
Step-Indexed Biorthogonality: a Tutorial Example

Andrew Pitts
University of Cambridge Computer Laboratory

1 Introduction

The purpose of this note is to illustrate the use of step-indexing [2] combined with biorthog-
onality [10, 9] to construct syntactical logical relations. It walks through the details of a
syntactically simple, yet non-trivial example: a proof of the “CIU Theorem” for contextual
equivalence in the untyped call-by-value λ-calculus with recursively defined functions. I
took as inspiration two works: Ahmed’s step-indexed syntactic logical relations for recur-
sive types [1] and Benton & Hur’s work on compiler correctness that combines biorthogo-
nality with step-indexing [4]. The logical relation constructed here will come as no surprise
to those familiar with these works. However, compared with Ahmed, we do not regard
biorthogonality as “complex machinery” to be avoided—in my view it simplifies matters;
and compared with Benton & Hur, I work entirely with operational semantics and with a
high-level language. Both things are true of the recent work by Dreyer et al [7]; indeed I
believe everything in this note can be deduced from their logical relation for call-by-value
System F extended with recursive types, references and continuations. Nevertheless, it
seems useful, for tutorial purposes, to extract a specific example of what the combination
of step-indexing and biorthogonality can achieve, in as simple yet non-trivial a setting as
possible.

Of course there are other ways to prove the CIU theorem for untyped call-by-value λ-
calculus; for example, by using Howe’s method (see [12]). However, two points about the
logical relation constructed here are of interest. First, and the main point of the technique
as far as I am concerned, is the way step-indexing is used to break the vicious circle in
the mixed-variance specification of the logical relation—see definition (10). Second is the
fact that, unlike for some other forms of syntactical logical relation (see [11] for example),
no compactness property (also known as an “unwinding theorem”) is needed to deal with
recursively defined functions—see the proof of Lemma 4.3(ii).

2 Programming language

We use the untyped call-by-value λ-calculus with explicit recursive function definitions.
Since we are going use biorthogonality, we use expressions in “A-normal” form and use
frame stacks to define termination of call-by-value evaluation. So starting with a fixed,

1

Dagstuhl Seminar Proceedings 10351
Modelling, Controlling and Reasoning About State
http://drops.dagstuhl.de/opus/volltexte/2010/2806

countably infinite set V of variables, we define:

Values v ∈ V ::= x, f variables (x, f ∈ V)
| fun(f x = e) recursively defined function

Expressions e ∈ Λ ::= v value
| v v application
| let x = e in e sequencing

Frame stacks E ∈ Λ∗ ::= Id empty
| E ◦ (x � e) non-empty

We identify values/expressions/frame stacks up to α-equivalence of bound variables (the
binding forms being fun(f x = _), let x = e in _ and E ◦ (x � _)).

The finite sets fv(v)/fv(e)/fv(s) of free variables of a value/expression/frame stack are
defined as usual. Given a finite subset x ⊆ V, we write

V(x) , {v ∈ V | fv(v) ⊆ x} (1)

Λ(x) , {e ∈ Λ | fv(e) ⊆ x} (2)

Λ∗(x) , {E ∈ Λ∗ | fv(E) ⊆ x}. (3)

Note that V(x) ⊆ Λ(x).
Capture-avoiding substitution of values v for free variables x in an expression e is de-

noted
e[v/x]

and similarly for substitution into values and frame stacks. Given a closed value substitu-
tion σ ∈ V(∅)x

e[σ]

denotes the substituted expression e[σ(x)/x | x ∈ x].

Definition 2.1 (termination). The relation

E ⊥n e (n ∈N, E ∈ Λ∗(∅), e ∈ Λ(∅))

says that call-by-value evaluation of the closed expression e with respect to the closed frame
stack E terminates properly in at most n steps. It is inductively defined by the rules

Id ⊥n v
E ⊥n e[v/x]

E ◦ (x � e) ⊥n+1 v

E ⊥n e[v/ f , v′/x] v = fun(f x = e)
E ⊥n+1 v v′

E ◦ (x � e′) ⊥n e
E ⊥n+1 let x = e in e′

Then we define

E ⊥ e , (∃n ∈N) E ⊥n e (4)

e↓ , Id ⊥ e. (5)

