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Stepped Frequency Pulse Compression with

Non-Coherent Radar using Deep Learning
Alexander Karlsson, Magnus Jansson, and Henrik Holter

Abstract—A deep neural network (DNN) is used for achieving
subpulse resolution in non-coherent stepped frequency waveform
radar. The trade-off between high resolution and long range
in radar systems is often addressed using pulse compression,
allowing both long pulses and high resolution by increasing the
pulse bandwidth. This typically requires a coherent radar. In this
study we present a deep learning based solution for achieving
subpulse resolution with a non-coherent radar. Our results for
such a system are comparable to an equivalent coherent system
for SNRs greater than 10 dB. All results are based on simulated
data.

Index Terms—Deep learning, supervised learning, non-
coherent radar, pulse compression, frequency-agile radar

I. INTRODUCTION

A key design parameter of any radar system is its resolution

which has a theoretical limit [1]

σr =
c

2B
, (1)

where c is the speed of light and B is the bandwidth of the

transmitted pulse. For a single frequency rectangular pulsed

radar, the -4 dB bandwidth is determined by the inverse of the

pulse length, τ . The bandwidth can be increased by various

pulse modulation techniques, known as pulse compression.

It aims to increase both range resolution and signal-to-noise

ratio (SNR). As this often requires phase information the

term “pulse compression” is almost synonymous with coherent

radar.

There are however methods for non-coherent pulse com-

pression, first introduced in [2] and further developed in [3],

[4], [5], where the pulse is divided into a series of sub-pulses

acting as on/off bits, referred to as on-off keying (OOK). When

cross-correlated with a reference sequence a single peak/pulse

is obtained with increased SNR. The resolution is determined

by the length of each sub-pulse and the gain in SNR depends

on the number of sub-pulses, i.e. having only one sub pulse is

equivalent to a standard pulsed radar. According to [6] such
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non-coherent pulse compression performs slightly worse in

terms of SNR gain than simply integrating several consecutive

pulses but with the advantage of getting the gain in one pulse

repetition interval (PRI).

In this study we present an alternative method to non-

coherent pulse compression with the main purpose of increas-

ing the range resolution without increasing the instantaneous

bandwidth, i.e. maintaining a relatively long, uninterrupted

pulse length. In other words, we consider radar systems with

constraints on instantaneous bandwidth and with no phase

information. As for constraints on instantaneous bandwidth,

a common waveform for coherent systems is the stepped fre-

quency waveform. This utilizes frequency agility where pulses

are transmitted at different frequencies, yielding an increased

total bandwidth over a set of pulses, and thereby higher range

resolution (1). In this study we use a non-coherent stepped

frequency waveform and a deep neural network (DNN) acting

as a pulse compression “filter.”

Unlike SNR gain, a resolution gain can be of significant

value even at high SNRs. As an example, an SNR of 18 dB

yields a detection probability of 99.99% and false alarm prob-

ability of 10−10 for a Rayleigh distributed target in additive

white Gaussian noise (AWGN) [7, p. 17]. Increasing the SNR

beyond that will thus only yield marginal improvements in the

detection probability and false alarm trade-off. The resolution

gain is however valuable regardless of SNR. Note that for

coherent systems the term “pulse compression” implies both

these gains.

The method we present may be particularly suitable for

non-coherent radar systems that require frequency agility for

other reasons, such as minimizing interference, as it in such

cases may only require additional signal processing rather

than additional physical requirements on the radar system.

Obviously non-coherent systems will always be inferior to

their coherent counterparts in terms of performance. The

reason for choosing a non-coherent system in the first place is

instead based on other factors such as production cost, power

criteria, and design complexity.

With the stepped frequency waveform and a coherent radar

system, a high resolution range profile is achieved by taking

the inverse discrete Fourier transform (IDFT) of a set of M
pulses [8]. See Section II-B. In a non-coherent case, we only

have the magnitude of each pulse sample, resulting in an

inverse phase problem where we aim to transform a complex

vector from frequency to time/range domain without knowing

the phase, |G(f)|2→ g(t). As is the case here, this problem

often arises with non-coherent radiation, i.e. unknown phase,

such as X-ray and optics and has been widely studied; see e.g.
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[9]. Iterative algorithms exist for going from |G(f)|2 to g(t),
[10], and require some prior knowledge of g(t), e.g. that it

is non-negative and real, or that the signal is sparse. Without

prior knowledge of the time domain signal the problem is

impossible to solve since any random guess of the phase

is then a valid solution. In our case the target is complex-

valued, see Section II-B, making the iterative solutions difficult

to apply. Moreover, such iterative methods may be sensitive

to initial values, and require an undetermined number of

iterations.

Non-iterative and non-DNN based solutions for sparse phase

retrieval have also been developed where K scattering points

are resolved from the magnitude of the frequency spectrum

[11]. However, the required number of samples in frequency

domain is on the order K2, which in this context may be very

large.

Since we are mainly interested in retrieving the magnitude

of g(t), we will instead set up a non-linear regression problem

where we train a neural network to directly transform a

frequency domain matrix X to a discrete estimate of the

magnitude in the time domain, y. We thereby never explicitly

retrieve the phase. Since the execution time of a trained neural

network is deterministic, this solution may be preferable over

the aforementioned iterative solutions, an aspect that has been

further studied in [12].

Although the use of deep learning has been studied in the

field of phase retrieval, e.g. [12], [13], [14], and [15], it has to

our knowledge not been applied in this context of non-coherent

radar, and unlike most other such studies we use a DNN as

a direct magnitude-to-magnitude transformation, and do not

recover the phase. These two solutions are only equivalent

when the phase reconstruction is perfect.

A drawback with neural networks is that they require large

amounts of training data to generalize well. To manage this, we

generate data from a model to train the network on. Our results

are therefore constrained to the validity of this model. By using

data from a model we have complete control of the data and

associated labels, or ground truth, which is not necessarily

the case when training on real data. The rest of this paper is

organized as follows. In Section II the model for generating X

and y as well as the network structure is presented. Simulation

results are shown in Section III and conclusions and directions

for future research are given in Section IV.

II. SYSTEM MODEL

A. Signal model

We model all targets as a collection of point scatterers.

Furthermore we will assume a two dimensional stationary

scenario with the radar as the reference point. The received

signal from all K scatterers at range ri and at frequency

fc+fm can then, after complex down conversion and lowpass

filtering, be modelled as [16, p. 529]

v(fm, ri) ∝ λmejφm
∑K−1

k=0 skgk,ie
−j2π(fc+fm)

2δk
c + wm, (2)

where

• v(fm, ri) = vm,i has unit Volt

• λm = c/(fc + fm), and accounts for the antenna gain

dependence on frequency.

• φm is a random phase for pulse m.

