
  

 
Abstract—The current study proposes to compare document 

retrieval precision performances based on language modeling 

techniques, particularly stemming and lemmatization. 

Stemming is a procedure to reduce all words with the same stem 

to a common form whereas lemmatization removes inflectional 

endings and returns the base or dictionary form of a word. 

Comparisons were also made between these two techniques 

with a baseline ranking algorithm (i.e. with no language 

processing). A search engine was developed and the algorithms 

were tested based on a test collection. Both mean average 

precisions and histograms indicate stemming and 

lemmatization to outperform the baseline algorithm. As for the 

language modeling techniques, lemmatization produced better 

precision compared to stemming, however the differences are 

insignificant. Overall the findings suggest that language 

modeling techniques improves document retrieval, with 

lemmatization technique producing the best result. 

 

Index Terms—Document retrieval, language models, 

lemmatization, stemming. 

 

I. INTRODUCTION 

The increase in size of data and information collections 

over the past couple of years made it necessary for tools to be 

developed in order to access information with much ease. 

Over the years, information retrieval methods have been 

developed and enhanced to assist users in looking for the 

right information. Information retrieval focuses on getting or 

providing users with easy access to the information they need. 

It does not only look for the right information but represents 

it in a manner that is easily understandable to users, stores the 

information in an orderly manner and organizes it in such a 

way that it can be easily retrieved at a later time [1]. Basically, 

information retrieval can be defined as “a problem-oriented 

discipline, concerned with the problem of the effective and 

efficient transfer of desired information between human 

generator and human user” [2]. 

Various mechanisms have been developed over the years 

to assist users in retrieving information. Common ones 

include the Boolean model, which uses queries with precise 

semantics coupled with binary decisions. In this model, a 

document is retrieved based on a binary decision of either a 

document being relevant or non-relevant [3]. The vector 

space model on the other hand compares user queries with 

documents found in collections and computes the extent to 

which these two are similar. It then ranks the retrieved 

documents according to their degrees of similarities [4]. The 

 

 

vector space model is mostly used in information filtering, 

indexing and relevance rankings. 

Today, the use of Internet all over the world resulted in the 

information size to increase and made it possible for large 

volumes of information to be retrieved at any given time. 

Thisalso means that both relevant and non-relevant 

information will be retrieved [5], thereby slowing down the 

retrieval process. However, speed and relevancy are very 

essential in the retrieval of information and information 

seekers look for ways to improve this aspect of the retrieval 

process. This eventually resulted in the birth of language 

models. Although a lot of studies have been done in this area, 

there is still a high demand for retrieval improvements. There 

are still a lot of non-relevant documents being retrieved even 

with stemming or lemmatization techniques being applied to 

search queries. Studies based on stemming and 

lemmatization techniques have reported improved document 

retrievals, however it would be interesting to assess their 

performances by way of a comparison. The current study 

hence aims to 1) compare the document retrievals using 

stemming and lemmatization techniques, and 2) compare the 

stemming and lemmatization techniques against a baseline 

ranking algorithm (i.e. with no language processing). 

The remainder of the paper is structured as follows: the 

related works are discussed in the following section. This is 

then followed by the research design which focuses on the 

stemming and lemmatization techniques, experiment setup 

and the evaluation metrics used. The results and discussion 

follow next. 
 

  

In the language model, users create a query to describe the 

information that they need and the system will choose 

keywords from the query that are deemed to be relevant. 

These keywords will be matched againstthe documents in a 

collection. When similarities are found between the given 

query and a document in the collection, that document is 

retrieved and then matched against the rest of the retrieved 

documents for ranking purposes [1]. There are two 

procedures that usually help to improve the language models 

by quickening the search process, and these are stemming 

and lemmatization. 

Stemming is one of the techniques used in information 

retrieval systems to make sure that variants of words are not 

left out when text are retrieved [5]. The process is used in 

removing derivational suffixes as well as inflections (i.e. 

suffixes that change the form of words and their grammatical 

functions) so that word variants can be conflated into the 

same roots or stems.Stemming mechanisms have been used 

in a lot of language research areas such as Arabic [6], 

Stemming and Lemmatization: A Comparison of Retrieval 

Performances 

Vimala Balakrishnan and Ethel Lloyd-Yemoh, Member, IACSIT 

DOI: 10.7763/LNSE.2014.V2.134

Lecture Notes on Software Engineering, Vol. 2, No. 3, August 2014

262

Manuscript received January 16, 2014; revised March 14, 2014. This 

study was supported by the University of Malaya (RP002B – 13ICT).