2

3 Contextual pre-order

x ` e ≤ctx e′ (x ⊆fin V, e, e′ ∈ Λ(x))

is the greatest relation (with respect to inclusion) which is pre-ordered

• e ∈ Λ(x) ⇒ x ` e ≤ctx e

• x ` e ≤ctx e′ ∧ x ` e′ ≤ctx e′′ ⇒ x ` e ≤ctx e′′

compatible

• x, f , x ` e ≤ctx e′ ⇒ x ` fun(f x = e) ≤ctx fun(f x = e′)

• x ` v1 ≤ctx v′1 ∧ x ` v2 ≤ctx v′2 ⇒ x ` v1 v2 ≤ctx v′1 v′2

• x ` e1 ≤ctx e′1 ∧ x, x ` e2 ≤ctx e′2 ⇒ x ` let x = e1 in e2 ≤ctx let x = e′1 in e′2

and adequate

• ∅ ` e ≤ctx e′ ∧ e↓ ⇒ e′↓.

(It is an exercise to check that the greatest such relation does indeed exist. You can define
it more explicitly in terms of contexts if you want to.)

Definition 3.1 (CIU pre-order). The relation

e ≤ciu e′ (e, e′ ∈ Λ(∅))

is defined to hold if (∀E ∈ Λ∗(∅)) E ⊥ e ⇒ E ⊥ e′. It is extended to open expressions via
closing value substitutions: given e, e′ ∈ Λ(x) we define

x ` e ≤ciu e′ , (∀σ ∈ V(∅)x) e[σ] ≤ciu e′[σ].

We wish to prove the following theorem. We will do so using a certain logical relation
constructed in the next section.

Theorem 3.2 (CIU theorem). ≤ctx is equal to ≤ciu.

4 Logical step-indexed relations

Definition 4.1. A step-indexed relation (SIR) on a set X is by definition an N-indexed
family of sets R = (Rn | n ∈N) satisfying

X ⊇ R0 ⊇ R1 ⊇ R2 ⊇ · · · (6)

We define

J ∈ SIR(V(∅)×V(∅)) (7)
/ ∈ SIR(Λ(∅)×Λ(∅)) (8)
/∗ ∈ SIR(Λ∗(∅)×Λ∗(∅)) (9)

3

as follows:

v Jn v′ , (∀m < n)(∀v1, v′1) v1 Jm v′1 ⇒ e[v/ f , v1/x] /m e′[v′/ f , v′1/x] (10)
where v = fun(f x = e) and v′ = fun(f x = e′)

e /n e′ , (∀m ≤ n)(∀E, E′) E /∗m E′ ∧ E ⊥m e ⇒ E′ ⊥ e′ (11)

E /∗n E′ , (∀m ≤ n)(∀v, v′) v Jm v′ ∧ E ⊥m v ⇒ E′ ⊥ v′. (12)

(Thus Jn is defined by recursion on n using the auxiliary SIRs /∗ and / that are defined
directly in terms of J. It is easy to see that the relations do satisfy the decreasing property
(6).)

These relations are extended to open values/expressions/frame stacks via closing value-
substitutions as follows. Given closed value substitutions σ, σ′ ∈ V(∅)x on a finite set of
variables x, we define

σ Jn σ′ , (∀x ∈ x) σ(x) Jn σ′(x). (13)

Then for v, v′ ∈ V(x), e, e′ ∈ Λ(x) and s, s′ ∈ Λ∗(x), we define

x ` v J v′ , (∀n)(∀σ, σ′ ∈ V(∅)x) σ Jn σ′ ⇒ v[σ] Jn v′[σ′] (14)

x ` e / e′ , (∀n)(∀σ, σ′ ∈ V(∅)x) σ Jn σ′ ⇒ e[σ] /n e′[σ′] (15)

x ` E /∗ E′ , (∀n)(∀σ, σ′ ∈ V(∅)x) σ Jn σ′ ⇒ E[σ] /∗n E′[σ′]. (16)

Lemma 4.2. Given n ∈N, x ∈ V and e, e′ ∈ Λ(x), suppose

(∀m ≤ n)(∀v, v′ ∈ V(∅)) v Jm v′ ⇒ e[v/x] /m e′[v′/x] (17)

holds. Then for all m ≤ n

E /∗m E′ ⇒ E ◦ (x � e) /∗m E′ ◦ (x � e′) (18)
e1 /m e′1 ⇒ let x = e1 in e /m let x = e′1 in e′. (19)