• fc is the carrier frequency

• fm is a deviation from the carrier frecuency in pulse m
and is confined to a bandwidth B, i.e. fm ∈ [−B/2, B/2]

• c is the speed of light

• δk is the radial range to scatterer k
• sk is the amplitude of the k’th scatterer and is propor-

tional to the square root of its Radar Cross Section (RCS)

and 1/δ2k
• gk,i is the pulse and beamwidth gain at scatterer k and

is a function of the difference between the radar line of

sight angle ϕ, and the angle to the scatterer, αk, as well

as the difference between δk and the sampled range ri (or

in time tk and ti). The range ri is defined as the range

to the beginning of range cell i.
• wm is complex zero mean Gaussian white noise with

variance σ2
w in each dimension.

Let our stepped frequency waveform be such that

fm =
N − 1

τ ′

(

m

M − 1
− 1

2

)

(3)

for pulses m = 0, ...,M − 1, where N determines the total

bandwidth B ≈ N/τ ′, M ≥ 2, M ≥ N , and τ ′ is the full

pulse duration of a bandwidth limited pulse, not the 3 dB

length. Inserting (3) in (2) and multiplying by 1/λc gives

vm,i ∝ βmejφm
∑K−1

k=0 skgk,ie
−j2παm

δk
∆r + wm (4)

where

βm =
1

1 + fm/fc
=

1

1 + λc

2∆r

(

m− M−1
2

)

N−1
M−1

(5)

αm =
2∆r

λc
+ (N − 1)

(

m

M − 1
− 1

2

)

(6)

∆r =
cτ ′

2
. (7)

This formulation allows us to generate vm,i with all distances

normalized to the carrier wavelength, i.e. with δ̄k = δk/λc

and ∆r̄ = ∆r/λc. As for the gain function gk,i we will use

a raised cosine in range, representing the received baseband

pulse shape; and we model the one way amplitude gain in

azimuth with the normalized sinc function such that

gk,i = g2ϕ(ϕk)gν (νk,i) , (8)

where

νk,i =
δk − ri
∆r

=
tk − ti
τ ′

(9)

gϕ(ϕ) =

{

sinc
(

ϕ̂ 0.8858
BW

)

ϕ̂ = (ϕ+ 180◦ mod 360◦)− 180◦
(10)

gν(ν) =

{

1
2 [cos (2πν − π) + 1] , if 0 ≤ ν ≤ 1.

0, otherwise,
(11)
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where the angle ϕ has unit degrees and BW is the one way

antenna beam width. Letting ν = t/τ ′ for 0 < t < τ ′ we get

the frequency response of gν(ν) as

|Gν(f)|2=
τ ′2

4
sinc2

(

τ ′f

2

)





cos
(

πτ ′f
2

)

1− f2τ ′2





2

(12)

with 3 dB bandwidth of 1.44/τ ′. Provided that M ≥ N , the

total bandwidth over all M pulses can be approximated as

B ≈ N − 1 + 1.44

τ ′
. (13)

Finally, we need a method of generating the point scatterers

strength and position, sk, δk, and αk. Accurately modeling

specific targets is by no means a trivial task; as an example,

see [17]. Here we will instead model targets as arbitrary 2D

clouds of point scatterers, of which a standard Rayleigh target

can be considered a special case, [7, p. 75-78]. We want to

train the neural network to increase the range resolution. Since

we should not expect the resolution to be greater than (1), we

should generate samples with at least this amount of spacing

between targets. For B in (13) this yields a spacing between

targets of at least dmin ≈ ∆r̄/N .

Let the total range window of interest be [r̄0, r̄0 + ∆R̄],
where ∆R̄ = ∆R/λc ≥ ∆r̄. The chosen procedure for

generating sk, δk, and αk is then as follows:

1) Draw an integer number of targets NT ∈ [1, Nmax
t ] with

uniform probability.

2) Draw NT slots, dj , j = 1, ..., NT , from the uniform

distribution U(0, 1) and normalize and scale such that
∑NT

j=1 dj = ∆R̄, and ensure that the smallest dj is at

least two dmin wide.

3) For each target, draw a target width wj ∼ U(0, dj −
dmin) and then draw a target position within slot pj ∼
U(dmin/2 + wj/2, dj − wj/2− dmin/2).

4) For each target, draw an integer number of scatterers

κj ∈ [1, κmax] with uniform probability. The total

number of scatterers is then K =
∑NT

j=1 κj .

5) For each target, draw scatterer positions within width

wj , δ′′j,i ∼ U(−wj/2, wj/2) for i = 1, ..., kj . The total

distance to the i’th scatterer in the j’th target is then

δ′j,i = pj + δ′′j,i +
∑j−1

t=1 dt. We then relabel all δ′j,i with

indices k = 1, ...,K and let δk = r̄0 + δ′k.

6) For each scatterer, draw an angle αk ∼
U(−BW/2, BW/2).

7) For each target, draw an average strength s̄j ∼
U(s̄min, s̄max), and for each scatterer draw a strength

s′k ∼ U(s′min, s
′

max) and let sk = s̄js
′

kηk, where ηk =
1

(1+δ′
k
/r̄0)2

is a normalized range dependent amplitude

gain.

The chosen values of all parameters presented in steps 1) - 7)

are shown in Table I. This completes our model for generating

a signal

xi = [|v0,i|2, ..., |vM−1,i|2]T

= [x0,i, ..., xM−1,i]
T . (14)

B. The Label

We now consider the required label vector yi. We formulate

a representation of all scatterers as an N -point vector yi with

n’th element given by

yn,i =

K−1
∑

k=0

(skgk,i)
2

√
2πσ2

exp

(

−
(

n+ 1
2 − νk,iN

)2

2σ2

)

(15)

for n = 0, ..., N − 1. This Gaussian kernel filtered version of

the scattering points will have a resolution that depends on σ2.

With ν = t/τ ′, the 3 dB bandwidth of the Gaussian kernel is

BG =

√

ln(2)

πσ

N

τ ′
. (16)

By setting σ2 = ln(2)/π2 we set the kernel bandwidth

approximately equal to the full bandwidth in (13), which gives

the theoretical range resolution in (1).

Another choice for yi could be the result obtained from

a coherent system, i.e. when the phase φm in (2) is known

for each pulse. This gives a trivial solution to the proposed

problem. Assume all scatterers are confined to an interval of

one pulse length such that

δk = ri +
n+∆np

N
∆r (17)

for some integer n ∈ [0, N − 1] and ∆np is uniformly

distributed in the interval (0, 1]. We then re-label all sk with

index n, p, i.e. sk → sn,p for p = 0, ..., Pn − 1, where Pn

is the number of scatterers in the interval [n, n+ 1]. Ignoring

noise, we can then express (4) as

vm,i ∝ βme−jθm,i

N−1
∑

n=0

ỹn,m,ie
−j2π(m−m0)

N−1
M−1

n
N (18)

where

ỹn,m,i =

Pn−1
∑

p=0

sn,pgn,p,ie
−j2π(m−m0)

N−1
M−1

∆np
N (19)

θm,i = 2π

(

m(N − 1)

M − 1
−m0

)

N − 1

M − 1

ri
∆r

− φm (20)

m0 =
M − 1

2
− 2∆r(M − 1)

λc(N − 1)
. (21)

For M = N and using (14) we can write (18) as

xi ∝
∣

∣

∣diag
(

Fm0
Ỹi

)∣

∣

∣

2

(22)

where Fm0
is the N -point DFT matrix shifted in frequency

by m0 and Ỹi is an N × N matrix with elements Ỹn,m,i =
βme−jθm,i ỹn,m,i. We can thus approximate xi as the squared

magnitude of the N -point DFT of ỹi = ỹ0,m,i, ..., ỹN−1,m,i

rotated by θm,i and modulated by m0.

