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STEP: State Estimator for Legged Robots Using a
Preintegrated Foot Velocity Factor
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Abstract—We propose a novel state estimator for legged robots,
STEP, achieved through a novel preintegrated foot velocity factor.
In the preintegrated foot velocity factor, the usual non-slip
assumption is not adopted. Instead, the end effector velocity
becomes observable by exploiting the body speed obtained from
a stereo camera. In other words, the preintegrated end effector’s
pose can be estimated. Another advantage of our approach is that
it eliminates the necessity for a contact detection step, unlike the
typical approaches. The proposed method has also been validated
in harsh-environment simulations and real-world experiments
containing uneven or slippery terrains.

Index Terms—Legged Robots; Visual-Inertial SLAM; Local-
ization

I. INTRODUCTION

LEGGED ROBOTS are often needed because wheeled
robots cannot navigate rough terrains and UAVs cannot

carry heavy items due to its payload limitations. As the need
for legged robots increases, many studies for accurate state
estimation of legged robots have been conducted.

One outstanding research for state estimation of legged
robots on unstable and slippery terrain is a stochastic filtering-
based method [1]. The key contribution of their approach is
the introduction of a leg kinematics constraint during non-slip
contact. The effects coming from a possible slip are considered
as a Gaussian noise. This framework is still considered a
fundamental element of a legged robot’s state estimation.
To demonstrate the effectiveness of their approach, they use
the contact sensor because the accurate contact detection is
necessary for utilizing the leg kinematics constraint.
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Fig. 1. The legged robot [2] and installed sensor setup for the real-world ex-
periment on gravels. Each robot leg contains three joint encoders. The robot’s
body, camera, and foot frames are labelled with b, c, and f , respectively. bΓp

and bΓR refer to the translational and rotational transformations from the
body frame to the foot frame.

There were attempts to adopt new methodologies or frame-
works, such as Invariant Extended Kalman Filter (IEKF) [3],
[4], analysis of legged robot’s dynamics [5], optimization on
a smooth manifold [6], and preintegration factors [5], [7], [8].

The main advantage of utilizing IEKF is faster convergence
and better performance under a wrong initial state [3], [4].
Unfortunately, if the bias is augmented in the state of IEKF,
it becomes “imperfect IEKF” named in [3], [9] although this
imperfect IEKF outperforms the standard EKF.

A state estimation study has been conducted that considers
not only kinematics but also dynamics more efficiently [5],
where the authors preintegrate the contact force. However, it
is assumed that accurate contact detection is achieved, even if
it is considered challenging.

In [6], the robot’s state defined on a smooth manifold was
optimized by using the Gauss-Newton method. If a slip occurs
(slip can be identified through the speed of the end effector),
the leg kinematic factor is ignored.

In addition, similar to the IMU preintegration presented in
[10], there were attempts to construct a more robust system by
introducing the concept of the preintegrated factor [5], [7], [8].
The authors of [7] proposed preintegrated forward kinematic
factor and contact factor, which are adopted in this study. [8]
extended [7] by adequately considering the detachment of the
foot where the contact was made.

In [11], they developed the loosely coupled state estimator
utilizing not only proprioceptive sensors but also a camera and
a LiDAR. The robustness and versatility of their approach were
demonstrated by using several legged robots for more than two
hours of total runtime.

Despite these remarkable studies, the limitations of propri-
oceptive sensor-based or loosely coupled methods are evident
under extreme environments. For instance, the system relying
on proprioceptive sensors may diverge on a slippery surface.
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Similarly, the system that uses loosely coupled camera infor-
mation easily degraded when significant lighting changes or
repetitive patterns appear. Therefore, to develop a more robust
and reliable system, there have been many recent attempts for
legged robots to couple exteroceptive sensors tightly.

One remarkable study used factor graphs to couple visual
odometry and leg odometry tightly [12]. They proposed a
novel framework called VILENS. VILENS did not diverge,
even if vision degeneracy happened. VILENS was validated
on several datasets, including an environment in which illu-
mination was changed. In their following study [13], the body
velocity can be calculated based on the non-slip assumption.
And, they empirically found that the slip effect can be modeled
as a slowly time-varying bias of the body velocity. The
body velocities corrected by the bias are preintegrated. The
preintegrated measurements constrain the two neighboring
poses. Then, this velocity bias was added to the state, resulting
in a more robust system. This showed significant improvement
compared to their previous approach [12]. These studies are
incorporated and detailed in [14]. The main contribution of
[14] is that a camera, an IMU, joint encoders, and a LiDAR
are tightly fused to achieve more robust operation when the
individual sensors would otherwise degraded.