Proof. For (18), suppose E /∗m E′, k ≤ m and v Jk v′. If E ◦ (x � e) ⊥k v, then (k > 0
and) E ⊥k−1 e[v/x]. By hypothesis (17) we have e[v/x] /k−1 e′[v′/x]. So from E /∗m E′ and
E ⊥k−1 e[v/x] we get E′ ⊥ e′[v′/x] and hence also E′ ◦ (x � e′) ⊥ v′. Therefore by definition
of /∗m, we have E ◦ (x � e) /∗m E′ ◦ (x � e′), as required.

For (19), suppose e1 /m e′1, k ≤ m and E /∗k E′. If E ⊥k let x = e1 in e, then (k > 0
and) E ◦ (x � e) ⊥k−1 e1; but by (18) we have E ◦ (x � e) /∗k−1 E′ ◦ (x � e′) and hence
E′ ◦ (x � e′) ⊥ e′1 and therefore also E′ ⊥ let x = e′ in e′1. Thus by definition of /m we have
let x = e1 in e /m let x = e′1 in e′, as required.

Lemma 4.3. (i) If x ∈ x, then x ` x J x.

(ii) If x, f , x ` e / e′, then x ` fun(f x = e) J fun(f x = e′).

(iii) If x ` v J v′, then x ` v / v′.

(iv) If x ` v1 J v′1 and x ` v2 J v′2, then x ` v1 v2 / v′1 v′2.

(v) If x ` e1 / e′1 and x, x ` e2 / e′2, then x ` let x = e1 in e2 / let x = e′1 in e′2.

(vi) x ` Id /∗ Id.

4

(vii) If x ` E /∗ E′ and x, x ` e / e′, then x ` E ◦ (x � e) /∗ E′ ◦ (x � e′).

Proof. (i) This follows directly from (13) and (14).

(ii) Suppose
x, f , x ` e / e′. (20)

We prove (∀n)(∀σ, σ′ ∈ V(∅)x) σ Jn σ′ ⇒ fun(f x = e[σ]) Jn fun(f x = e′[σ′]) by
induction on n. So suppose

(∀m < n)(∀σ, σ′ ∈ V(∅)x) σ Jm σ′ ⇒ fun(f x = e[σ]) Jm fun(f x = e′[σ′]) (21)

and that σ Jn σ′ ∈ V(∅)x. Writing v , fun(f x = e[σ]) and v′ , fun(f x = e′[σ′]), we
have to show that v Jn v′. By definition of Jn this means that we have to prove for
all m < n and v1 Jm v′1 that e[σ][v/ f , v1/x] /m e′[σ′][v′/ f , v′1/x].

So suppose m < n and v1 Jm v′1. Since σ Jn σ′ we also have σ Jm σ′; and hence from
the induction hypothesis (21) we get v Jm v′. Then from (20) we get e[σ][v/ f , v1/x] /m
e[σ′][v′/ f , v′1/x], as required.

(iii) It suffices to show that Jn ⊆ /n. Suppose v Jn v′. For any m ≤ n and E /∗m E′, since
v Jm v′ holds, by definition of /∗m we have E ⊥m v ⇒ E′ ⊥ v′. Hence by definition of
/, we have v /m v′, as required.

(iv) It suffices to show for all n that if v Jn v′ and v1 Jn v′1, then v v1 /n v′ v′1. By
definition of /n, this means that we have to prove for all m ≤ n and E /∗m E′ that
E ⊥m v v1 implies E′ ⊥ v′ v′1.

So suppose m ≤ n and E /∗m E′ that E ⊥m v v1. Let v = fun(f x = e) and v′ =
fun(f x = e′). Then by definition of _ ⊥m _ we must have (m > 0 and) E ⊥m−1
e[v/ f , v1/x]. Since v Jn v′, m− 1 < n and v1 Jm−1 v′1, by definition of Jn we have
e[v/ f , v1/x] /m−1 e′[v′/ f , v′1/x]. Then since E /∗m E′, we get E′ ⊥ e′[v′/ f , v′1/x] and
hence also E′ ⊥ v′ v′1, as required.