Regarding the elements of ỹi, we note that these depend on

the frequency index m, and by taking the IDFT of (18) we

will get an approximation of ỹi with undesired artifacts. This

makes it less interesting as a training label. We will however

use |ỹi|2 as a reference when evaluating our results. Since

|ỹi|2 spans a range ∆r̄ the resolution of |ỹi|2 is ∆r̄/N , an

increase in resolution of a factor N/1.44 due to the cosine

shape of the pulse. To distinguish between range resolution
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before and after pulse compression we will use the term

“synthetic range cells” after pulse compression and “range

cells” before pulse compression. Note that over several range

cells i = 1, ..., Nr the expression in (18) can be approximated

as a short-time-Fourier-transform (STFT) where the pulse

shape acts as the window function.

As the aspect angle changes, the radial positions of all

scatterers will change slightly giving rise to the well known

glittering effect, or target fluctuations, often modelled with one

of four Swirling models (Rayleigh Targets) [18].

C. Ambiguities and SNR

The uniqueness of an inverse phase problem applies up to

so called trivial ambiguities [9], since we can always write

|G(f)|= |F{g(t)}|= |F{g(t− τ0)}|= |F{g(−t)}|.

We can therefore not expect the network to learn the correct

shift or reflection of yi. This issue is encountered in any phase

retrieval problem and the only way to solve it without prior

knowledge of yi, is to correlate or match overlapping estimates

ŷi and ŷi+1 where we have sampled the range with period

0 < Ts < τ ′.
This is exploited in the iterative Griffin-Lim algorithm for

phase retrieval [19], which is based on the STFT. The known

overlap of samples and window shape acts as the only prior

knowledge. If additional prior knowledge is known a wide

range of phase retrieval algorithms exist for the STFT [20].

We look closer at the Griffin-Lim algorithm in Section III-D.

As with the Griffin-Lim algorithm, we will feed the network

with Nr consecutive range samples of xm,i, for i = 0, ..., Nr−
1, at each pulse m, yielding a STFT “block”, and leave the

process of exploiting overlapping information to the network.

The range sampling is such that

ri = r0 + iε∆r̄ (23)

where ε = Ts/τ
′ ∈ [0, 1]. Our input X will then be an M×Nr

matrix

X = [x0, ...,xNr−1] (24)

covering a range

rX = ∆r̄(1 + (Nr − 1)ε). (25)

Each element of our label y is now

yn =
1

Nr

Nr−1
∑

i=0

yn,i (26)

for n = 0, ..., N ′ where N ′ = N(1+(Nr−1)ε). For practical

reasons we will choose N and ε such that Nε is an integer.

Also, as explained in Section II-D we have set M = 2N ,

and as stated in [21], the inverse problem is then equivalent to

recovering y from its autocorrelation function, i.e. any two

y1 and y2 with the same autocorrelation function will be

indistinguishable.

Regarding the SNR we only consider the range cell with the

highest power when setting the SNR of a target, which may

or may not span several range cells. The SNR is thus defined

as

SNR = max
i

1

M

∑M−1
m=0 x̃m,i

2σ2
w

(27)

where x̃m,i is the noise free version of xm,i.

D. Network model

As is often the case with neural networks, the input data X

and label data y are first normalized in order to reduce the

required dynamic range of the network and ease the training

process. Here, this normalization also includes logarithmic

scaling and is done by setting

p̄ =
1

Nr

Nr−1
∑

i=0

M−1
∑

m=0

xm,i (28)

x′

m,i = ln

(

Mxm,i

p̄

)

(29)

for m = 0, ...,M − 1 giving X′ = [x′

0, ...,x
′

Nr−1] a mean

value of one in linear scale. We also normalize the label in

the same manner. Since many elements of y may have value

zero, we need to add a small bias and therefore set

y′n = ln

((

N ′yn
∑N ′

−1
n=0 yn

+ 0.001

)

1

1.001

)

(30)

giving y′ a mean value of one in linear scale. The choice of

this bias affects the network performance, and a different value

may be more suitable for a different signal model. Our final

estimate, ŷ, is then obtained as

ŷ =
p̄

N ′
(1.001 exp(ŷ′)− 0.001) (31)

where ŷ′ is the DNN output of length N ′. The gain in

SNR after the DNN can be estimated using (26) and (15).

A sample X containing only noise will have a randomness

consistent with a large target with many point scatterers. After

normalization these two will have similar patterns. We can

thus approximate the mean output of the DNN for a noise

only sample by making (15) continuous in νk and setting sk
to some arbitrary constant, e.g.

ynoise
n,i =

∫

∞

−∞

g2ν(ν − r̃i)√
2πσ2

exp

(

−
(

n+ 1
2 − (ν − r̃i)N

)2

2σ2

)

dν

(32)

where we have ignored the azimuth gain and r̃i = ri/∆r.

We then use (26) to obtain ynoise
n from (32) and get the noise

power as

P̄noise =
ynoise
N ′/2

∑N ′
−1

n=0 ynoise
n

(33)

where we estimate the noise power as the peak, or mid point,

of the DNN output. Note that this assumes that the DNN

output is converted to linear scale. We can do the same

calculation for a single point scatterer and take the ratio of

the peak of the DNN output and P̄noise to get the gain in SNR.

With the chosen parameter values this results in a gain of 13

dB. For low SNRs this approximation will not hold as the
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noise will result in a widening of the synthetic pulse shape,

causing decreased gain in SNR due to the normalization in

(28) and (30). This also assumes a good fit to the label after

training, and therefore this gain in SNR is only approximate.

The DNN consists of two parts. The first part has four

convolutional layers where each of the Nr columns in the

input are transformed to a 16 element vector by the same set

of weights. The second part has four fully connected layers

transforming the Nr × 16 data points to the N ′ × 1 estimate

ŷ′. The motivation for this setup follows from the reasoning

in Section II-C, i.e. in the first part we transform the data to

time domain and in the second we correlate and align the Nr

samples. This is at least the motivation for it but whether this

is what is actually happening or not is a different question.

According to [22] the number of frequency samples required

for phase retrieval is M ≥ 2N − 1 and we therefore set M =
2N . This applies to real valued y, and as mentioned y is

complex in this case, for which the required M is actually

M ≥ 4N − 2. Since we are only interested in the magnitude

of y we still choose M = 2N . Experiments were performed

with M = 4N and gave comparable results as M = 2N .

Experiments were also performed with M = N and gave

worse performance than M = 2N , see Section III-A.