Our previous work, WALK-VIO [15], tightly fuses an iner-
tial sensor, a camera sensor, and joint encoders. The issue that
the generated body motion varies with the different controllers
was a motivation for developing WALK-VIO. In WALK-
VIO, the walking-motion-adaptive leg kinematic constraints
that change with the body motion are employed, improving
the state estimator’s performance.

Nevertheless, there are still many issues with legged robot
state estimation in slippery or uneven terrain. For instance,
many researchers assumed that the end effector location is
not changed in contact with the ground. This approach is not
appropriate if the surface is slippery. Furthermore, the non-slip
assumption requires the contact state detection, which needs
additional sensors and considerations.

The contact detection methods can be classified as to
whether the contact sensor is used or not. In contact sensor-
based methods, several limitations exist [16]. First, due to the
aggressive motions of legged robots and the impacts at the feet,
the sensors would be damaged over repeated use. Second, a
heavy protector for the sensor is required. Thus, to utilize the
leg kinematics constraint, detecting the contact without using
the contact sensor is preferred.

The ground reaction force (GRF) analysis is typically used
for contact estimation without contact sensors. In [17], through
a detailed analysis of GRF parameters, invalid leg odometry
was discarded. Moreover, [16] proposed a probabilistic way
to detect contact, which was extended to the Hidden Markov
Model (HMM) based probabilistic slip estimator [18]. This
approach has been demonstrated by operating ANYmal [19]
on ice.

Even though several studies not using contact sensors have
been published, an additional computation is required for any
contact detection. Furthermore, the possibility of mis-detecting
the contact cannot be ignored in a harsh environment, such
as muddy or slippery surfaces. Even though previous studies

assumed the slip effect could be modeled as Gaussian noise
(or bias), this approach might be invalid under severe slip. As
long as we adopt the above assumptions, the accurate contact
detector is essential.

However, in this research, those assumptions are not adopted
when establishing leg kinematics. Thus, the proposed algo-
rithm can be utilized even in harsh environments, thereby
broadening its application. This letter proposes a novel state
estimator, STEP (STate Estimator using Preintegrated foot
velocity factor), that does not rely on an accurate contact
detector and does not assume that the foot’s position is fixed
in contact. This letter makes the following contributions:
• We present a novel preintegrated foot velocity factor

that can be exploited regardless of contact state. This
factor can constrain the foot pose between the consecutive
image frames, which results in the improvement in the
optimization of the overall cost function.

• The end effector velocity is estimated from leg kinemat-
ics. Note that we do not use the non-slip assumption.
Thus, it is independent of ground characteristics, such as
the friction coefficient.

• The performance of STEP was evaluated in harsh simu-
lation environments and with real experimental datasets.

II. PRELIMINARIES

In this section, preliminaries of Lie groups and associated
Lie Algebra are briefly presented for the following sections.
More information on Lie group and Lie algebra can be found
in [10], [20]–[22]. Especially, [10] is recommended for better
understanding of this letter.

A. Useful Properties of Matrix Lie Group

In the section, we consider the matrix Lie group G closed
under matrix multiplication [22]. Specifically, we are inter-
ested in the rotation matrix, an element of Lie group, especially
special orthogonal group. The rotation matrix in 3D space is
formally defined as follows:

SO(3) =
{
R ∈ GL3(R) | R>R = I3×3,det R = 1

}
, (1)

where R is the rotation matrix, an element of GL3(R), general
linear group of degree 3 and I3×3 is the 3×3 identity matrix.

The associated Lie algebra is denoted by g. The linear hat
operator, (·)∧ : Rm → g, maps a vector to the Lie algebra.
The tangent space to the smooth manifold, SO(3), (at the
identity of G) is denoted as so(3), which is the associated Lie
algebra and coincides with the space of 3 × 3 skew symmetric
matrices. As described in [10], by adopting the hat operator,
Lie algebra can be vectorized for convenience as follows:

φ∧ =

 φ1

φ2

φ3

∧ =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 ∈ so(3). (2)

A useful property of (·)∧, anticommutative property is
introduced: a∧b = −b∧a ∀a,b ∈ R3. (3)

For the corresponding inverse map, vee operator is intro-
duced as (·)∨ : g→ Rm. The hat operator and the vee operator
have the following relationship: R = a∧ then R∨ = a. More
information can be found in [10].
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The exponential map, exp : so(3) → SO(3), is defined as
follows:

exp
(
φ∧
)
= I3×3 +

sin(‖φ‖)
‖φ‖ φ∧ +

1− cos(‖φ‖)
‖φ‖2

(
φ∧
)2
. (4)

It is often approximated that exp
(
φ∧
)
≈ I3×3 +φ∧, where

φ ≈ 0.
Likewise, for any ‖φ‖ < π, the logarithm map, log :

SO(3) → so(3), which associates a Lie group element
R 6= I3×3 in SO(3) to a Lie algebra element is defined as
follows:

log(R) =
ϕ ·
(
R−R>

)
2 sin(ϕ)

with ϕ = cos−1

(
tr(R)− 1

2

)
. (5)

Note that it represents the rotation by using the rotation
axis and the rotation angle: log(R)∨ = aφ, where a and φ
are the rotation axis and the rotation angle of R, respectively.
If R = I3×3, then the rotation angle, φ = 0 and the rotation
axis, a, can be chosen arbitrarily.

