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Stem cells for brain repair in neonatal hypoxia–ischemia
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Abstract Neonatal hypoxic–ischemic insults are a significant
cause of pediatric encephalopathy, developmental delays, and
spastic cerebral palsy. Although the developing brain’s
plasticity allows for remarkable self-repair, severe disruption
of normal myelination and cortical development upon
neonatal brain injury are likely to generate life-persisting
sensory-motor and cognitive deficits in the growing child.
Currently, no treatments are available that can address the
long-term consequences. Thus, regenerative medicine appears
as a promising avenue to help restore normal developmental
processes in affected infants. Stem cell therapy has proven
effective in promoting functional recovery in animal models
of neonatal hypoxic–ischemic injury and therefore represents
a hopeful therapy for this unmet medical condition.
Neural stem cells derived from pluripotent stem cells
or fetal tissues as well as umbilical cord blood and
mesenchymal stem cells have all shown initial success
in improving functional outcomes. However, much still
remains to be understood about how those stem cells can
safely be administered to infants and what their repair
mechanisms in the brain are. In this review, we discuss
updated research into pathophysiological mechanisms of
neonatal brain injury, the types of stem cell therapies currently
being tested in this context, and the potential mechanisms
through which exogenous stem cells might interact with and
influence the developing brain.
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Introduction

Despite major advances in monitoring technology and
knowledge of fetal and neonatal pathologies, hypoxic–
ischemic (HI) strokes remain the most common form of
damage to the neonate brain [51], causing significant
mortality and persistent neurobiological morbidity. In most
cases, exact timing and underlying causes of the injury are
unknown. Etiologies are complex and most often
multifactorial. Reported precipitating insults include placental
abnormalities [21], intrauterine growth restriction [115],
preeclampsia [115], maternal infections [15, 33, 72],
circulation disorders [34, 61, 114], and perinatal asphyxia
[87]. Genetic makeup, sex, and degree of brain development
also affect vulnerability and themechanisms of brain injury [44,
105]. Neonatal HI occurs in 1–3 per 1,000 live full-term births
and dramatically increases to 40 per 1,000 in preterm children
with very low birth weight [33, 47]. Of affected newborns,
25 % develop severe and persistent neuropsychological
impairments, including mental retardation, motor deficits,
cerebral palsy, and epilepsy [104].

Upon neonatal HI insult, oxygen and glucose supplies are
transiently depleted from the brain, causing an energy failure
and initiating a cascade of biochemical events leading to cell
dysfunction and oxidative stress [97]. Depending on the
strength and duration of this initial insult, secondary injuries
are likely to follow which include mitochondrial dysfunction,
apoptosis, and excitotoxicity [97]. Tertiary effects may persist
in the brain such as sensitization to inflammation, impaired
oligodendrocyte maturation/myelination, persistent gliosis,
and epigenetic changes [14, 26, 97]. Although those enduring
damages might predispose patients to developmental
disruption and sensitization to further injury, this also creates
an extended window of opportunity for further treatment.
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White matter damages in the developing brain

Brain white matter consists of glia and myelinated axons and
plays a crucial role in fast signal transmission throughout the
CNS. The process of active myelination reflects the progression
of functional brain maturation and connectivity in the first years
of life and renders the infant brain particularly vulnerable to
injuries such as pediatric stroke and epilepsy [73]. Consequently,
white matter injury and disruption of normal myelination is a
hallmark of neonatal HI. Clinical diffusion tensor imaging (DTI)
studies have shown that the majority of children with spastic
types of cerebral palsy present white matter injuries and the
importance of myelin loss correlates with the severity of motor
impairments and learning disabilities [65, 80]. Together with
perinatal inflammation, hypoxia–ischemia is considered the
principal initiating mechanism for pathogenesis of
periventricular leukomalacia (PVL), a condition characterized
by coagulation and necrosis of white matter near the lateral
ventricles, accompanied by gliosis/necrosis evolving from
diffuse to focal cyst formation [45]. Non-cystic diffuse PVL
accounts for most of the cerebral white matter injury in the
newborn and is associated with loss of pre-myelinating
oligodendrocytes, astrogliosis, and microglial infiltration [72].
Studies indicate that pre-myelinating late oligodendrocyte
progenitors (pOPC) are crucial in renewing the pool of
oligodendrocyte progenitor (OPC) and driving their
differentiation towards myelinating oligodendrocytes. These
pOPC are particularly vulnerable to the hypoxic stress generated
during ischemic insults, and hence, rapidly undergo apoptosis in
the injured environment [4, 85]. Systemic upregulation of pro-
inflammatory cytokines associated with astrogliosis and
microglial infiltration as well as resulting oxidative stress are
also likely to restrict white matter development and affect
existing and forming myelin fibers [47, 109].

