaffolds with promising
application in cartilage tissue engineering. Mentioning
modification of gelatin, GelMA, a chemical cross-linking
method of grafting methacryloyl by photopolymerization, is
bound to cover. The modulation can be disposed under mild
conditions contributing to the fabrication of stem cell-laden
GelMA hydrogel and the improved formability and
downregulated immunogenicity broaden the application of
GelMA (Jiang et al., 2021). A composite hydrogel composed of
15% (w/v) GelMA and 8% (w/v) laponite that demonstrated
favorable printability and biocompatibility was developed,
promoting BMSC proliferation and osteogenic differentiation,
offering a candidate of bioink in bone tissue engineering (Dong
et al., 2021).

The good biocompatibility and insufficient mechanical
property of gelatin hydrogel is not absolute. A study about the
effect on the physical performance of different concentration of
gelatin in cell-laden 3D-printed scaffold showed that the scaffold
with low-gelatin concentration (0.8% alginate) displayed good
cell viability and cell morphology, same as described before, while
high-concentration scaffold (2.3% alginate) preserved the scaffold
shape fidelity and mechanical property but significantly impaired
cell viability (Zhang et al., 2019c). In consideration of the
improved physical property tunable technique, we usually
focus on the low-gelatin concentration scaffold.

3.6 Silk Fibroin-Based Hydrogel and Their
Derivatives
Silk fibroin is a fibrous protein mainly produced by silkworms
and spiders, in the form of aqueous protein solution (Melke et al.,
2016). Due to the remarkable mechanical property, impressive
biocompatibility, and slow and tunable degradability, silk fibroin
has been widely applied in tissue engineering as a biomedical
material (Rockwood et al., 2011). Based on the diverse structure
of the silk fibroin fabrication, the silk fibroin scaffold can be
divided into films, mats, artificial fibers, sponges, and hydrogels
(Yan et al., 2012; Jacobsen et al., 2017; Zhang et al., 2017; Yin and
Xiong, 2018). Among them, with a 3D polymer network,
hydrogel could be cross-linked physically and chemically
processing for cell seeding and encapsulation, demonstrating
great potential in the development of the cell-laden
biomaterial area (Ahmed, 2015).

For instance, with induction of high temperature, low PH,
vortexing, sonication, high ionic strength, freeze gelation, or
electrogelation, silk fibroin can transform into a hydrogel form
(Kim et al., 2004; Wang et al., 2008; Yucel et al., 2009; Bhardwaj
et al., 2011). Though the silk fibroin hydrogel scaffold with an
ideal mechanical property was processed according to the
methods aforementioned, the cells encapsulated in them
cannot fit in the environment of the structure produced by
these techniques, as the biocompatibility was an imperative
factor for processing of the cell-laden scaffold (Piluso et al.,
2020). Under the circumstances, chemically cross-linking silk
fibroin hydrogel maybe a better selection. For example, the
degradable and biocompatible silk fibroin hydrogel have been
acquired by riboflavin (Piluso et al., 2020) andHRP (Ribeiro et al.,

2018). However, the physiologically fabricated silk fibroin
hydrogel would lose the mechanical property and impaired the
biomedical application (Jonker et al., 2012). In terms of this issue,
some strategies have successfully increased the mechanical
performance, such as adding functionally complementary
bioink and optimizing the printing process (Kapoor and
Kundu, 2016; Trucco et al., 2021).

Li et al. (2021)fabricated a silk fibroin-based 3D-printed
macroporous hydrogel scaffold though HRP-medicated cross-
linking of silk fibroin and gelatin under physiochemical
condition, with marvelous structure fidelity, remarkable
mechanical property, tunnel degradability, and a cell aggregate
seeding method applied to improve the MSC inoculation
efficiency in it, promoting osteogenic differentiation and
articular cartilage repair in the rabbit model. Ni et al. (2020)
developed a BM-MSC-laden silk fibroin hydrogel-based 3D
printing with a double-network scaffold, and mechanical
property including fracture strength, breaking elongation, and
compressive reproducibility greatly increased with satisfied cell
viability, proliferation, and chondrogenic differentiation,
revealing the promise of silk fibroin for cartilage tissue
engineering.

Another shortcoming of silk fibroin is the deficiency of the cell
adhesion sequence resulting in poor interaction between stem
cells and biomaterial (Hasturk et al., 2020). Based on this
problem, combination with the collagen, poor mechanical
properties and cell-mediated shrinkage could be a solution.
Buitrago et al. (2018) designed a hybrid silk fibroin/collagen
hydrogel, whose scaffold structure, mechanical property, and
cellular behavior were greatly enhanced compared to the pure
silk fibroin or collagen hydrogel.