The authors are with the Faculty of Computer Science and Information 

Systems, University of Malaya, Kuala Lumpur, Malaysia (e-mail: 

vimala.balakrishnan@um.edu.my, ethel_lloyd@siswa.um.edu.my). 

II. RELATED WORK



  

 

 

  

 

 

 
   

 

  

 

 

 

 

 

 

 

 

 

Lecture Notes on Software Engineering, Vol. 2, No. 3, August 2014

263

  

cross-lingual retrieval [7] and multi-language manipulations 

[8].  

There are various stemming algorithms that have been 

developed to ensure that words are reduced to their root 

forms, thereby reducing the size of document dictionary. This 

is because one root or stem can be used to represent many 

variants of terms used in a particular language. Although this 

approach helps in retrieving more relevant documents, there 

is the possibility of either under-stemming (where two words 

belonging to the same conceptual group are converted to two 

different stems or roots, e.g. a search for the word “run” not 
containing documents which have “running” and “ran” in 

them), or over-stemming (where two words belonging to 

different conceptual group are converted to the same  stems 

or roots, e.g. when a search for the word “new” includes a 

search result containing the word “news”).  

Stemming techniques are many, including the Paice/Husk 

stemmer [9], Porter’s stemmer [10] and Lovin’s stemmer [5]. 

In the Paice/Husk stemmer, a file is created which holds a 

set of rules, and these rules are read by an array which 

implements the rules until a final stem is achieved. It accepts 

and processes a rule if the word specifies an ending which 

matches the last letters of the word [9]. The Lovin’s stemmer 
was developed to deal with both information retrieval and 

computational linguistics problems. The Lovins stemmer is a 

single pass, context-sensitive algorithm which only removes 

one suffix from a word by utilizing a list of 250 suffixes and 

removing the longest suffix that it finds attached to the given 

word. The stemmer ensures that when a word has been 

stemmed, it is at least three characters long [5]. The Porter’s 
stemmer was used in the current study, and is discussed in the 

next section. 

Lemmatization on the other hand uses vocabulary and 

morphological analysis of word and tries to remove 

inflectional endings, thereby returning words to their 

dictionary form. It checks to make sure that things are done 

properly by analyzing if query words are used as verbs or 

nouns. Lemmatization also helps to match synonyms by the 

use of a thesaurus so that when one searches for “hot” the 
word “warm” is matched as well. In the same light a search 
for “car” will produce “cars” as well as “automobile”.The 
lemmatization technique has been used in several languages 

for information retrieval.For instance, Ozturkmenoglu and 

Alpkocak [11] compared three different lemmatizers to 

retrieve information on a Turkish collection.Their results 

showed that lemmatization indeed improves the retrieval 

performance utilizing only a minimum number of terms in 

the system. Additionally, they also found that the 

performance of information retrieval was better when the 

maximum length of lemmas is used. In 2012, Gupta et al. [12] 

combined stemming and partial lemmatization and tested 

their model on the Hindi language. Their model yielded 

significant improvements compared to the traditional 

approaches. 

Both stemming and lemmatization play very important 

roles when it comes to increasing relevance and recall 

capabilities of a retrieval system. When these techniques are 

used, the number of indexes used is reduced because the 

system will be using one index to present a number of similar 

words which have the same root or stem. For instance, when 

the word “industrialize” is lemmatized, its index can be used 

for “industrious, industry”, etc.  

 

III. RESEARCH DESIGN 

A. Stemmer and Lemmatizer 

Fig. 1 depicts the data flow diagram for a search query that 

goes through the stemming process. A userenters the search 

query via the interface. The query is then passed to thesearch 

engine which will in turn invoke the Porter’s stemming 

algorithm. The stemmingalgorithm is applied to the search 

query and the resulting stemmed text is returned to thesearch 

engine. The next step is for the search engine to pass the 

stemmed text to thedatabase so that it can be matched against 

the documents that are available in thecollection. This results 

in the selection of matching data or documents which will 

bepassed to the search engine and displayed to the user for 

viewing. 
 