While experimental models have been proposed to prevent
or ameliorate white matter injury-associated mechanisms
separately [45], therapies targeting the overall neurogenic
niche are likely to be the most effective in restoring
progression of white matter formation and alleviate long-
term disabilities following neonatal HI injuries.

Preclinical approach

Animal models

Because of the large heterogeneity in factors potentially
contributing to cerebral palsy, it has been difficult to achieve a
reliable animal model. The Levine and Rice-Vannucci model of
neonatal HI[54, 78, 103], involving unilateral temporary or
permanent ligation of the common carotid artery and subsequent
exposure to hypoxic condition (8–10% O2) on postnatal day 7
(P7) animals, is the most commonly used paradigm to model

neonatal HI and neurobehavioral outcomes reminiscent of
cerebral palsy. Multiple variations of this model have been
explored including global hypoxia without carotid artery
ligation, bilateral carotid occlusion, and temporary carotid
occlusions using aneurysm clips. The neonatal hypoxia model
has been applied in rats, mainly SpragueDawley andWistar rats.
It has been shown that a more consistent injury was achieved in
Wistar rats as compared to Sprague Dawley rats probably
because of differences in collateral circulation [69]. Other
adjunct interventions have been explored such as the
combination with low doses of lipopolysaccharide—a potent
trigger of the innate immune system—which dramatically
increased injury response to HI challenge [53, 110] and
suggested that inflammation may further sensitize the immature
central nervous system.

Stem cell therapy

First studies on cell therapy for neonatal HI were designed to
evaluate the ability of transplanted cells in replacing damaged
tissue and utilized fetal cortical grafts or polymer scaffolds
seeded with neural stem cells [22, 43, 71]. However, several
reports subsequently demonstrated that transplanted stem cells
promote CNS tissue repair not merely through cell replacement
but by providing trophic and immunomodulatory support for
endogenous repair mechanisms [60]. Different types of stem
cells have been considered to mediate brain repair including
stem cells derived from umbilical cord blood, bone marrow,
fetal central nervous system, embryonic tissues as well as
reprogrammed somatic [99] cells. Because each stem cell type
have unique characteristics, it is likely that they use distinct
machineries to interact with the ischemic environment and
trigger regenerative mechanisms. On the other hand, some
mechanisms are common to all stem cell types, and those might
be particularly relevant for the induction of repair mechanisms
in the brain. In the following paragraphs, we will review cell
type-specific characteristics that might be relevant to
regeneration in the injured neonatal brain. We will also discuss
current concepts of the potential mechanisms of action that
induce repair/regeneration of the injured CNS.