(v) This is a corollary of Lemma 4.2.

(vi) Note that Id /∗n Id holds because for all v ∈ V(∅), Id ⊥ v holds.

(vii) This is a corollary of Lemma 4.2.

Remark 4.4. Definition (10) is delicate. It seems that one cannot replace it with the simpler
clause

v Jn v′ = (∀m < n)(∀v1, v′1) v1 Jm v′1 ⇒ v v1 /m v′ v′1
and still prove part (iv) of Lemma 4.3.

Theorem 4.5 (Fundamental property of the logical relation). For all v ∈ V(x), e ∈ Λ(x)
and E ∈ Λ∗(x)

x ` v J v, x ` e / e and x ` E /∗ E.

Proof. By induction on the structure of v/e/E using Lemma 4.3.

Lemma 4.6. If x ` e / e′ and x ` e′ ≤ciu e′′, then x ` e / e′′.

5

Proof. It suffices to show
e /n e′ ∧ e ≤ciu e′′ ⇒ e /n e′′

and this follows immediately from the definition of /n in (11) and Definition 3.1.

Lemma 4.7. If ∅ ` e / e′, then e ≤ciu e′.

Proof. Suppose ∅ ` e / e′. For any E ∈ Λ∗(∅) we have to show E ⊥ e ⇒ E ⊥ e′. By
Theorem 4.5 we have ∅ ` E /∗ E. So if E ⊥ e holds, then by definition of ⊥, we have E ⊥n e
for some n; and since E /∗n E and e /n e′, by definition of /n we do indeed have E ⊥ e′.

Theorem 4.8. / is equal to ≤ciu.

Proof. For any closed value substitution σ ∈ V(∅)x from Theorem 4.5 we have (∀n ∈
N) σ Jn σ. So if x ` e / e′, then (∀n ∈ N) e[σ] /n e′[σ]. Hence by Lemma 4.7 we have
e[σ] ≤ciu e′[σ]. Therefore x ` e ≤ciu e′ holds.

Conversely, if x ` e ≤ciu e′, since by Theorem 4.5 we have x ` e / e, it follows from
Lemma 4.6 that x ` e / e′.

Lemma 4.9. For all n ∈N, E, E′ ∈ Λ∗(∅), v, v′ ∈ V(∅) and f ∈ V

E /∗n E′ ∧ v Jn v′ ⇒ E ◦ (f � f v) /∗n+2 E′ ◦ (f � f v′).

Proof. Suppose m ≤ n + 2, v1 Jm v′1, with v1 = fun(f x = e) and v′1 = fun(f x = e′) say, and
that E ◦ (f � f v) ⊥m v1. We have to show that E′ ◦ (f � f v′) ⊥ v′1.

Since E ◦ (f � f v) ⊥m v1, by definition of ⊥ it must be the case that m ≥ 2 and
E ⊥m−2 e[v1/ f , v/x]. Note that m− 2 ≤ n, so E /∗m−2 E′ and v Jm−2 v′; also m− 2 < m,
so by definition of v1 Jm v′1 we have e[v1/ f , v/x] /m−2 e′[v′1/ f , v′/x]. Therefore from
E ⊥m−2 e[v1/ f , v/x] we get E′ ⊥ e′[v′1/ f , v′/x] and hence also E′ ◦ (f � f v′) ⊥ v′1, as
required.

Corollary 4.10. For all n ∈N and v, v′ ∈ V(∅)

v /n+1 v′ ⇒ v Jn v′ (22)

and hence in particular

∅ ` v / v′ ⇒ ∅ ` v J v′. (23)

Proof. Suppose v = fun(f x = e), v′ = fun(f x = e′) and v /n+1 v′. To see that v Jn v′ we
have to show for any m < n and v1 Jm v′1 that e[v/ f , v1/x] /m e′[v′/ f , v′1/x]; that is, for
any k ≤ m and E /∗k E′, E ⊥k e[v/ f , v1/x] implies E′ ⊥ e′[v′/ f , v′1/x].