4 Various Stem Cells Encapsulated in
Hydrogel for 3D Bioprinting
Three-dimensional bioprinting has been a very promising
approach in regeneration medicine due to the superiority of
this technique with precisely control of construction of the
complexed structures of tissues and organs (Murphy and
Atala, 2014). However, selection of the appropriate bioink to
print an ideal tissue such as bone or cartilage is still a problem that
is confusing us. Hydrogel is emerging as a versatile biomaterial
among the variety of biomaterials because of its good
cytocompatibility, bioactivity, and degradability
(Stephanopoulos et al., 2013), and various in vitro and in vivo
studies have proven that the cell-laden hydrogels have opened the
new possibility for reconstruction of osteochondral and cartilage
tissues (Yang et al., 2017). Specifically, the cells embedded in the
hydrogel can be human or animal chondrocytes, mesenchymal
stem/stromal cells (MSCs), and so on, and the stem/stromal cells
loaded in the hydrogel exhibited incomparable advantage due to
the abundant cell sources, the multidirectional differentiated
ability as well as the paracrine activities and the immune-
privileged status that can imitate the heterogeneity of the
tissues (Roseti et al., 2018). This part will center on the
various stem cells encapsulated in hydrogel for 3D bioprinting.
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4.1 BM-MSCs
Bone marrow-derived mesenchymal stem/stromal cells (BM-
MSCs) are heterogeneous population cells with the potential of

multilineage differentiation and are mainly isolated from bone
marrow tissue. The BM-MSCs were first discovered and the most
prevalent MSCs in clinical practice (Strioga et al., 2012). For

TABLE 3 | Stem cell-laden in the hydrogel and the biochemical characteristic.

Stem
cell
type

Species Hydrogel Application Cell
density/
million

cells*ml−1

Cell
viability

Osteogenic/chondrogenic evaluation

Biochemical
assay

Gene
expression

Matrix
synthesis

Biophysical
testing

Reference

BM-
MSCs

Human GelMA, CS-AEMA,
and HAMA

CTE
and BTE

10 85–90% NA Aggrecan,
Col I, Col II,
and Col X

Aggrecan, Col I,
Col II, and Col
X (ICC)

Rheology and
mechanical
testing

Costantini et al.
(2016)

Human GelMA CTE 1 88% GAG and Col II
content

NA GAG, Col I, Col II
(IHC) H&E,
PSRS, and ABS

Compression
test

De Moor et al.
(2020)

Mouse Me-HA and PCL BTE 2 High NA ALP, RUNX
2, OCN,
and Col 1A1

ALP staining
and MTS

NA Zhang et al.
(2020a)

Rat GelMA BTE 20 High DNA, GAG,
Col I II, and Col
X content

Col I, Col II,
and Col X

H&E, Col I, Col II,
and Col X (IHC)

Compression
test

Daly et al.
(2018)

AD-
MSCs

Human HA and alginate CTE 8 High NA SOX-9,
AGG, Col I,
and Col II

ARS and DMMB
assay

Rheological
test

Nedunchezian
et al. (2021)

Human Alginate and Ma-
dECM

BTE 5 High
(>90%)

NA ALP, BMP-
2, OCN,
and OPN

ARS and
OPN (ICC)

Compression
and
rheological
test

Lee et al.
(2020b)

Human Gelatin and
alginate

BTE 3 89% NA RUNX2,
OSX,
and OCN

H&E staining,
MTS, OCN IHC,
OCN, and
RUNX2 (IF)

NA Wang et al.
(2016)

Human PLA
nanofiber–alginate
hydrogel

CTE 1.375 >90% NA NA H&E, PSRS,
and ABS

Compression
test

Narayanan
et al. (2016)

DPSCs Human PCL and GelMA BTE 1 90% NA OPN
and OCN

ARS, OPN, and
OCN IF

Compression
test and
degradation

Buyuksungur
et al. (2021)

Human ECM-based
hydrogel and
AMPs

BTE 1 90% NA RUNX2,
COL 1A1,
and OPN

ALP staining,
ARS, and H&E

Mechanical
test,
rheological
test, and
printability

Dubey et al.
(2020)

Human GelMA BTE NA >90% NA RUNX 2,
OCN, and
Col 1A1

ARS and
OCN (IF)

Compressive
mechanical
properties,
swelling, and
degradation

Park et al.
(2020)

UVECs Human Alginate–gelatin BTE 10 High NA OPG VEGF and OPG
(ELISA)

Compression
test and
stiffness test

Chen et al.
(2018)

UVECs
and
BM-
MSCs
(2:1)

Human GelMA and silicate
nanoplatelets

BTE 2 NA NA ALP, OPN,
OCN, and
Col I

ARS, OCN, and
Runx2
(immunostaining)

Compression
test, stiffness
test, and
printability

Byambaa et al.
(2017)