Umbilical cord blood-derived mesenchymal stem cells

The human umbilical cord is a rich source of stem and
progenitor cells including mesenchymal stem cells (MSC)
and hematopoietic stem/progenitor cells (HPC). Umbilical
cord cells are easily available via noninvasive procedures
and considered less immunogenic than alternative adult stem
cell sources such as bone marrow. MSC derived from cord
blood have shown to generate neural stem cells in vitro [19,
28] and to lead to functional improvement in rodent models of
perinatal brain injury [55, 116]. Thus, there is a growing
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interest in studying the potential of umbilical cord-derived
stem cells for the treatment of brain diseases [60, 99, 101].
MSC have demonstrated potent trophic support [8] and
immunomodulatory properties in vitro [98, 112], and therefore,
appear as particularly interesting candidates to modulate glial
activation and pro-inflammatory mechanisms that accompany
neonatal ischemic injuries. Furthermore, as those cells are
isolated at birth following clamping and elimination of the
umbilical cord, they present the considerable advantages of
being autologous and freshly available after sorting and
expansion. Short-term exposure to mild hypoxia has shown
to optimize MSC functions [40], which might further
emphasize their therapeutic relevance in the context of HI
injury. Besides MSC, other cells can be isolated from the
mononuclear fraction of umbilical cord blood, with a relative
immature and naive phenotype. Those include HPC and
endothelial progenitors, which derive from a common
precursor cell called the hemangioblast [52]. Interestingly,
while intravenous injection of HPC in the ischemic brain has
demonstrated neuroprotective and immunomodulatory
effects[84], transplantation of a cord blood fraction enriched
in hemangioblastic cells induced neovascularization in a mouse
model of stroke [64, 93]. This might further argue that different
stem cell types support distinct repair mechanisms depending
on their respective lineage, and combinational therapies might
be appropriate in major injuries.

Fetal/adult neural stem/progenitor cells

Neural stem/progenitor cells (NPC) can be found in
endogenous neurogenic areas such as the subventricular zone
or the dentate gyrus of the hippocampus. In the case of human
NPC, the primary source can either be donated fetal tissue [25,
92, 95, 107, 108] or adult post-mortem brains [70]. Fetal-
derived NPC are typically isolated from the brain tissue by
fluorescent-activated cell sorting and then grown as
neurospheres under proliferative conditions [95]. Adult
human neural stem cells have been isolated from brain tissue
obtained from patients undergoing surgical procedures
involving removal of brain tissue for the treatment of epilepsy,
tumors, or trauma [3, 9, 32]. These studies demonstrate that
the adult human brain contains a renewable source of NPC,
which can be successfully isolated through various surgical
techniques. Regardless of source, these cells can differentiate
into oligodendrocytes, astrocytes, and neurons. NPC
demonstrated potent ability to migrate in response to
endogenous chemokines [41] and can move at a rate of 100–
125 μm/day towards the area of injury in the neonatal brain
where they can survive for up to 52 weeks following
transplantation [67]. As for MSC, mild hypoxia has shown
to enhance proliferation and differentiation of a human NPC
line towards neuronal and oligodendroglia lineages,
emphasizing the potential of fetal NPC to mediate brain repair

in HI conditions [83]. Most stem cell therapy studies in
neonatal HI utilized rodent NPCs. The only study to date
using human NPCs found a change in activation of resident
microglia, and most interestingly, a change in gene expression
in the brain after cell engraftment, suggesting a potent cross-
talk between transplanted and intrinsic cells [13]. In this study,
the increase in transcripts for growth factors GDNF, IGF-1, and
FGF2; neuronal marker doublecortin; and oligodendrocyte
markers Olig2 and myelin basic protein suggest that
widespread changes in the brain could be driving the functional
improvements seen following NPC engraftment [13].

Embryonic stem cell-derived neural stem cells

Embryonic stem cells (ESC) are derived from the microscopic
cluster of cells populating the blastocyst cavity a couple of days
following fertilization [96]. ESC have been reported to
differentiate into various cell types including NPC and
oligodendroglial progenitors [10, 46] and are therefore
considered as a potential source for cell replacement therapy in
CNS diseases. Among all stem cell types, ESC are the most
truly self-renewable and pluripotent populations. These
properties confer them the considerable advantages of providing
an almost unlimited supply of cells and differentiating toward a
whole spectrum of distinct cell types. For instance, human
embryonic stem cells have proven to differentiate in vitro
towards oligodendrocyte progenitor cells, motoneurons,
dopaminergic neurons, astrocytes, and peripheral sensory
neurons (reviewed in [24]). However, counterparts to those
properties are increased risks of neoplastic transformation (“graft
overgrowth”) andmultigerm layer teratoma formation following
transplantation, events which are likely to be supported by
factors released by the injured brain, thus raising major safety
issues [42, 79, 86]. Furthermore, relative immaturity of ESC-
derived lineages might confer protracted development requiring
several months of further in vitro or in vivo maturation before
demonstrating therapeutic potential [7, 63]. Last but not least,
human ESC research is a rather controversial issue, as creation
of an ESC line requires the destruction of a human embryo [96].