 
Fig. 1. Data flow diagram for stemming. 

 

The Porter’s stemmer is one of the widely used stemmers 

in information retrieval [10]. When the stemming function of 

the system is called, it will check the keyword and follow a 

set of rules. Firstly it will remove all stop words (i.e. a list of 

words specified by the system to be ignored). These are 

generally words that frequently occur in search queries, such 

as “and”, “the”, etc. The prototype designed in our study 

contains 430 of these words. The next step will be to remove 

endings that make the keyword plural (e.g. -s, -es), past tense 

(-ed), and continuous tenses (-ing).The stemmer then moves 

on to check and convert double suffices to single suffice. 

Other suffices such are -ic, -full, -ness,-ant, -ence, just to 

mention a few are removed as well.  

As for creating the lemmatizer, a prebuilt lemmatizer 

provided by LemmaGen was used in this study. 

LemmaGenwas particularly chosen as it provides 

multilingual support, and does not rely on sentence structure 

of the text which is being processed (i.e. it can be applied on 

each word separately, and thus can be used to lemmatize 

search query words). The latter is a very influential 

characteristic as the proposed search engine might have just 

one query word or a sentence structure. 

B. Nking 

The tf-idf (term frequency-inverse document frequency) 

was used as the baseline ranking algorithm [4]. The algorithm 

checks theretrieved document to see how frequent the words 

in the search query appears in thedocument. The larger the 

number of times a query word appears in a document, 

themore relevant that document is perceived to be in relation 

to the search query [4].  



  

 
   

 

 

     

 

 

 

       

  

 

 

     

 

 

 

Lecture Notes on Software Engineering, Vol. 2, No. 3, August 2014

264

  

 
Fig. 2. Baseline (tf-idf) result. 

 

Term frequency tft,d describes how often a query term t 

appears in a document d. The term frequency is used as 

follows:  

  log( 1 + 𝑡𝑓𝑡 ,𝑑)                                  (1) 

df refers to document frequency and relates to the number 

of document that contains the search keyword. The inverse 

document frequency (idf) describes the relevance of the 

search term in relation to all the documents in the collection, 

as depicted in (2): 𝑖𝑑𝑓𝑡 =  𝑙𝑜𝑔10 
𝑁𝑑𝑓𝑡                           (2) 

where N is the number of documents in the collection. 

tf-idf therefore will be the multiplication of the term 

frequency and inverse document frequency as in (3) below.  

log( 1 + 𝑡𝑓𝑡,𝑑) X  𝑖𝑑𝑓𝑡 =  𝑙𝑜𝑔10 
𝑁𝑑𝑓𝑡                   (3) 

C. Evaluations 

A prototype search engine was developed using the API 

approach that involved creating a back end using Visual 

Studio 2012. The engine’s front-end was divided into two 

parts, namely the SearchEngine.API and SearchEngine.Web. 

The SearchEngine.API was sectioned into three major parts: 

Requests, Responses and Services. The request classes 

contain the algorithms that will implement all the codes that 

will be executed with the search engine. The response classes 

entail the instructions as to what the system should display 

when a request is made whereas the service classes entail the 

codes that need to be run once the request command is issued. 

The SearchEngine.Web basically was used to implement the 

user interface. 

 

 
Fig. 3. Stemming results.



  

 

 

  

 

 

 

 

 

 

 

 

  

 

 

    

   

   

   

   

 

 

Lecture Notes on Software Engineering, Vol. 2, No. 3, August 2014

265

  

 
Fig. 4. Lemmatization results. 

 

The retrieval performances were tested and comparisons 

were made using the Communications of the Association for 

Computing Machinery (CACM) collection. The collection 

contains 3204 documents, 64 queries and the relevance 

judgements for the documents. The queries were tested and 

filtered in order to choose queries that require language 

processing. This resulted in 15 queries. 