ABS: alcian blue staining, AD-MSCs: adipose-derived mesenchymal stem cells, CS-AEMA: chondroitin sulfate amino ethyl methacrylate, AGG: aggrecan, ALP: alkaline phosphatase,
AMPs: amorphousmagnesium phosphates, ARS staining: alizarin red staining, BM-MSCs: bonemarrow-derivedmesenchymal stem/stromal cells, BMP-2: bonemorphogenetic protein-
2, BTE: bone tissue engineering, Col I: collagen type I, COL, 1A1: collagen type I alpha 1, Col II: collagen type II, Col X: collagen type X, CTE: cartilage tissue engineering, DMMB:
dimethylmethylene blue, DPSCs: dental pulp stem cells, GAG: glycosaminoglycans, GelMA: gelatin methacrylamide, HA: hyaluronic acid, HAMA: hyaluronic acid methacrylate, H&E:
hematoxylin and eosin staining, ICC: immunocytochemistry, Ma-dECM: methacrylated decellularized extracellular matrix, Me-HA: methacrylated hyaluronic acid, MTS: Masson’s
trichrome staining, OCN: osteocalcin, OPN: osteopontin, PLA: polylactic acid, PSRS: picrosirius red staining, RUNX 2: Runt-related transcription factor 2, sGAG: sulfated
glycosaminoglycans, UVECs: umbilical vein endothelial cells, VEGF: vascular endothelial growth factor.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 86577013

Yang et al. Osteochondral Bioprinted Stem Cell-Laden Hydrogel

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


example, Costantini et al. (2016)bioprinted a hybrid hydrogel
composed of GelMA, chondroitin sulfate amino ethyl
methacrylate, and hyaluronic acid methacrylate (HAMA) with
high density hBM-MSCs (107/ml), while the cell viability was
higher than 85% demonstrated by a live/dead assay 3 h after
printing, and UV cross-linking and the chondrogenic and
osteogenic differentiation was ideally validated by
immunocytochemistry (ICC) and RT-qPCR of aggrecan,
collagen I, II, and X (Table 3). Alternatively, De Moor et al.
(2020) combined spheroids of BM-MSCs with GelMA as the
boink, and the viability and cartilage phenotype of the BM-MSC
spheroids were maintained after bioprinting and 42 days culture,
which is demonstrated by the increase in GAG, COL II, and
decrease in Col I (Table 3). To enhance the osteogenesis, Wenhai
Zhang et al. fabricated a 3D-printed BM-MSC-laden HA (Me-
HA)/PCL with dual small molecule (RVS, SrRn) loaded, and both
of the molecules upregulated the expression of ALP, runt-related
transcription factor 2 (RUNX2), osteocalcin (OCN), and collagen
1A1 (Col 1A1) of BM-MSCs, while the osteogenic differentiation
of the combination of the two molecules was more significant.
Consistently, more newly formed bone can be observed in the rat
bone defect model after 8 weeks implantation of the dual small
molecule-loaded 3D scaffold (Zhang et al., 2020a). Challenges still
remained in the clinical translation of the implantation of the
stem cell-laden 3D scaffold because of the avascular structure,
especially in the large osteochondral defect. To address this
problem, Daly et al. (2018) developed a 3D-printed BM-MSC-
laden GelMA hydrogel that guided vascularization during
endochondral bone repair, revealing that this BM-MSC-laden
3D scaffold could not only facilitate vascular network formation
but also promote bone formation.

4.2 AD-MSCs
Adipose derived mesenchymal stem cells (AD-MSCs) are isolated
from adipose tissue, consequently the abundant source and the
large amount of the stem cells as well as the suitable biological
characteristics greatly broaden the clinical application (Strioga
et al., 2012; Wang and Liu, 2018). And it is known that AD-MSCs
have been widely used in bioprinting organs and tissues as a
bioink by virtue of the multilineage differentiation (Wang and
Liu, 2018). Swathi et al. developed a bioink of modified HA-based
hydrogel with AD-MSCs encapsulated, and printed a 3D scaffold
with this bioink. MTT assay was used to assess the cell viability for
1-, 4-, and 7-day culturing, observing an increase of the AD-MSC
viability laden on the scaffold compared to the non-3D-printed
group. However, the expression of the chondrogenic marker gene
(SOX-9, aggrecan, Col I, Col II) significantly increased at day 5
and sGAG enlarged from days 7–14 in the AD-MSCs of the
scaffold, revealing the potential chondrogenic differentiation of
AD-MSCs (Nedunchezian et al., 2021).