But if E ⊥k e[v/ f , v1/x], then E ◦ (f � f v1) ⊥k+2 v. Note that k + 2 ≤ n + 1; so by
assumption we have v /k+2 v′; and since k ≤ m we can apply Lemma 4.9 to get E ◦ (f �
f v1) /

∗
k+2 E′ ◦ (f � f v′1). Therefore by definition of /k+2, from E ◦ (f � f v1) ⊥k+2 v we get

E′ ◦ (f � f v′1) ⊥ v′ and hence also E′ ⊥ e′[v′/ f , v′1/x], as required.

Lemma 4.11. ≤ciu is contained in ≤ctx.

6

Proof. It suffices to show that ≤ciu is an adequate, compatible pre-order, because ≤ctx is
the greatest such. It is immediate from its definition that ≤ciu is an adequate pre-order.
For its compatibility properties we use the fact that it coincides with / (Theorem 4.8).
Compatibility with fun(f x = _) is thus a consequence of parts (ii) and (iii) of Lemma 4.3; and
compatibility with let x = _ in _ is part (v) of that lemma. Compatibility with application,
that is, the property

x ` v ≤ciu v′ ∧ x ` v1 ≤ciu v′1 ⇒ x ` v v1 ≤ciu v′ v′1 (24)

is not a direct consequence of part (iv) of the lemma even though we know that ≤ciu coin-
cides with /. However, note that to prove (24) it suffices to prove the particular case when
x = ∅, because of the way ≤ciu is defined for open expressions; and by Theorem 4.8 this is
equivalent to proving

∅ ` v / v′ ∧ ∅ ` v1 / v′1 ⇒ ∅ ` v v1 / v′ v′1.

Now we can apply Corollary 4.10 to deduce this from Lemma 4.3(iv).

Lemma 4.12 (value-substitutivity for ≤ctx). If x, x ` e ≤ctx e′ and x ` v ≤ctx v′, then
x ` e[v/x] ≤ctx e′[v/x].

Proof. If x, x ` e ≤ctx e′ and x ` v ≤ctx v′, then by the compatibility properties of ≤ctx we
have x ` (fun(f x = e)) v ≤ctx (fun(f x = e′)) v′, where f /∈ x, x. So the result follows by
transitivity on ≤ctx once we know

x ` e[v/x] ≤ctx (fun(f x = e)) v and x ` (fun(f x = e′)) v′ ≤ctx e′[v′/x].

It is easy to see from the definition of the CIU pre-order that these hold up to ≤ciu; so we
can apply Lemma 4.11.

Proof of CIU Theorem 3.2. We have already shown that≤ciu is contained in≤ctx (Lemma 4.11).
For the converse, in view of Lemma 4.12 it suffices to show that ∅ ` e ≤ctx e′ implies
e ≤ciu e′. Given ∅ ` e ≤ctx e′, we prove E ⊥ e ⇒ E ⊥ e′ by induction on the length of
frame stack E ∈ Λ∗(∅).

The base case E = Id holds because ≤ctx is an adequate relation.
For the induction step for a non-empty frame stack E ◦ (x � e1), note that

∅ ` let x = e in e1 ≤ctx let x = e′ in e1

holds by the compatibility (and pre-order) property of ≤ctx. So the result follows from
(∀E, e, e′) E ◦ (x � e′) ⊥ e ⇔ E ⊥ let x = e in e′, which is a consequence of the definition of
⊥.

5 Toward abstract sense

In this note I have purposely kept things as concrete as possible. However, to understand
what is “really” going on (as a category theorist would say) and apply step-indexing tech-
niques in more complicated situations, the level of mathematical sophistication needs to
rise. We need to do some category theory.

7

Recall SIR(X) from Definition 4.1. It becomes a complete Heyting algebra once endowed
with the ordering

R ≤ R′ , (∀n ∈N) Rn ⊆ R′n. (25)

Furthermore, given a function f : X → Y, taking inverse images of subsets along f yields a
morphism of complete Heyting algebras f ∗ : SIR(Y)→ SIR(X):

(f ∗R)n , {x ∈ X | f (x) ∈ Rn}.

This makes SIR(_) into a Set-based tripos [8]; indeed it is isomorphic to the tripos of H-
valued sets where H is the complete linear order

F < p0 < p1 < p2 < · · · < T.