Fig. 2 below shows the screen display for “optimization of 

loops and global optimization” queryusing the baseline 

technique. A total of 95 documents were retrieved for this 

particular query. 

Similarly, when the same query was used for stemming a 

total of 208 documents were retrieved. This far exceeds the 

number of documents retrieved by the baseline technique 

though the relevance is undetermined.  

Finally, lemmatization produced 104 documents for the 

same query. Fig. 3 and Fig. 4 depict the screen displays for 

stemming and lemmtization, respectively. From these figures, 

it can also be noted that although the query was the same, 

different results were produced due to the varying processing 

techniques.  

The results were then compared against the relevance 

judgements provided in the CACM collection, and the 

relevance precisions were calculated. 

D. Evaluation Metrics 

In order to assess the performance of the system, the 

relevant documents retrieved during the evaluation were 

matched against the relevant judgements provided along with 

the CACM collection. Mean Average Precision (MAP) was 

used to evaluate document relevancy at the top 10 and 20 

document levels. 

MAP was calculated by dividing the average precisions 

with the number of queries (i.e. 15 in this study). MAP is 

sensitive to the entire ranking of the documents retrieved for 

a search query. As it also combines both recall-oriented and 

precision-oriented aspects of the search engine, the overall 

performance of the search engine can be evaluated efficiently. 

In general, MAP can be represented as follows: 

 

# relevant documents retrieved

Total relevant documents

                        (4) 

 

Additionally, precision histograms were also created to 

compare the algorithms’ performances on each of the 15 
queries. Pair-wise comparisons were also made to assess the 

significance of the differences. Results were considered to be 

significant at p< 0.05. 

 

IV. RESULTS AND DISCUSSION 

A. Mean Average Precisions 

Table I shows the MAP for top 10 and 20 documents for all 

the three techniques.  
 

TABLE I: MAP FOR TOP 10 AND 15 DOCUMENTS 

Techniques @10 @20 

Baseline 0.601 0.490 

Stemming 0.614 0.510 

Lemmatization 0.623 0.544 

 

From the table, it can be noted that both stemming and 

lemmatization performed better than the baseline technique 

at both the document levels. This indicates that when queries 

are processed using language modeling techniques, they 

yield documents that are more relevant compared to queries 

which are not processed. This is similar with studies that have 

reported language models to improve document retrievals 

[6]–[11]. 

A comparison between stemming and lemmatization 

indicates that lemmatization outperformed stemming. 

Pair-wise comparisons however revealed that the precision 

differences between these techniques to be insignificant. This 

is probably because lemmatization is more advanced in the 



  

 

 

 
 

 

 

 
 

 
 

 

  

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 
 

  

 

  

 
  

 

Lecture Notes on Software Engineering, Vol. 2, No. 3, August 2014

266

  

sense that it takes care of additional analysis that is not 

supported by stemming. For instance, lemmatization looks at 

the synonyms of a word unlike stemming. This may result in 

more relevant documents. 

B. Histograms 

The histograms for all the 15 queries are shown in this 

section. For comparisons against the baseline algorithm, the 

histograms for top 20 documents are shown. Fig. 5 shows the 

histogram for stemming and baseline. It can be noted that 

stemming performed better than the baseline for 60% (i.e. 

9/15) of the queries. The remaining 40% were on the same 

level. 
 

 
Fig. 5. Stemming-baseline histogram. 

 

Similarly, Fig. 6 shows that lemmatization performed 

better than the baseline for 40% (i.e. 6/15) queries. The 

baseline performed better than lemmatization for a single 

quey (i.e. T9) whilst the rest were retrieved at the same 

precision levels. Both histograms for stemming and 

lemmatization show that the performance matches their 

precisions as indicated in Table I, in which stemming and 

lemmatization performed better than the baseline algorithm. 
 

 
Fig. 6. Lemmatization-baseline histogram. 

 

Fig. 7 and Fig. 8 depict the histograms for stemming 

against lemmatization at top 10 and 20 document levels, 

respectively. Although most of the queries were retrieved at 

the same level, lemmatization performed slightly better than 

stemming (i.e. 13%). We believe this is due to the nature of 

the test collection that was used in this study whereby not 

many queries required lemmatization process to take place. 