Similar to the vectorization of Lie algebra above, the
exponential and logarithm map is vectorized as below [10]:

Exp : R3 → SO(3) ;φ 7→ exp
(
φ∧
)

Log : SO(3)→ R3 ; R 7→ log(R)∨.
(6)

Later, for small δφ, the following first-order approximation
will be used:

Exp(φ+ δφ) ≈ Exp(φ) Exp (Jr(φ)δφ) , (7)
Log(Exp(φ) Exp(δφ)) ≈ φ+ J−1

r (φ)δφ, (8)
Exp(δφ) ≈ I + (δφ)∧, (9)

where Jr(φ) is right Jacobian. The derivation of Jr(φ) can
be found in [10], [20] as follows:

Jr(φ) = I− 1− cos(‖φ‖)
‖φ‖2

φ∧ +
‖φ‖ − sin(‖φ‖)∥∥φ3

∥∥ (φ∧)
2
.

(10)
Lastly, another property of the exponential map of SO(3) is

introduced:
R Exp(φ)R> = exp

(
Rφ∧R>

)
= Exp(Rφ), (11)

Exp(φ)R = R Exp
(
R>φ

)
. (12)

B. Uncertainty Description on a Smooth Manifold
One advantage of representing the rotation as the Lie group

and the associated Lie algebra is that uncertainty can be
described without losing the Gaussian property [10]. The un-
certainty in SO(3) is modeled by defining a noise distribution
in the tangent space, its Lie algebra so(3), and then mapping
it to SO(3) through the exponential map [7], [10], which will
be explained in the following section. The perturbed rotation
matrix can be written as follows:

R̃ = R Exp (δφ) , δφ ∼ N (0,Ω), (13)
where δφ is a normally distributed small perturbation with
zero mean and covariance Ω, and R is the noise-free rotation.
The detailed derivation of the distribution of R is indicated in
[10], [23]. We adopt the result of the negative log-likelihood
L of a rotation R given a noisy measurement R̃:

L(R) ∝ 1

2

∥∥∥Log
(
R−1R̃

)∥∥∥2

Σ
=

1

2

∥∥∥Log
(
R̃−1R

)∥∥∥2

Σ
. (14)

The uncertainty of translation can be characterized by
exploiting the additive Gaussian noise assumptions [10].

C. Optimization on a Smooth Manifold

We could not directly apply vector calculus to the body
orientation involved in the state that evolves on the SO(3)
manifold. Thus, we adopt the approach suggested in [6],
[10], called the lift-solve-retract scheme. Furthermore, for the
required retraction for SO(3) and lifting for so(3), Exp(·) and
Log(·) maps are adopted, which are introduced in Section
II-A.

III. FACTOR GRAPH FORMULATION

In this section, we explain the factor graph formulation
of STEP. The factor graph is based on that of the VINS-
Fusion [24] framework, which is a tightly coupled, sliding-
window nonlinear optimization-based VIO algorithm. To con-
struct a state estimator for legged robots, we added a novel
preintegrated foot velocity factor to the factor graph. In
addition, we modified VINS-Fusion to optimize the factor
graph on-manifold. As shown in Fig. 1, a sensor configuration
consisting of a stereo camera, an IMU sensor, and joint
encoders for each leg was used, and the contact sensor was
not used. The body frame was located on the IMU.

A. State Definition

The state vector used in this research is as follows:

X = [x0,x1, · · · ,xi−1, λ0, λ1, · · · , λk],

xi = [pwbi ,R
w
bi ,v

w
bi ,Ψ

w
l,i, s

w
l,i,b

a
i ,b

g
i ],

(15)

where xi represents the robot state when the i-th keyframe
is input. It contains the body position, pwbi ∈ R3; orientation
Rw
bi
∈ SO(3); velocity, vwbi ∈ R3; orientation of the l-th end

effector, Ψw
l,i; position of the l-th end effector, swl,i; the IMU

accelerometer and gyroscope biases, bai ∈ R3 and bgi ∈ R3;
and λk indicates the k-th inverse depth of the viusual feature
in the first observed camera frame. Note that the superscript w
denotes the parameters are estimated in the world frame. For
readability throughout this letter, however, the world frame
superscripts will be dropped. For example, pwbi , vwbi , and Rw

bi
will be abbreviated as pi, vi, and Ri, respectively. If it is
not represented in the world frame, then a reference frame
is denoted by a left side superscript, such as the body frame
b(·), the camera frame c(·), and the foot frame f (·). Lastly,
(̃·) denotes the noisy measurement.