Induced pluripotent stem cells

Induced pluripotent stem cells (iPSC) are adult somatic cells
that have been reprogrammed to an embryonic stem cell-like
state by enforced expression of pluripotency transcription
factors, mainly Oct3/4, Sox2, Klf4, and c-myc [94]. As iPSC
capture the genetic diversity of the donor, provide access to the
earliest stages of development, and virtually generate unlimited
numbers of patient-specific cells, they are particularly
considered as a valuable tool to model human genetic diseases
in vitro [59, 74, 91]. In the field of stem cell transplantation,
they present the advantages to overcome ethical limitations and
to allow for generation of autologous cellular products, while
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behaving similar to ESC in morphology, gene expression, and
differentiation potential. Although this new field has generated
quite some excitement within the scientific community, major
safety issues remain associated with the use of iPSC. First, the
ectopic expression of the chosen set of pluripotency factors can
lead to neoplastic transformation of cells derived from these
iPSC [6, 31, 38, 68]. Furthermore, in most existing procedures,
these genes are introduced via DNA integrating viruses, which
are likely to maintain or reactivate their transcriptional activity
in the pluripotent cells or their progeny [68]. Also of major
safety concern, there is a growing body of evidence
demonstrating genetic and epigenetic instability in human
iPSC, likely to originate during in vitro selection of the
reprogrammed clones [66] and the reprogramming procedure
per se [31]. If iPSC are to be used for clinical regenerative
purposes, careful genetic integrity controlling is an absolute
requirement. Considerable efforts are currently being made to
develop safer and more efficient methods to generate iPSC. For
instance, recent promising procedures focus on the use of non-
integrating Sendai viruses that can further be removed through
temperature shift [5].

Future should confirm the potential use of iPSC in stem cell
therapies in the context of stroke. On an optimist note, a recent
study in a rat experimental stroke model has reported that iPSC-
derived NPC are effective in reducing stroke-induced
inflammatory response, gliosis, and apoptosis, contributing to
endogenous neurogenesis and inducing behavioral recovery [11].

Potential therapeutic mechanisms of action

Neuroprotection and neuroplasticity

Although stem cell-induced endogenous repair mechanisms are
largely unknown, it is likely that transplanted cells and resident
neuronal and glial lineages will mutually interact to support
therapeutic effect. In support for the present hypothesis, we have
recently demonstrated that NPC-secreted vascular-endothelial
growth factor (VEGF) is necessary and sufficient to regulate
endogenous microglial proliferation, activation, and phagocytic
properties [62]. Although this study was performed with mouse
NPC, it strongly suggests that exogenous stem cells assume a
role in maintaining tissue integrity and immune function in the
CNS apart from their purpose to merely produce and replace
neural cells. Neonatal brain injury is accompanied by activation
of pathways of oxidative stress, inflammation, and excitotoxicity
that can lead to damages progressing over a long period of time
and causing persisting disabilities in the growing child. In
addition to neuronal damages, injury to non-neuronal types such
as oligodendrocytes [4, 85, 89] and astrocytes [89] might also
impair neurodevelopment. Neuroprotective and antiapoptotic
effects mediated by NPC and stem cells in general have been
recognized and largely reviewed in the context of different CNS

disorders including neonatal stroke [16, 48, 76, 99]. Based on
previous data, it sounds reasonable to postulate that the
transplants induce a greater survival of intrinsic brain
populations. For instance, it has been shown that intravenously
administrated marrow stem cells increase the expression of
critical neurotrophic growth factors in the rat brain after
traumatic injury [58]. Transplantation of human neural stem
cells in a rat model of adult stroke has also shown to modulate
dendritic plasticity and axonal transport, mostly through non-cell
autonomous secretion of VEGF and thrombospondins [2].