As we all know, hydrogel is usually physically or chemically
cross-linked to achieve a stable structure to sustain the
proliferation and differentiation of the stem cells. It must be
admitted that the impair of the improper cross-linking is really
lethal to the cell viability. Lee et al. proposed an alginate-based
hydrogel encapsulated with AD-MSCs, and cross-linked via UV
exposure with the dose (0–6.0 J/cm2); however, the higher dose

(2.4 J/cm2) greatly suppressed the cell viability with a dose-
dependent effect, while the dose of UV less than 2.4 J/cm2
exhibited high cell viability (90%) (Lee et al., 2020b). In vivo,
the AD-MSC-laden gelatin–alginate-based 3D-printed scaffold
was implanted into the dorsal area of the BALB/c nude mice
subcutaneously for 8 weeks, and the results of RT-PCR,
immunofluorescent staining and western blotting showed the
significant increase in the osteogenic gene (OSX, RUNX 2, and
OCN), demonstrating obvious bone formation (Wang et al.,
2016). Though proliferation and differentiation of the AD-
MSCs laden in 3D-printed hydrogel were demonstrated, they
cannot last long, with a peak at day 7 and then decreased
gradually during a 16-day observation (Narayanan et al., 2016).

4.3 Dental Pulp Stem Cells
Human dental pulp stem cells (hDPSCs) are generally isolated
from the teeth that are extracted by the dentist, and demonstrate
great promise in BTE because of the low-cost and easy
accessibility (Fernandes et al., 2020). Buyuksungur et al. (2021)
bioprinted a 3D scaffold via PCL and GelMA that carries
hDPSCs, and then the stable composite 3D structure exhibited
excellent cell viability during a 21-day dynamic test of live/dead
cell assay and ideal osteogenic differentiation as well as
mineralization validated by immunofluorescent staining of
OPN, OCN, and alizarin red staining, respectively. To induce
the osteogenic differentiation of hDPSCs in vivo, amorphous
magnesium phosphates (AMPs) was doped in the ECM-based
hydrogel, observing high cell viability, mineralization, and
osteogenic markers in the absence of growth factors in vitro
and significant increase in bone formation and bone density at
bone defect of the rats skull at 4 and 8 weeks, tested by micro-CT,
H&E staining, Masson’s trichrome staining (MTS), paving the
way for clinical translation of the hDPSCs-laden hydrogel-based
3D scaffold (Dubey et al., 2020). Furthermore, the additive
growth factor such as BMP-2 may be another strategy to
induce the differentiation of hDPSCs-laden in the scaffold.
Park et al. tethered a novel BMP peptide to GelMA-based
hydrogel, and printed a scaffold with this bioink. Though
nearly half of the conjugated BMP peptide missed after
3 weeks culture, the BMP peptide-tethering scaffold exhibited
much more calcification than the non-BMP peptide scaffold
group, suggesting a promising approach to induce
differentiation of stem cells laden on the 3D structure (Park
et al., 2020).

4.4 Umbilical Vein Endothelial Cells
Human umbilical vein endothelial cells (hUVECs) are a kind of
endothelial cells isolated from human umbilical cord veins after
the child’s birth (Lei et al., 2016). It is reported that HUVECs
expressed many endothelial biomarkers related to the vascular
homeostasis, thereby HUVECs were applied into angiogenesis as
well as vascularization of tissue engineering, such as bone tissue
(Kocherova et al., 2019). HUVECs are the most common
endothelial cells explored as a biomaterial and have been
successfully differentiated into 3D structure alone or
cocultured with other cells (Bersini et al., 2016; Kocherova
et al., 2019). Chen et al. (2018) fabricated a hybrid scaffold via
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HUVECs-laden alginate–gelatin hydrogel and polydopamine-
modified calcium silicate (PDACS)/PCL, finding a high
viability, increased proliferation as well as angiogenesis and
osteogenesis of HUVECs encapsulated on the scaffold. In fact,
it is the angiogenesis of hUVECs that could couple with the
osteogenesis of other kind of stem cells rather than the direct
osteogenic differentiation of hUVECs made it applied in bone
tissue engineering. For example, to fabricate a complex bone
construct with vasculature that mimic the large-scale bone tissue,
Byambaa et al. (2017) cocultured hUVEC and hBM-MSCs with a
ratio of 2:1 in the GelMA-based hydrogel before bioprinting, then
formed a capillary-like network inside the printed construct rely
on the synergistic interactions of the cocultured hUVEC and
hBM-MSCs in the system, leading to a hopeful approach for the
treatment of vascularized bone tissue regeneration.

5 GROWTH FACTORS/PEPTIDES
PROMOTE OSTEOGENESIS AND
CHONDROGENESIS OF STEMCELLS THAT
LADEN ON THE 3D-PRINTED HYDROGEL

5.1 Mechanisms of Growth Factors on
Osteogenesis and Chondrogenesis
In bone remodeling sites, MSCs renew and proliferate, and then are
committed to adipogenesis, chondrogenesis, and/or osteogenesis.
Osteogenesis occurs in the intramembranous and endochondral
ossification pathway (Berendsen and Olsen, 2015), and