B. Measurements and Factor Graph

The sensors used in this letter are a stereo camera, IMU,
and leg joint encoders. All measurements from each sensor up
to the k-th keyframe, Zk, can be represented as follows:

Zk =
⋃

∀(i,j)∈Tk

{Iij , Ci,Kli,V lij}, l = {1, . . . N} ,

where Tk is the set of timestamps of the keyframe in the k-th
sliding window. We assume the IMU and joint encoders are
synchronized with the camera. Furthermore, Iij ∈ R6 refers
to the preintegrated IMU measurement between timestamps i
and j; Ci is the keyframe obtained at time i; Kli ∈ Rnjoints is
the forward kinematic measurement of the l-th leg at time i,
where njoints denotes the number of joints. V lij ∈ R denotes
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: Stereo vision factor                       : Preintegrated foot velocity factor

: IMU factor                                    : Forward kinematics factor

: Prior factor                                    : Visual feature

𝐱0 𝐱1 𝐱2 𝐱3 ⋯

𝐟0 𝐟𝑛 𝐟𝑚⋯ ⋯

Fig. 2. The visualization of the factor graph structure. The factor graph
consists of measurement factors: (1) prior factor, (2) IMU factor, (3) visual
factor, (4) forward kinematics factor, and (5) preintegrated foot velocity factor.
Unlike the forward kinematics factor, the preintegrated foot velocity factor can
relate the foot pose between the consecutive frames.

the foot velocity measurement of the l-th leg between i and
j, which is obtained from leg kinematics.

The IMU and joint encoder measurements are input at
higher frequencies. So, the IMU measurements are preinte-
grated, as proposed in [10]. For similar reasons, the joint
measurements are preintegrated and used for tracking the
pose of the l-th end effector between two frames. A detailed
description of the preintegration of foot velocity will be given
in Section IV.
C. Cost Function

If all sensor measurements are conditionally independent
to each other, the maximum posterior state Xk, given the
measurement Zk, can be expressed as:

X ∗k = arg max
Xk

p
(
Xk
∣∣Zk) ∝ p(X0

)
p
(
Zk
∣∣Xk), (16)

where p
(
Zk

∣∣Xk

)
=
∏

(i,j)∈Tk p
(
Iij
∣∣Xj

)
p
(
Ci
∣∣Xi

)
p
(
Ki

∣∣Xi

)
p
(
Vij
∣∣Xj

)
.

(16) can be transformed into an equivalent nonlinear least-
square problem. Therefore, the final objective we used for
obtaining a maximum posteriori estimate of Xk can be for-
mulated as follows:

min
Xk

{
‖ rp −HpXk ‖2 +

∑
(i,j)∈Tk

‖ rI(Iij ,Xk) ‖2ΩIij
+

∑
i∈Tk

∑
n∈F

ρ(‖ rC(Ci,fn ,Xk) ‖2ΩCi,n
) +

∑
i∈Tk

N∑
l=1

‖ rK(Kl
i,Xk) ‖2ΩKi,l

+
∑

(i,j)∈Tk

N∑
l=1

‖ rV(V l
ij ,Xk) ‖2ΩVij,l

}
,

(17)
where F is the set of visual feature indices. Each sensor noise
covariance is expressed as ΩIij ,ΩCi,n , ΩKi,l

, and ΩVij,l .
In addition, ‖ · ‖ refers to the Mahalanobis norm, and
ρ(·) refers to the Huber norm [25]. The cost function is
defined as the sum of each measurement factor: (1) prior
factor r0, (2) IMU factor rI , (3) visual factor rC , (4) forward
kinematics factor rK, and (5) preintegrated foot velocity factor
rV . For solving the nonlinear least square problem, Levenberg-
Marquardt algorithm [26] is used. The visualization of the
corresponding factor graph is shown in Fig. 2.

D. VIO Factors
In this section, each factor forming the cost function is

described. The prior factor and visual factor are adopted from

[24]. The IMU factor is from [10]. The leg kinematic-related
factors such as the forward kinematics factor and preintegrated
foot velocity factor will be explained in Section IV.