Oligodendrogenesis and white matter regeneration

Brain anatomy is characterized by a dramatic growth from the
end of the second trimester through the neonatal stage, with
whole brain volume increasing almost 17 times [39]. Brain
structures have shown to develop disproportionately during this
period, and this might partly explain the extensive
inhomogeneity of white matter injuries and their outcomes
observed in cerebral palsy patients. Together with the reported
increased sensitivity of pOPC to HI insults [4, 85], these
observations place oligodendrogenesis and myelination as core
processes underlying early brain injuries and life-persisting
symptoms. A number of molecules have been critically involved
in oligodendrogenesis, including neurotrophic factors such as
platelet-derived growth factor-alpha (PDGFα) [27], insulin-like
growth factor-1 (IGF-1) [50], brain-derived neurotrophic factor
[102], and erythropoietin [117]. Even though different stem cell
types have not been compared side by side for their expression of
neurotrophic factors, it is likely that secretion of some of those
critical factors byNPCwill partly explain the bystander effects of
stem cell therapies [2, 48, 56]. In a model of multiple sclerosis
recapitulating demyelination, it has been demonstrated that NPC
induced OPC proliferation and maturation via secretion of
PDGFα and FGF2 specifically [20]. In a rat model of neonatal
hypoxia–ischemia, a study reported that human NPC graft
specifically enhanced axonal transport and sprouting [13]
through upregulation of oligodendrogenesis, myelination as well
as an increase in neurotrophic factors. Once again, this strongly
argues for cross-talk mechanisms between exogenous NPC and
intrinsic cells, here the oligodendrocytes, in mediating brain
repair and functional recovery through multiple modalities.

Immunomodulation

Several independent observations suggest a pivotal role for the
immune system in shaping the central nervous system and
contributing to its recovery upon injuries. Firstly, it has been
recently demonstrated that immune myeloid cells home to the
central nervous system before neurogenesis occurs [30].
Second, brain architecture and myelination are severely
compromised in microglia-depleted animals [23]. Third, most
of the reported stem cell-secreted factors are potent triggers of
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immune-related pathways, including molecules directly
involved in chemo-attraction and modulation of inflammation
and phagocytosis [1, 13, 62, 77]. It appears that there are direct
NPC-mediated immunomodulatory effects on the brain
resident immune cells as well as modulation of the systemic
immune system. Using NPC transplantation, several groups
have demonstrated that induced recovery is partly mediated
through modulation of microglial phagocytic activities [13,
62]. Studies in multiple sclerosis and spinal cord injury also
emphasize the role of the innate immune system, principally
macrophages/microglia, in supporting remyelination
processes via phagocytosis of myelin debris [49, 82, 88].
Interestingly, transplantation of HPC, the progenitors of the
immune and endothelial lineages, has also proven beneficial
in animal models of stroke without reported cell fusion events
[84]. In the field of neurodevelopmental disorders, recent
studies have also started to unravel the beneficial role of bone
marrow transplantation. For instance, in a genetic rodent
model of Rett’s syndrome, a group strikingly identified
microglial phagocytic activity as a major mediator of
functional recovery [18]. Interestingly, different types of stem
cells have intrinsic phagocytic properties [57, 100], and this
might contribute to their beneficial effects in the injured brain.

A second immunomodulatory effect appears to be
systemic. Cord blood stem cell infusion in a model of acute
stroke has shown to mediate brain protection through specific
modulation of the splenic release of inflammatory cells [106].
The same has been shown for stem cell-induced recovery in
traumatic brain injury [111]. In this study, stem cell injection
led to a preservation of blood brain barrier integrity through
modulation of the immune cell response in the spleen. A
pharmacologic correlate to this phenomenon relies on the
use of sphingosine-1 phosphate receptor agonist fingolimod
(FTY720)—a multiple sclerosis market drug. Its main action
is to segregate inflammatory cells within the spleen, and it has
also demonstrated long-term protection in rodent models of
cerebral ischemia [113]. Taken together, these findings
support the concept of NPC-mediated local and systemic
modulation of the immune response as a potentially important
mechanism of action.