chondrogenesis precedes endochondral ossification (Figure 3).
MSCs aggregate and form mesenchymal condensations through
the interaction with surrounding epithelial cells and ECM
components like syndecan, tenascin, fibronectin, and versican
(Choocheep et al., 2010). Neural cell adhesion molecule
(N-CAM) and neural cadherin (N-cadherin) are required for
mesenchymal condensations and chondrogenesis (Delise and
Tuan, 2002). Growth factors also stimulate condensation and
overt chondrogenic differentiation, including the tumor growth
factor-beta (TGF-β) subfamily (Jin et al., 2010), fibroblast growth
factor 2 (FGF-2) (Zhang et al., 2020b), and bone morphogenetic
proteins (BMPs) (Jin et al., 2006). Chondrocytes proliferate and form
a perichondrium surrounding condensations, secret type 2a1
collagen, and the aggrecan-rich matrix to enlarge the cartilage
before hypertrophy and terminal differentiation, and express
specific genetic program controlled by the transcription factors
SRY box transcription factor 9 (SOX9) and runt-related
transcription factor 2 (RUNX2). SOX9 is required in chondrocyte
differentiation, and the deficiency of SOX9 exhibits severe
chondrodysplasia (Akiyama et al., 2002). RUNX2 expressed in
pre-hypertrophic chondrocytes promotes chondrocyte
hypertrophy; however, highly-expressed RUNX2 in perichondrial
cells exerts antagonistic function on chondrocyte proliferation and
hypertrophy(182). Additionally, homeodomain (HOX)
transcription factors (BARX2, NKX3-2, MSX1, MSX2, PAX1, and
PAX9) (Hinoi et al., 2006), TGF subfamily (Pizette and Niswander,
2000), insulin-like growth factors (IGFs) (Oh and Chun, 2003), and
FGF (Danišovič et al., 2012) are also crucial for chondrogenesis.
Differentiated chondrocytes either proliferate in cartilage elements

FIGURE 3 |Mechanisms of osteogenesis and chondrogenesis. In bone remodeling sites, MSCs aggregate and form mesenchymal condensations. Then, bone is
formed in two ways: intramembranous ossification and endochondral ossification. During the intramembranous ossification process, MSCs are differentiated into pre-
osteoblasts, then they lost proliferation capacity and mature into osteoblasts, which secret alkaline phosphatase and osteocalcin that participate in the secretion,
maturation, and mineralization of the extracellular matrix (ECM). In endochondral ossification, differentiated chondrocytes either proliferate in cartilage elements or
exhibit hypertrophic maturation for subsequent endochondral ossification.
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or exhibit hypertrophic maturation for subsequent endochondral
ossification. Articular chondrocytes secrete aggrecan and lubricin for
joint smoothness and low level of collagen 2 with the expression of
SOX9, SOX5, and SOX6 but the switch off of RUNX2 expression
(Lefebvre and Smits, 2005). Hypertrophic chondrocytes mineralize
the surrounding matrix, secrete the vascular endothelial growth
factor (VEGF) and other factors to attract vessels and
chondroclasts, and induce the transforming of perichondrial cells
to osteoblasts, which is regulated by a series of cell and stage-specific
molecular pathways, called endochondral ossification. Osteogenic
molecular pathways regulate chondrocyte pre-hypertrophy,
including the Indian hedgehog-the parathyroid hormone-related
peptide (Ihh–PTHrP) axis, BMPs, Wnt-β-catenin canonical
pathway, and MAPK signaling pathway (Deschaseaux et al.,
2009). Mechanically, Ihh, PTHrP, and BMPs synergistically
promote osteoblastic differentiation through inducing RUNX2
and downstream of RUNX2-Osterix (Krishnan et al., 2001).
Conversely, PTHrP suppresses hypertrophic maturation to
control bone formation in a negative feedback manner. The Wnt
pathway stimulates proliferation, promotes osteoblast
differentiation, and inhibits adipogenesis or chondrogenesis
potential. BMPs and growth factors like the epidermal growth
factor (EGF) and FGF can trigger the MAPK pathway that
facilitates osteoblast maturation by phosphorylating the
osteoblast-specific transcription factors and enhancing the
function of RUNX2 and Dlx5 (Ge et al., 2007; Ulsamer et al.,
2008). Notably, SOX9 serves as a negative regulator of chondrocyte
hypertrophy (Akiyama et al., 2004), and RUNX2 emerges as a key
effector of hypertrophic maturation (Dong et al., 2006). Finally,
chondrocytes undergo terminal differentiation after the hypertrophy
stage under the facilitation of activating the transcription factor 3
(ATF3) (James et al., 2006), RUNX2, and c-Maf (MacLean et al.,
2003), and increase the expression of matrix metalloproteinase 13
(MMP13), osteopontin (spp1), and alkaline phosphate (Adams and
Shapiro, 2002).