1) Prior factor: Due to the computational cost, a sliding
window-based method is adopted. Therefore, a prior factor is
used to serve as an anchor whenever marginalization occurs.
The prior factor r0 is defined as the error between the prior
state x0 and the estimated prior state x̂0.

2) IMU factor: Since the IMU usually offers data with a
higher frequency than the camera, the measurements between
the frames are preintegrated to compute the changes in pose
∆p̃, velocity ∆ṽ, and orientation ∆R̃ of the robot. And these
changes can constrain the two neighboring nodes of the graph
by defining the IMU factor rI given IMU measurements Iij
as follows:

rI(Iij ,Xk) =


R>i (pj − pi − v∆tj − 1

2
g∆t2j )−∆p̃j

R>i (vj − vi − g∆tj)−∆ṽj

Log
(
∆R̃jR

>
i Rj

)
ba
j − ba

i

bg
j − bg

i

 . (18)

The IMU factor is adopted from [10], but we do not
consider the bias update between consecutive keyframes due
to computational complexity.

3) Visual factor: For the visual factor, the traditional re-
projection error is utilized. The visual factor rC when the 3D
feature fn observed in the i-th frame is defined as:

rC(Ci,fn ,Xk) = f i,n − π
(
Ri,pi, fn

)
, (19)

where π(·) is the projection function which projects the 3D
feature to the image and f i,n is the n-th feature observed in
the i-th frame.

IV. LEG FACTORS

This section presents the novel preintegrated foot velocity
factor, which is our key contribution, and the forward kine-
matics factor. As we introduced in Section I, many researchers
have proposed various leg factors constrained by non-slip
assumption. Additionally, most of them considered the effect
of sensor noises or slippage as a Gaussian noise or bias.
However, those techniques might fail to estimate the end
effector pose in a severe slippage condition, which leads to
deteriorating the estimated body pose tightly coupled to the
end effector pose. In addition, they can constrain the pose
only when the contact state is maintained for a certain period,
and it would be vulnerable to the slip occurrences. Therefore,
we propose a preintegrated foot velocity factor that does not
depend on the contact state and that can be used at all times.
For this, the changes in foot pose between consecutive frames
are calculated by preintegrating the end effector velocities.

A. Measurement Model

In this section, foot linear and angular velocities are derived
in the foot frame, which is necessary for later preintegration
of foot linear and angular velocity. To this end, forward
kinematics of a legged robot and transformation between
frames are exploited.

The joint encoder measurement vector α̃(t) can be ex-
pressed as follows:

α̃(t) = α(t) + nα(t) ∈ RM , (20)
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where α(t) is the true joint angle; nα(t) ∼ N (0,Ωα) is the
joint measurement noise modeled as a Gaussian noise with
covariance Ωα; and M is the number of joint encoders of
each leg.

When α̃(t) is given, by using the leg kinematics model, the
foot position s(t) ∈ R3 and orientation Ψ(t) ∈ SO(3) in the
world frame at t can be calculated as follows:

Ψ(t) = R(t) bΓR(α(t)) = R(t) bΓR(α̃(t)− nα(t)) (21)

s(t) = R(t) bΓp(α(t)) + p(t)

= R(t)bΓp(α̃(t)− nα(t)) + p(t),
(22)

where bΓp(·) and bΓR(·) are the end effector position and
orientation calculated by forward kinematics, respectively [7].
Note that bΓp(·) and bΓR(·) are expressed in the body frame.
From now on, we omit t for brevity.

To represent the foot angular velocity in the foot frame, we
differentiate (21) on both sides:

Ψ̇ = R(bw)
∧ bΓR(α) + R bΓR(α)(bω)

∧
, (23)

where bw is the body angular velocity, and bω the foot angular
velocity expressed in the body frame. Note that bω can be
computed because of leg kinematics.

Alternatively, the derivative of Ψ can be represented as the
multiplication of foot orientation and foot angular velocity:

Ψ̇ = Ψ(fω)
∧
, (24)

where fω is the foot angular velocity represented in the foot
frame.

Using (23) and (24), we can write fω as a function of bw,
α, and bω. For the sake of simplicity, we omit α from now
on:

fω = (bΓ>R(bw)
∧ bΓR + (bω)

∧
)
∨
. (25)

(25) can be written with sensor measurements as follows:

f ω̃ = (bΓ>R(bw̃ − bg)
∧ bΓR + (bω̃)

∧
)
∨

+ nω̃, (26)

where nω̃ is the single noise term with covariance Ωω̃ that
combines the effects of gyro measurement noise, joint encoder
noise, and imprecise kinematic modeling. This strategy is
inspired by [1] and [7].