As for ε and the number of range samples in X, Nr, a

grid search was performed over a range of values. As could

be expected the performance improved with larger Nr and a

value of Nr = 5 was finally chosen. With sampling interval

ε = 0 we get a repetition of the same samples and gain no

information. With ε = τ ′ we have no overlap of information

in two consecutive range cells. It is therefore not surprising to

find an optimal value within this range, which for the chosen

setup was ε = 4/32.

From our spacing between targets constraint, dmin, we are

restricted to set Nmax
t ≤ N/2. However for Nmax

t = N/2 =
16 we get deterministic positioning of targets which is in

this case undesired as we do not want the network to be

biased to any particular target configuration. For this reason

the maximum number of targets was limited to 10. All other

parameter values were arbitrarily chosen. All distances are

normalized to wavelengths. As an example, for an X-band

radar at fc = 10 GHz these numbers would correspond to a

system with full pulse length ∆r = 200 m, 24 MHz bandwidth

and 25 m interval in range sampling.

The final network architecture is presented in Table II. The

values of the kernel sizes and number of layers are a result

of empirical testing, as is often the case with neural networks.

A deeper network did yield slightly lower validation loss at

the expense of longer execution time. Since a motivating

factor to choose a DNN based solution is the relatively

fast and deterministic computation time, as DNNs can be

evaluated efficiently by parallel computing, we aimed for a

small network that still gave satisfying results. The purpose

of this study is mainly to demonstrate that this type of non-

coherent pulse compression with DNNs is feasible, rather than

finding the optimal such solution. The gain beyond the eight

layers was subtle with a training/validation loss of 6.36/6.36

for 8 layers and 6.33/6.33 when adding one additional fully

connected layer of the same size. Subtracting one of the

TABLE I
PARAMETER VALUES

Parameter Description Value

∆r̄ Pulse length in meters normal-
ized by carrier wavelength

6700

M Number of pulses 64

N Samples within pulse in neural
network output

32

B Total bandwidth, determined
by N and ∆r̄

0.0024fc

SNR Signal to noise ratio -3 to 30 dB

ε Range sampling interval in
pulse lengths

1/8

Nr Range samples in neural net-
work input

5

N ′ Number of synthetic range
samples in neural network out-
put, y, determined by N , Nr

and ε

48

Nmax

t
Maximum number targets 10

κmax Maximum number of scatterers
per target

100

[s̄min,s̄max] Interval of “average” strength
per target

[0.1, 1]

[s̄′min,s̄′max] Interval of initial strength per
scatterer

[0.1, 10]

BW Antenna 3 dB beam width one
way/two way

3◦ / 2.2◦

TABLE II
NEURAL NETWORK ARCHITECTURE

Layer type Weight Shape Output Shape activation

Convolutional F: 64, K: 16×1 64× 49× 5 ReLu
Convolutional F: 32, K: 1×1 32× 49× 5 ReLu
Convolutional F: 16, K: 1×1 16× 49× 5 ReLu
Convolutional F: 16, K: 49×1 16× 1× 5 ReLu

Fully Connected 48× 80 48×1 ReLu
Fully Connected 48× 48 48×1 ReLu
Fully Connected 48× 48 48×1 ReLu
Fully Connected 48× 48 48×1 Linear

F: Number of filters/kernels. K: Kernel size. All Convolutional layers had
stride [1,1] and no zero padding. Total number of parameters: 27200.

four fully connected layers gave a training/validation loss of

6.43/6.43, trained on 106 samples for 10 epochs. Network

architecture optimization is of course more complicated than

simply adding layers. As with depth, a wider network will

in general yield lower loss at the expense of computation

time. As an example, increasing the output dimension of the

first three fully connected layers to 100 instead of 48 gave

a validation loss of 6.06 instead of 6.36, however this also

entails an increase in parameters by over 80%. The chosen

filter length of 16 in the first convolutional layer has been

optimized with regard to the chosen distribution of SNRs. If

only high SNRs were considered a longer filter tended to yield

lower loss. The loss was the empirical mean squared error loss

L =
1

N ′

N ′

∑

n=1

(ŷ′n − y′n)
2

(34)

and was minimized using stochastic gradient descent with

adaptive moment estimation (Adam) [23].
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TABLE III
BATCH SIZE AND LOSS

Batch Size Training Loss* Validation Loss* execution time†

32 6.20 6.35 14 s
64 6.23 6.38 8 s
128 6.27 6.38 4 s
256 6.45 6.52 3 s
512 6.46 6.54 2 s

*After 100 epochs with 105 training samples and 104 validation samples.
†Time per epoch.

III. RESULTS

Results on training the DNN are presented in Section III-A.

As mentioned in the introduction, pulse compression is used to

increase range resolution and SNR. Results on range resolution

are presented in Section III-B and results on SNR gain are

presented in Section III-C. Although we have limited this study

to stationary scenarios, we also present some results on non-

stationary cases as well as a comparison to other methods in

Section III-D.

A. Training the DNN

In addition to network architecture, the training of a DNN

also involves some trial and error when selecting hyperparam-

eters, training time, number of samples, optimization method

etc. To simplify this process the parameters of the Adam

optimizer were kept to the default values in Keras [24] with

β1 = 0.9, β2 = 0.999, ǫ = 10−8, η = 0.001, and no other

optimization methods were considered. Five different batch

sizes were tested, the results of which are shown in Table III.

Based on this a batch size of 128 was chosen since it gave

a good trade-off between execution time, overfitting, and low

loss.

Fig. 1 shows the loss as a function of batch iterations for

four different sizes of training data. The same validation set

with 104 samples was used in all four cases. All data sets are

subsets of any larger data set, where 106 samples is the full

data set. Significant overfitting can be seen when the number

of training samples is 104 and virtually no overfitting occurs

with 106 samples. A sample size of 105 and 100 epochs of

training was chosen as this is sufficient four our purposes

since the validation loss reaches the same level when using

106 samples and decreases negligibly with further training.

Note that this number of samples may not be sufficient for a

different network. A larger network will typically require more

training data to avoid overfitting. The network was trained

using Keras [24] with Tensorflow [25] as backend and an

Nvidia Geforce RTX 2080 GPU, resulting in a computational

time of 4 seconds per epoch.

In order to make the network more robust to noise, the SNR

of the training and validation data was uniformly distributed

between -3 and 30 dB in logarithmic scale. The mean loss

depends on this distribution, and there is a slight trade off

between minimizing loss and SNR robustness. A network

trained only on data with 30 dB SNR achieved a validation

loss of 5.4, and 10.5 when evaluated on data with 3 dB

SNR. Conversely, a network trained only on data with 3 dB

TABLE IV
NUMBER OF PULSES M AND LOSS

M Training Loss* Validation Loss* Network Size†

32 6.54 6.64

F:[64,32,33,20]

K:[16×1, 1×1, 1×1, 17×1]

#W : 27401

64 6.27 6.38

F:[64,32,16,16]

K:[16×1, 1×1, 1×1, 49×1]

#W : 27200

128 6.22 6.34

F:[16,10,10,16]

K:[32×1, 1×1, 1×1, 97×1]

#W : 27288

63⋆ 6.35 6.42

F:[64,32,16,16]

K:[16×1, 1×1, 1×1, 48×1]

#W : 26944

*After 100 epochs with 105 training samples and 104 validation samples.
†F=Number of filters/kernels, K=Kernel sizes in the first 4 convolutional
layers. #W=number of weights. ⋆Data was transformed with IDFT.