Although the differences are insignificant, nevertheless 

lemmatization outperformed stemming. 

Overall, the study found language processing techniques 

improve the relevancy of document retrievals compared to 

the baseline algorithm. Lemmatization on the other hand, 

yielded more relevant results when compared to stemming. 

The study is not without its limitations, with the main 

drawback being the test collection. During the evaluation, it 

was found that most of the queries were not suitable to be 

used for a language model as they do not contain items that 

require stemming or lemmatization. Future studies should 

look into using other test collections. 
 

 
Fig. 7. Lemmatization-stemming for top 10. 

 

 
Fig. 8. Lemmatization-stemming for top 20. 

 

REFERENCES 

[1] G. Chowdhury and S. Chowdhury, Introduction to digital libraries, 

Facet publishing, 2002. 

[2] N. J. Belkin, “Anomalous states of knowledge as a basis for 

information retrieval,” Canadian Journal of Information Science, vol. 

5, pp. 133-143, 1980. 

[3] H.S. Heaps, Information Retrieval, Computational and Theoretical 

Aspects, Academic Press, 1978. 

[4] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval, 

vol. 463, New York: ACM press, 1999. 

[5] J. B. Lovins, “Development of a stemming algorithm,” Mechanical 

Translation and Computational Linguistics, vol. 11, pp. 22-31, 1968. 

[6] L. S. Larkey, L. Ballesteros, and M. E. Connell, “Improving stemming 
for Arabic information retrieval: light stemming and co-occurrence 

analysis,” in Proc. 25th Annual International ACM SIGIR Conference 

on Research and Development in Information Retrieval, ACM, 2002, 

pp. 275-282. 

[7] J. Xu, A. Fraser, and R. Weischedel, “Empirical studies in strategies for 
Arabic retrieval,” in Proc. 25th Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval, 

ACM, 2002, pp. 269-274. 

[8] M. Wechsler, P. Sheridan, and P. Schäuble, “Multi-Language Text 

Indexing for Internet Retrieval,” in Proc. 5th RIAO Conference, 

Computer-Assisted Information Searching on the Internet, vol. 5 pp. 

217-232, 1997. 



  

 
 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

Lecture Notes on Software Engineering, Vol. 2, No. 3, August 2014

267

  

[9] D. A. Hull, “Stemming algorithms: A case study for detailed 

evaluation,” Journal of the American Society for Information Science, 

vol. 47, pp. 70-84, 1996. 

[10] R. Hooper, and C. Paice. (December 2013). The Lancaster stemming 

algorithm. [Online]. Available: 

http://www.comp.lancs.ac.uk/computing/research/stemming/  

[11] O. Ozturkmenoglu and A. Alpkocak, “Comparison of different 
lemmatization approaches for information retrieval on Turkish text 

collection,” Innovations in Intelligent Systems and Applications 

(INISTA) International Symposium, pp. 1-5, 2012.  

[12] D. Gupta, R. Kumar, R. Yadav, and N. Sajan, “Improving 
Unsupervised Stemming by using Partial Lemmatization Coupled with 

Data-based Heuristics for Hindi,” International Journal of Computer 

Applications, vol. 38, pp. 1-8, 2012. 

 

 

V. Balakrishnan received her PhD in the field of 

ergonomics in 2009 from Multimedia University, 

Malaysia. Both her master and bachelor degrees were 

from University of Science, Malaysia. 

She is currently affiliated with the Faculty of 

Computer Science and Information Technology, 

University of Malaya as a Senior Lecturer. Most of her 

research works are in the field of data engineering, 

opinion mining,    information   retrieval    and    health  

informatics. 

Dr. Balakrishnan is also a member of the Medical Research Support 

(Medicres) group, IACSIT and Global Science and Technology Forum. 

 

 

E. Llyod-Yemohattained received her bachelor's 

degree from FTMS KL (University of East London) 

and is currently pursuing her master’s degree in the 
field of management information systems at Faculty of 

Computer Science and Information Technology, 

University of Malaya, Malaysia.  

Her research work is mainly on information 

retrieval,    particularly   involving   language modeling  

 techniques. 

 

 

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4571