(Exercise: show that SIR(X) is isomorphic to HX, naturally in X.) Thus the topos associated
with the tripos SIR(_) is the category Sh(H) of sheaves on the complete Heyting algebra H.
The internal higher-order logic of this topos is probably a good place to study step-indexing
from an abstract point of view. Here are two little pieces of evidence.

1. The structure of implication. Binary meet in SIR(X) is given by index-wise binary in-
tersection. The Heyting implication R � R′ of two elements of SIR(X) by definition
satisfies

(∀R′′) R′′ ≤ R � R′ ⇔ R′′ ∧ R ≤ R′

and a simple calculation shows that is it given by

(R � R′)n , {x ∈ S | (∀m ≤ n) x ∈ Rm ⇒ x ∈ R′m} (n ∈N).

Compare this with the various uses of the bounded quantifier (∀m ≤ n)(_) in Sect. 4.

2. The “later” modality. The crucial definition Sect. 4 is (10); it makes use of the bounded
quantifier (∀m < n)(_). Since Appel et al [3], we realize that this has to do with the
provability logic of Gödel-Löb. The monotone function � : SIR(_) → SIR(_) is given
by

(�R)n ,
⋂

m<n
Rm =

{
X if n = 0
Rn−1 if n > 0.

For example, we can restate Corollary 4.10 as saying �(/) ≤J.

The � operation satisfies the Gödel-Löb rule:

�R ≤ R ⇒ R = >.

(For if �R ≤ R, then X ⊆ R0 and Rn−1 ⊆ Rn for n > 0; in view of (6), it follows by
induction on n that Rn = X for all n; and thus R = >.) The aim is to replace induction
over step-indexes by use of this rule; see [6] for how this can work in practice.

8

6 Conclusion

Where is this development headed? The aim is similar to recent work of Birkedal et al
on relational methods using complete, 1-bounded ultrametric (CBU) spaces. In practice
it seems that only “bisected” CBU spaces [5, Defintion 2.2] are needed; and the latter are
closely connected with SIR(_). It should be possible to develop a theory of types and
relations defined by “guarded recursion” in the tripos SIR(_) (or maybe better, in the topos
Sh(H)) so that the construction of J in Sect. 4 and its fundamental properties, such as
Lemma 4.3 and Corollary 4.10, fall out automatically from a fixed point specification.

References

[1] A. Ahmed. Step-indexed syntactic logical relations for recursive and quantified types.
In P. Sestoft, editor, Programming Languages and Systems, 15th European Symposium on
Programming, ESOP 2006, Vienna, Austria, volume 3924 of Lecture Notes in Computer
Science, pages 69–83. Springer, 2006.

[2] A. Appel and D. McAllester. An indexed model of recursive types for foundational
proof-carrying code. Transactions on Programming Languages and Systems, 23(5):657–683,
2001.

[3] A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very modal model of a
modern, major, general type system. In POPL ’07: Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 109–122,
New York, NY, USA, 2007. ACM.

[4] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler correctness. In
ICFP ’09: Proceedings of the 14th ACM SIGPLAN International Conference on Functional
Programming, pages 97–108, New York, NY, USA, 2009. ACM.

[5] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and H. Yang.
Step-indexed kripke models over recursive worlds. In POPL ’11: Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages ?–?, New York, NY, USA, 2011. ACM.

[6] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations. Submit-
ted for publication, January 2010.

[7] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects
on local relational reasoning. In ICFP 2010: Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, pages 143–156, New York, NY, USA,
2010. ACM.

[8] J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts. Tripos theory. Math. Proc. Cambridge
Philos. Soc., 88:205–232, 1980.

[9] P.-A. Melliès and J. Vouillon. Recursive polymorphic types and parametricity in an
operational framework. In 20th Annual IEEE Symposium on Logic in Computer Science
(LICS’05), pages 82–91. IEEE Computer Society Press, June 2005.

9

[10] A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10:321–359, 2000.

[11] A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced Topics in
Types and Programming Languages, chapter 7, pages 245–289. The MIT Press, 2005.

[12] A. M. Pitts. Howe’s method for proving congruence properties in higher-order lan-
guages. In D. Sangiorgi and J. Rutten, editors, Bisimulation and Coinduction: Advanced
Topics, pages ?–? Cambridge University Press, 2011. To appear.

10