SNR converged to a validation loss of 7.4, and 16.5 when

evaluated on data with 30 dB SNR. A network trained on

the proposed range of SNRs gave a loss of 7.5 on data with

3 dB SNR and 5.6 on data with 30 dB SNR, see Fig. 2.

The networks performance at a specific SNR does therefore

not appear to suffer too much in terms of loss despite having

been trained on a broader distribution of SNRs. As previously

mentioned we make no claim to have selected the optimal

values of the chosen parameters but instead aim to present a

solution that yields results sufficient to show that this type of

solution to non-coherent pulse compression is feasible. Since

all activations were rectified linear units (ReLu), all weights

were initialized with He initialization [26].

Tests were performed with M = N , M = 2N and

M = 4N , where N = 32 is the number of synthetic resolution

cells within one pulse after pulse compression. The number

of filters and kernel sizes in the first four convolutional layers

were modified such that the total numbers of parameters were

comparable and the output shape from the last convolutional

layer was always 16×1×5. The loss for M = 128 was

comparable to the loss when M = 64 while the loss for

M = 32 was slightly higher, see Table IV. For this reason

we settled with M = 64.

Tests were also made with transformations of the input data

X. If M = 2N−1, then xi can be regarded as the DFT of the

autocorrelation of ỹi. One could then take the IDFT of each xi

to obtain the autocorrelations of ỹi for i = 0, ..., Nr − 1. The

problem is then shifted from a phase retrieval problem to that

of finding the inverse of the autocorrelation function. Tests

were run where this was used as input data instead, using

the normalization in (28) and (29), and applying the IDFT

transform before converting to log scale, with the motivation

that this might be an easier problem for the DNN. The loss,

shown in Table IV, was similar to that of having no DFT on

X, i.e. transforming the data in this way did not yield a better

solution.

The average training loss for the chosen solution was 6.3

and the average validation loss was 6.4. The validation loss
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Fig. 1. Training and validation loss for different sizes of training data. The
network was trained on each data set an equal amount of time with a batch
size of 128. This corresponds to 2000 epochs for 104 samples, 400 epochs for
5×104 samples, 200 epochs for 105 samples and 20 epochs for 106 samples.
The red circle marks the validation loss (6.4) for the selected training process
with 105 training samples and 100 epochs training time. The same validation
data set with 104 samples was used in all four cases.

as a function of SNR is shown in the third plot in Fig. 2.

Since the loss is taken on y′ in logarithmic scale, it has little

physical meaning. As reference, the MSE solution of the linear

transform y′ = Wz with vectorized vec(X′) = z, had average

loss L ≈ 10 for both training and validation data. We note that

the loss increases for SNR< 10 dB.

To further visualize this, Fig. 2 shows a case with five targets

where we have added the coherent estimate as reference.

In addition to varying the SNR we have also jittered the

radar position by drawing each cartesian coordinate from

a N (0, 302) distribution. This gives a mean deviation of

σ
√
2π/2 ≈ 38 wavelengths from point (0,0). The range to the

first cell is 52 ∆r̄. This gives rise to “glittering” or fluctuations

in magnitude between samples, the effect of which is what we

see at higher SNRs in Fig. 2 in both coherent and non-coherent

estimates. At SNR lower than 10 dB the distortion is mainly

caused by noise.

B. Resolution Gain

With linear systems it is common to specify the resolution

of a pulsed compressed radar in terms of the beamwidth and

peak-to-sidelobe ratio of the synthetic pulse, i.e. the pulse

shape after pulse compression. In this case however we have

a highly non-linear neural network functioning as the pulse

compression “filter”, and conclusions drawn from such metrics

may not apply in the same way as in linear systems. Instead

we are left to numerical evaluations where we evaluate the

DNN over a broad range of simulated scenarios.

Fig. 2. Example of improvement with SNR for a five target scenario. At each
SNR the radar position was also jittered by drawing each cartesian coordinate
from a N (0, 302) distribution. This gives a mean deviation of approximately
38 wavelengths from point (0,0) (or 1.1 m with fc =10GHz). The range to
the first cell is 52 ∆r̄ (10.4 km with fc =10GHz) The top plot shows the
ground truth, virtually the same for all SNRs. The second is the DNN estimate
as a function of SNR. The variation at high SNRs (>20dB) is mainly caused
by the random radar position. The third plot shows the loss at each SNR for
both this specific case and the mean validation loss ±1 standard deviation.
The bottom plot is the coherent IDFT estimate, shown as reference. The color
axis scale is the same in the first, third, and fourth plot. Below 10 dB SNR
the performance of the DNN solutions drops significantly in the second plot
which correlates well with the loss in the third plot.

We begin with what can be regarded as a synthetic pulse

shape by looking at the return of a single point scatterer

with no noise. This is shown in Fig. 3. As in [27] we will

benchmark the performance against an equivalent coherent

system. The coherent synthetic pulse shape is also shown in

Fig. 3 with and without windowing before the DFT. Without

windowing we get the sinc-pattern with 13.3 dB sidelobes. For

our comparison we decided to use a windowed version that

gave a synthetic pulse shape that was more similar to the one

obtained with the DNN. Although the DNN pulse shape does

not have sidelobes in the same way it is interesting to note that

there are similar patterns of “peaks” at approximately the same

locations as the coherent pulse, at positions 0.5,1.5,...,47.5.

These are the result of the network optimization and were not

present in the label y. The “sidelobe” levels of the DNN are
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Fig. 3. Numerically evaluated synthetic pulse shape over all N ′ = 48
synthetic range cells. The coherent solution using the IDFT is also shown
as reference without windowing, yielding the characteristic sinc pattern, and
with a Taylor window with -35 dB sidelobe suppression over 50 sidelobes.
The high resolution was obtained by sliding a single point scatterer over a
range of ±0.5 synthetic range cells in 100 steps, centred at the mid cell
indexed 24.

at a rather constant level and below -35 dB. For this reason,

a Taylor window was used with -35 dB sidelobe suppression

over n̄ = 50 lobes, [28]. This results in a widening of the -3

dB pulse width by a factor 1.2 which also makes it closer to

the apparent shape of the DNN pulse shape. In addition to this

it also introduces a SNR loss of 0.9 dB.