During the intramembranous ossification process, MSCs are
differentiated into pre-osteoblasts, then they lost proliferation
capacity and are matured into osteoblasts, in which secret alkaline
phosphatase and osteocalcin participate in the secretion,
maturation, and mineralization of ECM, under the mutual
exclusive and fine-tuned control of transcription factors (Chen
et al., 2016; Infante and Rodríguez, 2018). Eventually, osteoblasts
either become osteocytes or inactive bone-lining cells (BLCs), or
die by apoptosis. The transcription factors, such as RUNX2,
osterix, SP7, and β-catenin, have played a key role in the
osteogenesis (Nakashima et al., 2002; Komori, 2006). RUNX2
guides lineage commitment of MSCs to osteogenesis instead of
adipogenesis and chondrogenesis. RUNX2, osterix, and β-catenin
regulate osteoblast terminal differentiation (Komori, 2006).
Moreover, the MAF bZIP transcription factor (MAF) was
upregulated in osteogenic MSCs. MAF promotes osteogenesis
synergized with RUNX2 and suppresses adipogenesis by
restraining peroxisome proliferator activated receptor gamma
(PPARγ) that directs adipogenic lineage commitment of MSCs
(Nishikawa et al., 2010). The core-binding factor subunit beta
(CBFβ) forms a complex with RUNX2 to activate the Wnt/β-
catenin pathway and repress adipogenesis-related gene
expression, as a result, maintaining osteogenesis and
suppressing adipogenesis (Nishikawa et al., 2010). Moreover,
forkhead box P1 (FOXP1) interacts with CCAAT enhancer
binding protein beta (CEBPβ) required for adipogenesis, and
represses the activation of the NOTCH pathway to promote
biased osteogenesis and inhibit adipogenesis (Li et al., 2017b).

5.2 Effect of Growth Factors/Peptides on
Osteogenesis and Chondrogenesis of Stem
Cells Laden on the 3D-Printed Hydrogel
As aforementioned, some growth factors/peptides were mixed
into the hydrogel to induce the osteogenesis and chondrogenesis

FIGURE 4 | Current challenges and solutions for bone and cartilage tissue engineering.
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of 3D scaffold-loaded stem cells. As the classical growth factors
are widely used in bone tissue engineering, BMPs attract great
focus and have been proven by the Food and Drug
Administration (FDA). Poldervaart et al. (2013). designed a
BMP-2 sustained release system loaded in the stem cell-laden
hydrogel-based 3D construct, and the continuous release of BMP
was detected in a high level during 3 weeks culture while the
increased osteogenesis and bone formation were observed in the
mice and rat models. In addition, assembling BMP-2 into the
scaffold is another strategy to maintain the sustained release. Du
et al. (2015) assembled a kind of collagen-binding domain-bone
morphogenetic protein 2 (CBD BMP-2)-collagen microfibers,
and this hydrogel mixed with the BM-MSCs were printed as
the bioink. Similarly, stable release of BMP was observed under a
confocal microscope, and osteogenic differentiation of BM-MSCs
was more effective. BMP-7, a member of the BMP family that
could regulate the early staged signals of osteogenesis and bone
formation, was immobilized on the 3D-printed hydrogel, and
greatly promoted osteogenic differentiation via the activation of
SMAD (Lee et al., 2018). To address the issue of fast degradation
of the BMPs, Park et al. (2020) developed a synthetic BMP-2
mimetic peptide and tethered it into hydrogel before bioprinting,
which showed robust acceleration of the hDPSC osteogenic
differentiation. For cartilage regeneration, TGF-β1 was
tethered to a HA-based bioink to induce the chondrogenic
differentiation of BM-MSCs, showing increased chondrogenic
gene expression, ECM deposition, and activated early TGF-β1
signaling (Hauptstein et al., 2022). In a rabbit osteochondral
cartilage defect model, an interleukin-4 (IL-4)-loaded hydrogel-
based 3D-printed scaffold was implanted, with 8- and 16-week
observation, and the IL-4-loaded scaffold significantly promoted
the formation of neocartilage and neobone tissues according to
the assessment of safranin-O, Col II immunohistochemical
staining, and micro-CT (Gong et al., 2020).

6 CONCLUSION AND PERSPECTIVE

3D bioprinting refers to a promising and an innovative technique
that can be used to fabricate the 3D scaffold with the bioink
composed of cells and materials and demonstrates great potential
in creating complex tissue constructs (Jeon et al., 2022).
Hydrogels are deemed ideal and appealing materials with
regard to its controllable biological and biophysical properties
to construct a desirable 3D-bioprinted ECM for the attachment,
proliferation, migration, and differentiation of the cells loaded in
(Gao et al., 2019). Diverse kinds of cells have been implied in bone
and cartilage tissue engineering while chondrocytes and stem
cells are the most potential cell types among them. Although
chondrocytes are the intrinsic cells of the cartilage and could
repair the osteochondral damages, the limited supply, long
expansion time, and the possibility of differentiation into
fibroblast restrict the application of them. On the other hand,
the abundant source, the easy isolation procedure, the large
quantity of the stem cells, and the suitable biological
characteristics including the adjustable differentiation into
osteoblasts and chondrocytes greatly broaden the clinical