Likewise, ṡ can be interpreted as a foot linear velocity
expressed in the world frame, written as follows:

ṡ = ν = R(bw)
∧ bΓp + RJpα̇+ v, (27)

where ν is the foot velocity expressed in the world frame;
Jp =

δbΓp(α)
δα ; and v is the body velocity represented in the

world frame.
Note that (27) should be transformed to the foot frame and

expressed with sensor measurements to find the preintegrated
foot measurement. We manipulate (27) by multiplying Ψ> to
both sides and augmenting the measurements, leading to:
f ν̃ = bΓ>R(bw̃ − bg)

∧ bΓp + bΓ>RJp ˜̇α+ bΓ>RR>v + nν̃

' bΓ>R(bw̃ − bg)
∧ bΓp + bΓ>RJp ˜̇α+ f ṽ + nν̃ ,

(28)

where f ṽ is the body velocity measurement transformed to
the foot frame and nν̃ is the noise term of f ν̃ with covariance
Ων̃ , which can be written as in (26). Note that we assume that
nω̃ and nν̃ are Gaussian white noises.

For foot velocity preintegration, we stress that R>v in (28)
can be approximated by the body velocity measurement ob-
tained from a stereo vision with optical flow analysis as
follows [27]:

bṽ = Rb
c
cṽ, (29)

where Rb
c is a given extrinsic parameter between the IMU

and the camera and cṽ is the body velocity measurement
obtained from a stereo camera. Note that we can recover
the depth of features thanks to a calibrated stereo camera.
Unlike [27], STEP does not establish the objective function to
compute the body velocity quickly. Instead, the direct linear
transformation (DLT) [28] is exploited. For the same reason,
the space position constraint defined in [27] is not adopted
based on the mild assumption that the environment is almost
static.

B. Forward Kinematics Factor

The detailed derivation of the forward kinematics factor
can be found in [7], [29]. We adopt the forward kinematic
measurement model as follows:

bΓR = R>Ψ Exp
(
δbΓR

)
bΓp = R>(s− p) + δbΓp,

(30)

where R is the body orientation; δbΓR and δbΓp represent
small perturbations from bΓR and bΓp, respectively [7], [29].
The forward kinematics factor rK(Ki,Xk) =

[
rKRi

, rKpi

]
is

represented as follows:

rKRi
(Ki,Xk) = Log

(
bΓ>R,iR

>
i Ψi

)
rKpi

(Ki,Xk) = R>i (si − pi)− bΓp,i.
(31)

C. Foot Velocity Preintegration

In contrast to most previous studies, we do not exploit the
non-slip assumption, which assumes the foot velocity is zero
in the contact state. Instead, we take the information from the
foot angular velocity fω and linear velocity fν expressed in
the foot frame and associated noises nω̃ and nν̃ , respectively.
Then, we preintegrate the information to find the change in
the foot pose.

Similar to [7], [10], (24) can be discretized based on the
assumption that f ω̃ is constant during sampling time ∆t:

Ψj = Ψi

j−1∏
k=i

Exp(f ω̃k − nω̃dk )∆t, (32)

where nω̃dk is the discrete time noise represented in the foot
frame with covariance Ωω̃d and is computed using sampling
time ∆t; Ωω̃d = 1

∆tΩ
ω̃ .

We define the preintegrated term ∆Ψij independent of the
state as follows:

∆Ψij
.
= Ψ>i Ψj =

j−1∏
k=i

Exp(f ω̃k − nω̃dk )∆t. (33)

Furthermore, we hope to isolate the noise from the preinte-
grated measurement. Using (7) and (12), (33) can be approx-
imated as:

∆Ψij '
j−1∏
k=i

[Exp(f ω̃k∆t) Exp(−Jkr (f ω̃k∆t)nω̃dk ∆t)]

.
= ∆Ψ̃ij Exp(−δψij),

(34)
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where Jkr (f ω̃k∆t) is the right Jacobian of SO(3) (re-
fer to (10)); ∆Ψ̃ij

.
=
∏j−1
k=i Exp(f ω̃k∆t) is the preinte-

grated foot orientation measurement and its noise term is
Exp(−δψij)

.
=

∏j−1
k=i Exp(−∆Ψ̃

>
k+1jJ

k
r (f ω̃k∆t)nω̃dk ∆t).

The noise of ∆Ψ̃ij can be computed by taking the Log on
both sides [10] as:

δψij '
j−1∑
k=i

∆Ψ̃
>
k+1j Jkr (f ω̃k∆t)nω̃dk ∆t. (35)

Similarly, by iteratively accumulating the changes in foot
position obtained from foot velocity f ν̃, the next foot position
at image frame rate can be calculated as:

sj = si +

j−1∑
k=i

[Ψk(f ν̃k − nν̃dk )∆t], (36)

where nν̃dk is the discrete time noise in the foot frame with
covariance Ων̃d and is computed using sampling time ∆t;
Ων̃d = 1

∆tΩ
ν̃ .