The -3 dB pulse width of the DNN pulse was measured to

about 1 synthetic range cell, although it quickly gets wider at

lower gains. Note that for the coherent case we only need

samples from one range cell to get the N -point synthetic

range, i.e. one xi for some i while the DNN requires Nr = 5
consecutive range samples. For the sake of comparison we

let the coherent IDFT estimate be the average of Nr = 5
overlapping samples of xi. It thereby uses the same input data,

X, as the non-coherent DNN solution and produces the same

output size N ′.
To quantify the resolution, we use the peak-to-valley ratio

which we define as
min(P1, P2)

V
(35)

where P1 and P2 are the power levels of two consecutive

peaks/targets and V is the “valley” power estimated from the

signal power between the most adjacent scatterers of the two

targets. This was estimated as the mean of the n smallest

synthetic range cells out of a maximum of 5 where 1 ≤ n ≤ 3,

depending on the distance between peaks. This is illustrated

in Fig. 4. Note that the range covered in Fig. 4 is two full

39 dB

19 dB

33 dB

34 dB

Fig. 4. Example of peak-to-valley ratios for a scenario with three targets.
The mean pulse shape before pulse compression is shown for reference as
the black dashed line as well as the maximum and minimum values of the
64 pulses. The SNR was 20 dB.

TABLE V
REQUIRED RANGE† SEPARATION FOR ≥3 DB PEAK-TO-VALLEY RATIO

WITH 90% AND 95% EMPIRICAL PROBABILITY

SNR [dB] Non-Coherent DNN* Coherent IDFT*

20 4.8/5.6 2.8/3
15 5/5.8 2.8/3
10 6.6/7.2 2.8/3
7 -/- 2.8/3
3 -/- 2.8/3.4

†Separation in synthetic range cells for two point scatterers. *Bold number
corresponds to 90% and plain number corresponds to 95%

pulse lengths, equivalent to 64 synthetic range cells. This was

obtained by averaging several estimates with a sliding window

approach over range cells with stride equal to one.

In plot (a) in Fig. 5 we estimate the peak-to-valley ratio

for two single point scatterers of equal size. The average

peak-to-valley ratio over 1000 Monte Carlo runs is shown

as a function of distance between targets in synthetic range

cells. Table V shows the minimum distance in synthetic range

cells required for the peak-to-valley ratio to be at least 3 dB

with 90% and 95% empirical probability. For SNRs 3 dB

and 7 dB this probability was never reached with the DNN.

Note that these incorporate losses due to interference between

targets as well as noise. Had it not been for these factors, two

point scatterers should be separable with 3 dB margin after

a separation of about one synthetic range cell with coherent

pulse compression. With the used Taylor window the 3 dB

peak-to-valley ratio occurs after a separation of about 1.08

synthetic range cells.

The results in plot (a) in Fig. 5 and Table V are only for two

single point scatterers. Similar simulations were performed

using samples drawn from the model presented in Section II-A,

from which the training and validation data was generated,

but with slight modifications. The number of targets generated

were between two and ten (not one and ten) and the peak-to-
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Fig. 5. Empirical median peak-to-valley ratio as a function of the separation
between targets in synthetic range for different SNRs. The median was
taken from 1000 runs. The distribution of peak-to-valley ratios was quite
skewed. For this reason the median was used as the average rather than
the mean. (a) Two point scatterers of equal size. The peak-to-valley ratio
begins increasing after a separation of about two synthetic resolution cells for
coherent pulse compression and about four synthetic cells for the non-coherent
pulse compression, depending on SNR. (b) Multiple targets with multiple
scatterers, drawn from a modified version of the model in Section II-A. The
modifications included the number of targets to be at least two and the relative
peak-to-peak ratio was no more than 10 dB after coherent pulse compression.
Although the non-coherent pulse compression requires a larger separation
between targets than coherent pulse compression, it can still reach the same
levels if the SNR is sufficiently high. Note that the SNR is before pulse
compression and includes the power of all targets. The separation in synthetic
range refers to the distance between the end and beginning of two consecutive
targets.

peak ratio of two consecutive targets defined as

|10 log10(P1/P2)| (36)

using the power levels of the coherent IDFT estimate, was

at most 10 dB. Note that the specified SNR is before pulse

compression and is thus an average over all targets within one

pulse.

The corresponding results for these tests are shown in plot

TABLE VI
REQUIRED RANGE† SEPARATION FOR ≥3 DB PEAK-TO-VALLEY RATIO

WITH 90% AND 95% EMPIRICAL PROBABILITY WITH MULTIPLE TARGETS

SNR [dB] Non-Coherent DNN* Coherent IDFT*

20 7.4/9.4 6.2/7.8
15 7.8/9.8 6.2/8.2
10 9.8/11.8 6.6/9.4
7 11.4/17.4 6.6/9.4
3 -/- 7/9.4

†Separation in synthetic range cells for multiple multi-scatter target scenarios.
*Bold number corresponds to 90% and plain number corresponds to 95%

(b) in Fig. 5 and Table VI. Looking at Table V and VI

we see that for SNR 10 dB and above, the resolution is

approximately a factor 2 worse in synthetic range than the

coherent solution using this metric. We also note in plot (b)

in Fig. 5 that the median peak-to-valley ratio of the non-

coherent DNN solution is approximately at the same level as

the coherent peak to valley ratio when SNR≥10 dB and the

target separation exceeds 10 synthetic range cells.

Finally, we show an example where we have combined

several estimates of y to form a scan image or B-scope view.

We let the scan rate and PRF be such that we get 64 pulses in

2◦ and we sample 25 range cells and scan 20◦. We then slide

a window over the sampled data with size 5 × 64 and stride

[1,64]. For each 5 × 64 sample we get a 48 × 1 estimate ŷi

for i = 0, ..., 20. Two estimates yi and yi+1 will then overlap

by 48 − 4 = 44 samples and in the final image we simply

take the mean of all overlapping samples. This is shown in

Fig. 6 for a scenario with three targets within a pulse length.

As seen, the three targets can be resolved despite the loss of

phase information using the DNN.

C. SNR Gain

In this section we will consider the gain in SNR. Fig. 7

shows the synthetic pulse shape, i.e. simulated echo from a

single point scatterer, for various SNRs. The gain in SNR

becomes less significant for SNR below 3 dB.

Fig. 8 shows the mean SNR gain for single point scatterers

as a function of SNR as well as an intensity map to illustrate

the distribution in gain. The empirical 5th percentile for the

coherent gain was 19.5 dB for SNR≥0 dB. For the non-

coherent gain and SNR≥ 5 dB the 5’th percentile gain was

greater than 6 dB and the mean gain was greater than 12 dB,

consistent with the 13 dB calculated in Section II-D. In terms

of the mean, this is a loss of 10 dB from the coherent case.

In Fig. 6 we can see that the background noise character-

istics is different in the coherent and non-coherent estimates.

This will affect the trade off between false alarm and detection

probability, known as receiver operating characteristics (ROC).