prospect (Xu et al., 2020). Meanwhile, the advances of the
stem cell therapy in the regenerative medicine stimulated the
progress of the stem cell-laden hydrogel as the bioink of 3D
bioprinting. As a result, the 3D bioprinting technique and
hydrogels combine with stem cells that could better meet the
demand of the clinical requirement and have significantly
facilitated the regeneration of bone and cartilage tissue
engineering over the past decade (Ni et al., 2020; Buyuksungur
et al., 2021; Ge et al., 2021; Huang et al., 2021; Nedunchezian et al.,
2021; Jeon et al., 2022).

Stem cell-laden hydrogel-based 3D bioprinting has provided
new opportunities for bone and cartilage tissue repair. Backbone
of this system consists of biomaterials, stem cells, bioprinting
methods, and their interactive microenvironment. Compared
with conventional 2D tissue engineering, 3D bioprinting
optimizes the structural and living conditions of stem cells.
Over the past decades, emerging research studies have focused
on the advancement of this technique regarding to its core
elements to make it a substitute or better alternative over
autologous bone and cartilage tissue. However, current
strategies are still of limitations.

Constructing biomaterial with suitable biochemical and
functional properties (such as printability, biocompatibility,
biodegradability, and maintenance of cell viability) remains
challenging (Figure 4). Some features of natural biomaterials
may hinder their ideal usage in 3D bioprinting. For example, the
natural alginate shows superior biocompatibility and
biodegradability but lacks sufficient mechanical strength (Jang
et al., 2018). Hybrid materials may help to overcome such
limitation by producing more versatile items. For example,
alginate hydrogel could maintain long-term strength after
cross-linking with Ca2+, while gelatin could stabilize the 3D
structure at the primary stage; hence, alginate–gelatin-mixed
hydrogel has been extensively researched in tissue engineering
because of the ideal biocompatibility and the improved
mechanical property (Axpe and Oyen, 2016; Chawla et al.,
2020). Meanwhile, adding Col I to agarose significantly
increases cell spreading and differentiation (Duarte Campos
et al., 2016). However, this is not the ultimate solution.
Though combination of two kinds of hydrogel could make up
the shortcoming, they are still far away from the requirement of
the product. For instance, low-density alginate/gelatin (0.8%
alginate)-mixed hydrogel-based scaffold demonstrates great
priority in facilitating mineralization, maintaining cell viability,
and inducing osteogenic differentiation of BM-MSCs, but the lack
of mechanical property, shape fidelity, and printability is
inevitable. On the contrary, the high-density alginate/gelatin
(1.8% alginate) based-3D printing exhibits improved
mechanical features and printability, but largely impairs the
cell viability (Zhang et al., 2020c).

A further challenge is to establish appropriate interaction between
materials and the cellular component. 3D bioprinting provides space
for cell encapsulation and deposition, but lacks the control of
biological and biomechanical heterogeneity. Thus, the
microenvironment may be inappropriate for cell growth and
differentiation into desired cartilage or bone tissue. Solutions for
this limitation are to create concentration gradients using 3D
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bioprinting, for example, the mixing nozzles that can print materials
with tunable gradients (Ober et al., 2015). In some cases, the printing
patterns are more complicated, such as vascularized bone
compositing with the hard mineral structure and the soft organic
matrix. Cui et al. have developed a dual-3D bioprinting platform
consisting with a fused deposition modeling 3D bioprinter and a
stereolithography 3D bioprinter. With the addition of regional
immobilization of bioactive factors, the printed system support
controlled and provided continuous stimulus for vascularized
bone regeneration (Cui et al., 2016). Notably, such interaction
may vary in different individuals, influenced by the local
destructional area, inflammatory factors, oxygen, etc. Therefore,
in addition to the improvement of biomaterials, we should also
focus on the interaction between biomaterials and cellular
components, especially the in vivo model.

Selection and production of appropriate stem cell is another
challenge for stem cell-laden hydrogel-based 3D bioprinting.
Bone and cartilage are mesodermal-derived tissue and thus the
multipotent stem cell populations are important source for their
biofabrication. Stem cell has multiple differentiation potential
and immune advantages over adult cells, but it demands
regenerative ability to the ideal phenotype. It has been noticed
that MSCs tend to display a hypertrophic phenotype that leads to
endochondral bone formation (Eslaminejad andMalakooty Poor,
2014). Thus, the control of regenerative tendency is demanding.
Otherwise, different types of stem cell exhibit dissimilar
propensity of differentiation in certain scaffold. For instance,
BM-MSCs tend to differentiate into chondrogenic cells and
osteogenic cells in gelatin while AD-MSCs prone to
osteogenesis. Notably, stem cell expansion in vitro is
complicated. Cell senescence is inevitable following multiple
expansion rounds (De Coppi et al., 2007). As a cell candidate,
iPSC has shown greater accessibility and expandability. However,
the risk of tumorigenicity and mutations has limited its clinical
application (Lee et al., 2013; Simonson et al., 2015). The attempt
to establish an iPSC bank may help to overcome this issue.