Now, the foot position sj at time j is computed by adding
the change in foot position to the previous foot position si at
time i. Here, we assume that the body velocity used in (28)
between i and j is constant.

To avoid dependency on foot position si, the preintegated
foot position measurement ∆sij , between i and j in the body
frame, can be defined from (36) as follows:

∆sij
.
= Ψ>i (sj − si) = Ψ>i

j−1∑
k=i

[Ψk(f ν̃k − nν̃dk )∆t)]

=

j−1∑
k=i

[∆Ψik(f ν̃k − nν̃dk )∆t)].

(37)

Using (3) and (9), (37) can be approximated by ignoring
high order noise terms as follows:

∆sij '
j−1∑
k=i

[
∆Ψ̃ik (I− (δψik)∧)

(
f ν̃k − nν̃dk

)
∆t
]

'
j−1∑
k=i

[∆Ψ̃ik
f ν̃k∆t]

−
j−1∑
k=i

[∆Ψ̃ikn
ν̃d
k ∆t−∆Ψ̃ik(f ν̃k)∧δψik∆t]

.
= ∆s̃ij − δsij ,

(38)

where we define the preintegrated foot position measurement
as ∆s̃ij =

∑j−1
k=i [∆Ψ̃ik

f ν̃k∆t] and its noise as δsij =∑j−1
k=i [∆Ψ̃ikn

ν̃d
k ∆t−∆Ψ̃ik(f ν̃k)∧δψik∆t].

Note that the bias update is not considered in this study
because it contributes little to improving accuracy compared
to its computational complexity.

D. Preintegrated Foot Velocity Factor

Finally, from Section IV-C, the preintegrated foot velocity
residual rV(Vij ,Xk) =

[
rVRi

, rVpi
]

can be defined:

rVRi
(Vij ,Xk) = Log(∆Ψ̃

>
ij∆Ψij), (39)

rVpi (Vij ,Xk) = ∆sij −∆s̃ij . (40)
The noise vector of the preintegrated measurement can be

modeled as a zero-mean, normally distributed vector, δηij
.
=

[δψ>ij , δs
>
ij ]
>
∼ N (06×1,Ωηij

). Similarly, the noise vector

related to the sensor is denoted as δnj
.
= [nω̃dj

>
,nν̃dj

>
]
>
∼

N (06×1,Ωnj
).

The noise propagation can be established in an iterative form
as follows:[

δψij+1

δsij+1

]
= Aj

[
δψij
δsij

]
+ Bj

[
nω̃dj
nν̃dj

]
, (41)

where

Aj =

[
I3×3 03×3

−∆Ψ̃ij(f ν̃j)∧∆t I3×3

]
,

Bj =

[
Jj
r(f ω̃j∆t) 03×3

03×3 ∆Ψ̃ij∆t

]
.

Thus, the preintegrated measurement covariance can be
computed iteratively:

Ωηij+1
= AjΩηij

A>j + BjΩnjB
>
j , (42)

where Ωnj ∈ R6×6 is the covariance matrix with Ωω̃d and
Ων̃d as diagonal components as follows:

Ωnj =

[
Ωω̃d 03×3

03×3 Ων̃d

]
. (43)

Finally, it allows us to compute the preintegrated measure-
ment covariance Ωηij+1

starting with Ωηii
= 0.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of STEP
in various conditions. We first tested STEP in the Gazebo
simulation with texture-less mountainous terrain and slippery
area. Second, we evaluated STEP on a public dataset [11]
collected in a factory-like environment. Lastly, we conducted a
challenging experiment in gravel environments with the Mini-
Cheetah robot [2].

To verify the performance of STEP, we compared the
experimental results with other state-of-the-art state estimators:
(1) Pronto [11], which is an EKF-based algorithm using
an IMU, leg odometry, and a camera in a loosely coupled
manner; (2) VINS-Fusion [24], a factor graph-based multi-
sensor state estimator. In this comparison, a stereo camera and
IMU configuration is used for fairness; and (3) WALK-VIO
[15], which is the previous version of STEP, utilizing the leg
kinematic constraint based on a non-slip assumption, is also
compared. To compare the effect of leg kinematic constraints
only, the adaptive factor was not considered.

We implemented the algorithms on Ubuntu 18.04 with ROS
Melodic. We tested every experiment with an Intel Core i7-
8700K CPU with 32GB of memory.