This is estimated in Fig. 9 for a target consisting of five point

scatterers uniformly confined to one synthetic range cell, each

with exponentially distributed RCS. The scatterer positions

and RCS were constant in each sample, or set of 64 pulses,

but varied between samples. This gave a distribution of the

signal power, or target RCS, that was close to that of a target

with log-normal probability density function (PDF), a common
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Fig. 6. Example of a simulated scan with three targets positioned within
one pulse length ∆r̄, at 52 pulse lengths range. With fc = 10GHz this
corresponds to 10.4 km (∆r = 200m) requiring a pulse repetition frequency
< 14kHz. The scan has 64 pulses in 2◦, which would then require a scan rate
less than 360◦/0.83s for a mechanical antenna system. The SNR in X, top
right plot, was 20 dB. The bottom right plot is for reference and shows the
coherent result using the IDFT. The yellow box in the top right plot marks
the input size to the DNN. The loss at the target for the DNN estimate in the
bottom left plot was L ≈ 4 and L ≈ 14 in the target free area. The color
axis scale is the same in all four images. As seen, the three targets can be
resolved despite the loss of phase information.

model for target fluctuations from one scan to another. A

perhaps more “standard” model is the Swerling III model,

[18], which has a similar PDF of target power, see bottom

plot in Fig. 9. Fig. 9 shows a comparison of the histogram of

5 × 105 samples of simulated target power and the PDF of

a log-normal target scaled to have mass 5 × 105. The ROC

estimate is for a constant threshold detector.

In the top plot in Fig. 9 we have compared the DNN solution

to an alternative form of non-coherent pulse compression using

OOK. We have compared it to a waveform using m-sequence

coding of sub-pulses, see [29], with the same instantaneous

bandwidth as the DNN solution. The length of such an m-

sequence is 2m − 1 which gives 63 sub-pulses for m = 6.

After Manchester coding, [29], the total length of the pulse

sequence is 126 sub-pulses with 63 “on” pulses, i.e. it uses

approximately the same number of pulses as the presented

DNN solution but transmitted within one PRI instead of 64

with a single “sub-pulse” in each. We see in Fig. 9 that simply

integrating 64 pulses yields better results in terms of ROC than

the other non-coherent solutions. The DNN solution yields

equal or better results than the 6-sequence OOK waveform for

SNR greater than 7 dB. A shorter m-sequence will have worse

performance, and a longer better in terms of ROC. Note that

the 6-sequence OOK solution is obtained from a single pulse

and the DNN solution requires 64. On the other hand, the 6-

sequence OOK solution offers no increase in resolution which

is the main objective in this study. Also note that unless a radar

can receive and transmit simultaneously the blind range of

Fig. 7. Example of compressed pulse for different SNRs of a point scatterer.
The mean as well as maximum and minimum range of the 64 simulated pulses
are shown for reference.

such a 6-sequence OOK system is 126 sub-pulses, or ca 25 km

if ∆r=200m. The coherent estimate had empirical detection

probability of approximately one, with false alarm probability

of almost zero for the three considered SNRs.

D. Other Scenarios and Methods

We saw in Section II-C that the problem presented in this

study could potentially be solved using certain phase retrieval

algorithms. Fig. 10 shows a comparison between the presented

DNN solution and an alternative phase retrieval solution using

the Griffin-Lim Algorithm (GLA) [19]. This exploits the fact

that the Nr columns of X can be regarded as the STFT of the

desired signal y. The known pulse shape and sampling interval

then acts as prior knowledge necessary for phase retrieval,

although it is not always sufficient [20]. By iterating between

time and frequency domain and applying what is known in

each domain the error between the estimated y and true y will

reduce with each iteration, [19]. In this case we stopped the

iteration when this error, measured as the mean square error,

changed by less than 10−6. This required 100-600 iterations

for the five cases shown in Fig. 10, where each case is identical

apart from having different pulse shapes.

The pulse shapes are raised cosine filters with different

shape parameters β ∈ [0, 1]. A value of β = 1 yields the

simple raised cosine in (11). We note that the GLA works

reasonably well with rectangular pulses, ignoring the false tar-

gets. However when introducing some bandwidth limitations
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Fig. 8. Empirical mean gain in SNR as a function of SNR for non-coherent
and coherent pulse compression. The coherent pulse gain is a result of both
pulse compression as well as the averaging of 5 samples. The SNR after pulse
compression was estimated as the power at the target divided by the mean
power of 20 noise samples minus one. The sample size was 1000 for each
SNR.

on the pulse, i.e. increasing β beyond 0.7, the GLA fails. This

type of case specific sensitivity is a well known problem with

the GLA. This is discussed in [15] where the authors combine

the GLA and a DNN to solve a phase retrieval problem in

order to gain more robust and accurate phase estimates. This is

however a semi-iterative solution where each iteration involves

an evaluation of a five-layered neural network. The number of

iterations used in [15] was 10, equivalent to a network with

50 layers. Note in Fig. 10 that the DNN solution performs

reasonably well for the whole range of β when N=32, despite

having only been trained on the pure raised cosine shape were

β = 1.

Another interesting alternation is changing the distribution

of the scatterers RCS in the model presented in Section II-A.

The model uses uniformly distributed RCS of each point

scatterer. One could argue that some other distribution would

be more suitable. Due to the normalization of the DNN input

data, we can always carefully select a subset of the training

data that will be consistent with any choice of distribution that

has been normalized, provided that we have a large enough

sample size. One could therefore argue that this choice of

uniform distribution covers a wide range of possible scenarios

even if only a fraction of them are interesting. The loss in

Fig. 2 is however the mean when using the uniform distribution

and it is therefore motivated to test the DNN with other

distributions on RCS. The mean loss for 104 samples where

the RCS was drawn from the exponential distribution was 6.30

and 6.37 when drawn from a Rayleigh distribution using the

same network that had been trained on uniform RCS. This is

very close to the validation loss of 6.38.

In this study we have only considered stationary scenarios

up to this point. Although dynamic scenarios are left for future

work, we will still evaluate the DNN on a couple examples.

Fig. 9. The top plot shows the ROC curve estimated from 5 × 105

samples. The curves are for the DNN solution (blue), pulse integration
over M = 64 pulses (green) single pulse detection (black) and a non-
coherent pulse compression method with OOK using an m-sequence with
m=6 (purple). The m-sequence was generated from a shift register with initial
values [1,1,1,1,1,1]. The target consisted of five point scatterers uniformly
confined to one synthetic resolution cell, with exponentially distributed RCS.
This caused the target power level to have an approximately log-normal like
distribution. The bottom plot shows the histogram of the normalized target
power levels and the PDF of a log normal distribution and the similar Swerling
III/IV PDF scaled to have the same mass. For reference ROC curves for single
pulse detection on a true Log-Normal fluctuating target in AWGN is also
shown in the top plot (grey). These are quite consistent with the corresponding
curves of the simulated target. The DNN ROC curves are for single evaluations
of the DNN and no averaging obtained from sliding window estimates, such
as the one shown in Fig. 6, was performed. The given SNRs are the average
SNRs. NCPC=Non-Coherent Pulse Compression, NCPI=Non-Coherent Pulse
Integration.

Relative motion between target and radar is always a problem

when using the stepped frequency waveform due to the fact

that M pulses are required, [30]. Assume that the target has

moved a distance d = ∆rL/(N − 1) pulse lengths along the

radar line of sight during the M pulses, typically L ≪ N .