Methodologies

Cell delivery and timing

Aside from the type of stem cells used for transplantation in
neonatal HI, the route of administration and timing are likely
to play crucial roles in the efficacy of the treatment. Stem cells
can be delivered systemically or directly into the brain. Our
laboratory previously demonstrated that delivery of stem cells
to the injured brain via intravascular treatment allows for a
widespread distribution of cells in the brain by means of a T

ab
le
1

C
lin

ic
al
tr
ia
ls
us
in
g
st
em

ce
lls

fo
r
tr
ea
tm

en
to

f
ne
on
at
al
st
ro
ke
-r
el
at
ed

di
so
rd
er
s.
A
U
C
B
:a
ut
ol
og
ou
s
um

bi
lic
al
co
rd

bl
oo
d
st
em

ce
lls
,I
V
:i
nt
ra
ve
no
us

C
lin

ic
al
tr
ia
lI
D

C
el
lt
yp
e

S
pe
ci
fi
c
pa
th
ol
og
y

E
nd
po
in
t

cl
as
si
fi
ca
tio

n
P
at
ie
nt
s

A
ge

D
el
iv
er
y

C
om

pl
et
io
n

L
oc
at
io
n

C
lin

ic
al
tr
ia
lt
itl
e

N
C
T
01
14
76
53

A
U
C
B

C
er
eb
ra
lp

al
sy

E
ff
ic
ac
y

12
0

12
m
0n
th
s–
6
ye
ar
s

IV
Ja
nu
ar
y
16

U
SA

A
R
an
do
m
iz
ed

S
tu
dy

of
A
ut
ol
og
ou
s
U
m
bi
lic
al

C
or
d
B
lo
od

R
ei
nf
us
io
n
in

C
hi
ld
re
n
W
ith

C
er
eb
ra
lP

al
sy

N
C
T
01
07
23
70

A
U
C
B

C
er
eb
ra
lp

al
sy

S
af
et
y/
ef
fi
ca
cy

40
1–
12

ye
ar
s

IV
F
eb
ru
ar
y
14

U
SA

Sa
fe
ty

an
d
E
ff
ec
tiv

en
es
s
of

C
or
d
B
lo
od

St
em

C
el
lI
nf
us
io
n
fo
r
th
e
T
re
at
m
en
to

f
C
er
eb
ra
l

P
al
sy

in
C
hi
ld
re
n

N
C
T
00
59
32
42

A
U
C
B

N
eo
na
ta
le
nc
ep
ha
lo
pa
th
y

S
af
et
y

25
<
14

da
ys

IV
D
ec
em

be
r
13

U
SA

C
or
d
B
lo
od

fo
r
N
eo
na
ta
lH

yp
ox
ic
-i
sc
he
m
ic

E
nc
ep
ha
lo
pa
th
y

N
C
T
01
70
01
66

A
U
C
B

A
rt
er
ia
li
sc
he
m
ic
st
ro
ke

(A
IS
)

S
af
et
y/
E
ff
ic
ac
y

10
6
w
ee
ks
–6

ye
ar
s

IV
D
ec
em

be
r
15

U
S
A

U
m
bi
lic
al
C
or
d
B
lo
od

in
th
e
T
re
at
m
en
to

f
St
ro
ke

in
C
hi
ld
re
n
(P
ed
iS

tr
ok
e)