A. Gazebo Simulation

We conducted the simulation using Gazebo, which closely
interacts with ROS. Various quadruped robots could be con-
sidered, but we used ANYmal [19] as the target quadruped
robot platform for simulation. For the sensor configurations,
the stereo camera, Intel RealSense D435i1, and the IMU with a
rate of 400Hz were used. In addition, we used the open-source
motion controller Champ2.

1https://dev.intelrealsense.com/docs/stereo-depth-camera-d400
2https://github.com/chvmp/champ
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Fig. 3. ANYmal [19] on a slippery artifact in the simulation. The slippery
surfaces are colored in blue. The right image in the gray box is obtained
from the camera of ANYmal in white mountainous simulation environment
in Gazebo. The point features tracked in VINS-Fusion [24] are marked with
green dots.

To prove the performance of STEP even in the extreme
environments, we constructed the mountain terrain simulation
world as shown in Fig. 3. We designed the overall simulation
environment to be bright and texture-less so that it was
challenging for visual-dependent approaches. Moreover, we
included the experimental results on several slippery surfaces
that made non-slip assumption invalid. The total distance
traveled was approximately 200m.

We implemented and evaluated several algorithms (see
Table I). As expected, due to the limitation of loosely coupled
approaches, Pronto [11] degraded if any sensor data is not
stable. Therefore, Pronto showed a relatively large error in the
texture-less and slippery environment.

Contrarily, the tightly coupled visual-inertial odometry sys-
tem, VINS-Fusion [24] showed relatively better performance.
However, WALK-VIO [15] degraded on the slippery terrain
due to the non-slip assumption, as described in Fig. 4(b).

STEP outperformed others because it estimates the foot
pose more precisely because it never depends on a non-slip
assumption. Note that the foot pose and the body pose are
tightly coupled. Fig. 4(a) and 4(b) illustrate the more reliable
performance of STEP than the others in the simulation.

B. Public Dataset Evaluation

For legged robots, few public datasets are available. Thanks
to the authors of [11], we evaluated STEP on the Fire Service
College (FSC) dataset3. The ANYmal [19] was utilized to
acquire the FSC dataset. As described in Table I and Fig. 4(c),
the leg kinematics-aided algorithm shows slightly better per-
formance. All algorithms presented adequate performance
because this dataset does not include light changes or severe
slippages. This result also demonstrates that STEP can be
considered an alternative to VINS-Fusion in the real world.

C. Real-world Experiment

Mini-Cheetah [2] has been validated to run dynamically
and aggressively. Thus, we favored it as our target platform.
We conducted the experiment for approximately 2 minutes
on gravel. The main purpose of this experiment was to show
that the approaches based on non-slip assumption deteriorate
under severe slippages. As described in Table I and Fig. 4(d),

3https://github.com/ori-drs/pronto

STEP shows the best performance although we evaluated
STEP on uneven and slippery terrain, and VINS-Fusion shows
comparable achievement due to many abundant textures from
the environment. As expected, WALK-VIO deteriorated. Since
the actual robot includes more severe noise and modeling
uncertainty, the performance of the state estimator has been
more degraded than the simulation results. Note that Pronto
was not evaluated because the effects of preintegrated velocity
factor were only focused on.

D. Discussion
We show the effect of the preintegrated foot velocity factor

by testing STEP in various environments. As can be seen in
Table I, STEP showed a good performance even in the texture-
less or slippery environments. We believe that this is because
the preintegrated foot velocity factor helped improve foot pose
estimation. Because the body pose is tightly coupled with
the end effector pose, the body pose can also be estimated
accurately. In contrast, WALK-VIO based on the non-slip as-
sumption has a poor performance in the slippery environment.
We conclude that it fails because adding only Gaussian noise
could not compensate for the severe slippage effect, leading
to inaccurately estimating the foot pose.

VI. CONCLUSION AND FUTURE WORKS

This letter presents STEP, a novel method to deal with
state estimation of legged robots in a general environment
even under severe slippages. The preintegrated foot velocity
factor plays an essential role in accurate state estimation. The
robustness of STEP was validated in the slippery, and texture-
less environment, in which the non-slip assumption is prone to
be violated. Moreover, STEP was demonstrated using a public
dataset and a real-legged robot. The results show that STEP
can be considered a competitive estimator for the legged robot.

Further quantitative analysis of the preintegrated foot ve-
locity factor, such as execution time and foot pose estimation
accuracy, should be performed. In addition, a fusion of addi-
tional sensors, such as the LiDAR sensor, could be considered.
One assumption we used in (28) could be critical when the
robot has aggressive motion between consecutive keyframes.
Thus, a more robust way to measure the body velocity has to
be developed.
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