Using vm,i in (4) we can then write the received signal v̄m,i

as

v̄m,i =

(

R0

Rm

)4

vm,ie
−j2παm

mL
(M−1)(N−1) (37)

assuming prefect Doppler compensation on the carrier when

down converting. The first term is the path loss where R0 is

the range to the target at pulse 0 and Rm is the range at pulse
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Fig. 10. Comparison between the iterative GLA solution and the presented
DNN solution for non-coherent pulse compression. As reference the Coherent
solution using the IDFT is also shown. The simulated scenarios show two
single point scatterers “illuminated” with different pulse shapes in the form
of raised cosine filters. The DNN was only trained on the pure raised cosine
with shape factor β = 1 and N=32. The SNR was 25 dB. The vertical bars
mark the true target positions. The number of range samples required for the
GLA to work was Nr = 9 and the GLA estimate was therefore longer than
the N ′ = 48 samples shown here.

m. Using (6) the exponent in (37) can be written as

−j2π
[(

2∆r̄L
(M−1)(N−1) − L

2(M−1)

)

m+ Lm2

(M−1)2

]

. (38)

The term L is a normalized velocity, i.e., the number of

synthetic resolution cells the target has moved during the M
pulses, not necessarily an integer. We see that this phase shift

contains a linear term in m which will result in a spatial

rotation of the estimated signal and a quadratic term in m
which will result in a widening of the target.

Theoretically this can be compensated for by multiplying

with the inverse phase, but this requires accurate knowledge

of the relative velocity between target and radar. This is

not a trivial problem, see [30], and [31]. The non-coherent

solution is however unaffected by phase shifts. It gets more

complicated when the pulse contains several targets that move

with different velocities, as this will also influence the signal

amplitude levels due to interference caused by the varying

distances between targets. Fig. 11 shows such a scenario with

two targets consisting of 50 point scatterers with exponentially

distributed RCS, uniformly confined to five synthetic range

cells where one target moves with 0.9 times the velocity of

the other, specified on the x-axis. The coherent solution is

only phase compensated for the bottom target, i.e. the velocity

Fig. 11. Scenario with two moving targets where the top target moves with
0.9 times the velocity of the bottom target which is given on the x-axis. The
coherent estimate is phase compensated for the velocity of the bottom target.
The dashed lines show the true mean position of the targets during M = 64
pulses as a function of velocity. The y-axis shows the N ′ = 48 synthetic
range cells. As an example, a normalized velocity of one is equivalent to 100
m/s with a 200 m pulse length and 1kHz PRF with N=32 and M=64. The
mean SNR was 10 dB.

of that target is assumed known. Compared to the coherent

estimate the non-coherent estimate is relatively unaffected

despite not having been trained on such scenarios and does

not require any knowledge of the relative velocity between

target and radar.

An even more complicated case is when the target rotates, or

equivalently, the aspect angle to the target changes during the

M pulses when the target consists of more than one scatterer.

Compensating for the phase and amplitude distortions caused

by the slight change in radial distance to each scatterer require

known relative positions and strengths of each point scatterer

as well as the angular velocity of the target. Fig. 12 shows

a scenario with the same type of target as in Fig. 11. The

compressed range profile is given as a function of the rotation

of the target during the M pulses. Apart from a widening of the

target in synthetic range the non-coherent estimate shows little

distortion when compared to the coherent estimate. Again, the

DNN has not been trained on this type of scenario.

IV. CONCLUSION

In this study we have investigated the use of a DNN as a

non-linear mapping from magnitude or modulus in discrete

frequency domain to a corresponding magnitude in time do-

main. By so doing we have obtained an approximation of a

high resolution range profile of targets with a non-coherent

radar.

We found that for SNRs > 10 dB the non-coherent DNNs

ability to resolve targets within a pulse length was a factor two

worse than the equivalent coherent system, i.e. target spacing
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Fig. 12. Scenario with a rotating target. The rotation in degrees during the
M pulses is specified along the x-axis for three different intervals. The y-axis
shows the N ′ = 48 synthetic range cells. As an example, a rotation of 1◦

with M = 64 pulses and 1kHz PRF corresponds to an angular velocity of
16◦ per second or 2.6 rpm. The mean SNR was 10 dB.

needed to be increased by factor two before targets peak-to-

valley-ratio grew beyond 3 dB. The average peak-to-valley

ratio with the DNN solution reached the corresponding value

of the coherent peak-to-valley ratio after a target separation of

10 synthetic range cells or 1/3 of the full pulse length.

The gain in SNR was estimated to be greater than 6 dB

with 95% empirical probability for SNRs greater than 5 dB.

Depending on the target it may be better in terms of detection

probability and false alarm trade-off to integrate the required

64 pulses and perform detection on these rather than the DNN

output. Provided one can buffer the 64 pulses, an appealing

solution is then to use pulse integration for detection of targets

and later only apply the DNN solution on the batches with

detected targets for increasing the resolution, as this may

decrease the processing time compared to applying the DNN

solution to all batches.

We have only considered stationary scenarios and a stepped

frequency waveform with a fixed interval between frequencies.

The extension to dynamic scenarios and random frequency

sampling is left for future work. We have however shown

examples where the DNN yields reasonable results in dynamic

scenarios despite not having been trained on these. This

indicates that such DNN solutions could be of benefit even

with coherent systems as these are sensitive to phase changes

which are unavoidable in dynamic scenarios. We have also not

considered the effects of multipath propagation, interference

and other forms of noise which is left for future work.

All results in this study are based on simulated data and

evaluation on real data is left for future work. The required

number of data samples for avoiding overfitting the network

was found to be quite high for the chosen architecture,

requiring an order of 105 samples. Obtaining this amount of

real data for training is not a promising solution. We therefore

believe that models of targets, such as the example presented

in this study, will always be relevant for DNN based pulse

compression, at least in transfer learning where the network is

first trained on simulated data and then fine tuned on real data.

We make no claim to have found the optimal architecture or

training procedure for the DNN. Instead we have settled with

showing that a rather simple DNN architecture can be used

to gain decent results for non-coherent pulse compression.

Solving this type of problem with more elaborate network

architectures such as the one presented in [15] is left for future

work.

The results presented in this study offers new abilities to

non-coherently process frequency agile radar signals for both

imaging applications and detection. In case of detection one

can either add traditional methods such as a constant false

alarm rate (CFAR) detector to the presented method, or look

at an end to end approach where the network instead outputs

a list of all targets with desired attributes using the same type

of input. A study on which of these two approaches is better

given certain criteria is left for future work.

REFERENCES

[1] Urkowitz, H., Hauer, C. A., and Koval, J. F., “Generalized resolution in
radar systems,” Proceedings of the IRE, vol. 50, no. 10, pp. 2093–2105,
Oct 1962.

[2] Levanon, N., “Noncoherent pulse compression,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 42, no. 2, pp. 756–765, April
2006.

[3] Peer, U. and Levanon, N., “Compression waveforms for non-coherent
radar,” in 2007 IEEE Radar Conference, 2007, pp. 104–109.

[4] Seleym, A., “A new non-coherent pulse compression based on binary
codes for on-off keying (ncpc-bc-ook),” in 2013 IEEE 20th International

Conference on Electronics, Circuits, and Systems (ICECS), 2013, pp.
731–734.

[5] Levanon, N., Cohen, I., Arbel, N., and Zadok, A., “Non-coherent pulse
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