Meanwhile, novel protocols for primary cell isolation and
expansion are highly requested to support cell sourcing.

In addition, evolution in printing technique advances the
bioprinting. Three-dimensional bioprinting produces scaffold
that provides spatial environment closer to human tissue for
stem cells. However, the current 3D bioprinting cannot meet the
diverse needs simultaneously because the scaffold is fixable upon
designing and printing. In 2014, Skylar Tibbits demonstrated the
4D printing which counted time as a new dimension (Wan et al.,
2020). By adopting stimuli-responsive materials, 4D printing
scaffold is flexible and able to change their configuration in
response to different stimuli. Its usage in cell-laden bioprinting
substantially improves the adjustment and function of implant.
We propose that 4D bioprinting is an upcoming trend for bone
and cartilage tissue engineering. Despite the high cost of stimuli-
responsive and programmable biomaterials, stem cell-laden
hydrogel-based 4D bioprinting are opening new avenue for
bone and cartilage repair.
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GLOSSARY

3D Three-dimensional

ABS Alcian blue staining

AD-MSCs Adipose-derived mesenchymal stem cells

AGG Aggrecan

ALP Alkaline phosphatase

AMPs Amorphous magnesium phosphates

ARS Alizarin red staining

BaG Bioactive glass

BCP Biphasic calcium phosphate

BMP-2 Bone morphogenetic protein-2

BMP-7D Bone morphogenetic protein -7-derived peptides

BM-MSCs Bone marrow-derived mesenchymal stem cells

β-TCP Beta-tricalcium phosphate powder

BTE Bone tissue engineering

CB[6] Cucurbit[6] uril

CD Chondrogenic differentiation

CNF Cellulose nanofibrils

Col I Collagen type I

COL 1A1 Collagen type I alpha 1

Col II Collagen type II

Col X Collagen type X,

CTE Cartilage tissue engineering

DAH Diaminohexane

DHT Dehydrothermal

DMD Digital micro-mirror device

DMMB Dimethylmethylene blue

DP-MSCs Dental pulp mesenchymal stem cells

DPSCs Dental pulp stem cells

eBM-MSCs Equine bone marrow-derived mesenchymal stem cells

ECM Extracellular matrix

ESCs Embryonic stem cells

FGF Fibroblast growth factor

GAG Glycosaminoglycans

GelMA Methacrylated gelatin

GNPs Gold nanoparticles

HA Hyaluronic acid

HAMA Hyaluronic acid methacrylate

H&E staining Hematoxylin and eosin staining

HAP Hydroxyapatite

hAD-MSCs Human adipose-derived mesenchymal stem cells

hBM-MSCs Human bone marrow-derived mesenchymal stem cells

hBM-MStCs Human bone marrow-derived mesenchymal stromal cells

hMSCs Human mesenchymal stromal cells

HPMC-MA Hydroxy propyl methyl cellulose of methacrylation

hUCB-MSCs Human umbilical cord blood-derived mesenchymal
stem cells

hTMSCs Human turbinate-derived mesenchymal stromal cells

ICC Immunocytochemistry

IHC Immunohistochemistry

Ma-dECM Methacrylated decellularized extracellular matrix

MAF MAF bZIP transcription factor

MeHA Methacrylated hyaluronic acid

MPEG-b-PCL Methoxy PEG-block-PCL

MSCs Mesenchymal stem cells

MTS Masson’s trichrome staining

NA Not available

OCN Osteocalcin

OD Osteogenic differentiation

OMA Oxidized and methacrylated alginate

OPF Oligo(poly(ethylene glycol) fumarate

OPN Osteopontin

OTE Osteochondral tissue engineering

P(AGE-co-G) Poly(allyl glycidyl ether-co-glycidyl)

PBMCs Peripheral blood mononuclear cells

PCL Polycaprolactone

PEG Poly(ethylene glycol)

PLA Polylactic acid

PLGA Poly(lactic-co-glycolic acid)

PSRS Picrosirius red staining

PVA Polyvinyl alcohol

rBM-MSCs Rat bone marrow-derived mesenchymal stem cells

raBM-MSCs Rabbit bone marrow-derived mesenchymal stem cells

RUNX 2 Runt-related transcription factor 2

sGAG Sulfated glycosaminoglycans

SOX9 SRY box transcription factor 9

TGF-β Transforming growth factor-beta

UVECs Umbilical vein endothelial cells

UV Ultraviolet

VEGF Vascular endothelial growth factor
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