N
C
T
01
50
62
58

A
U
C
B

N
eo
na
ta
la
sp
hy
xi
a

S
af
et
y/
E
ff
ic
ac
y

20
37

w
ee
ks
–4
2
w
ee
ks

IV
A
pr
il
13

M
ex
ic
o

A
ut
ol
og
ou
s
St
em

C
el
ls
in

N
ew

bo
rn
s
W
ith

O
xy
ge
n
D
ep
ri
va
tio

n

Childs Nerv Syst (2014) 30:37–46 41



highly feasible, safe, repeatable, and minimally invasive
approach [12, 35, 36, 75]. Our studies suggest an active
mechanism of cell recruitment to the brain through cellular
expression of adhesion molecules [36] and chemokine
receptors [1, 81]. While previous studies involved
transplantation of human stem cell grafts 24 h after neonatal
hypoxia–ischemia injury [13], we established that intra-arterial
transplantation of NPC 3 days after the insult resulted in higher
cell engraftment and survival when compared with earlier (6–
24 h) or later (7–14 days) time-points [81]. Interestingly, day 3
post-injury correlated with the highest expression of signaling
molecules such as VCAM-1, CCL2, and CXCL12, here again
supporting a cross-talk hypothesis, where the injured
environment is likely to dictate efficiency of exogenous stem
cell treatment. Current clinical trials will be using early (48 h
and 2 weeks after birth) and chronic time points (up to 12 years
of age) for intravenous cell delivery (Table 1).

Imaging

Noninvasive approaches to monitor stem cells upon
transplantation are pivotal to therapeutic success and to
prediction of graft viability and potential complications.
High field magnetic resonance imaging (MRI) remains the
modality of choice to evaluate pathogenesis, severity, and
evolution of neonatal HI [17]. To evaluate white matter tract
integrity and repair, MRI-based DTI has become the main
imaging modality [90]. MRI can not only monitor evolving
neonatal cerebral injury but also track migration and location
of iron oxide nanoparticle (SPIO) labeled exogenous stem
cells for prolonged time periods [13, 37, 67, 75]. Other

preclinical stem cell imaging approaches have included
reporter genes for bioluminescence, proton emission
tomography, single photon emission tomography, radioactive
tracers, and fluoride labeling for fluoride MR-based imaging
(for review, see [29]). To date, however, there is no modality
for clinical stem cell imaging.

Conclusions and perspectives

Increased understanding in the pathophysiology of perinatal
injuries leading to cerebral palsy has placed white matter
injury and myelin loss at the core of the disorder. With their
unique regenerative properties, stem cells appear as a
promising and versatile tool for therapeutic approaches in
pediatric neurology. Moreover, repair mechanisms might be
facilitated by the immaturity and plasticity of the neonatal
developing brain.

Proof of principle for stem cell-mediated brain repair and
functional recovery has been shown with different types of
cells in the Rice-Vannucci animal model of neonatal
hypoxia–ischemia. Most of those studies argue in favor of a
strong communication between transplanted cells and intrinsic
brain lineages. More than cell replacement, it becomes more
and more obvious that exogenous stem cells are acting as
bystander cells, providing a favorable niche for neuroprotection
and immunomodulation (Fig. 1). However, knowledge
obtained from preclinical models is unable to totally predict
clinical outcomes in pediatric patients. Several clinical trials are
underway to evaluate the safety and efficacy using autologous
cord blood intravenous transplantation (Table 1), and results of

Neonatal HI 

Exogenous Stem Cells 
Intravascular or intranasal treatment 

MSC 

HPC 

NPC 

Cell Replacement 
Neurons, glia 
Microglia 

Remyelination
Oligodendrogenesis support 
Myelin debris clearance 

Neuroprotection
Immunomodulation 
Trophic support 

Microglia activated
microglia

Phagocytosis 
Stem cell intrinsic properties? 
Enhance microglia functions 

White matter recovery 
Functional improvement 
Clinical safety? 
Risk/benefit ratio? 

Fig. 1 Potential stem cell-induced brain repair mechanisms. Schematic illustrating main candidate mechanisms of action in stem cell-mediated white
matter repair following neonatal hypoxic–ischemic injuries. For detail, cf. text
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those should partly address safety of cell transplantation in the
acute and chronic phase, as well as efficacy of the procedure for
the growing child.
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