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Abstract. For Petri nets with inhibitor arcs, properties like reachability
and boundedness are undecidable and hence constructing a coverability
tree is not feasible. Here it is investigated to what extent the coverability
tree construction might be adapted for Petri nets with inhibitor arcs.
Emphasis is given to the (a priori) step sequence semantics which cannot
always be simulated by firing sequences. All this leads to the notion of
a step coverability tree which may be of use for the analysis of the step
behaviour of certain subclasses of Petri nets with inhibitor arcs.
Keywords: Petri nets; inhibitor arcs; step semantics; step coverability
tree; boundedness; reachability; decidability.

1 Introduction

Petri nets [19] are a generic, formal approach to concurrent computation based
on notions of local states, local actions, and their relationships (together defining
the underlying structure or ‘net’). Whether or not a local action (‘transition’)
can occur and its effect when it does, depend only on the local states (‘places’) to
which it relates. Among a variety of net models introduced and investigated over
the past few decades [23, 22], Elementary Net Systems (EN-systems) [24, 21] and
Place/Transition systems (PT-systems) [4] are two basic classes. EN-systems are
the more fundamental of the two, whereas PT-nets support a more convenient
modelling and use of (potentially unboundedly many) resources. The switch
from EN-system to PT-nets is in essence an extension from sets (Booleans) to
multisets (natural numbers).

Generally speaking, the dynamics of a Petri net model is defined through a
specific ‘firing rule’, describing enabledness (to occur at a global state or ‘mark-
ing’) and the effect (on the marking) of the occurrence of a single transition. In
addition, there usually is also a step firing rule (for sets or multisets of simul-
taneously occurring transitions) as a derived notion relating to independence or
concurrency (or rather simultaneity) of transition occurrences. This results in a
natural way in operational semantics with a behavioural description in terms of
firing sequences or step sequences. Moreover, reachability graphs (labelled tran-
sition systems) combine (step) firing sequences and state information. These
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essentially sequential semantical representations are the most straight-forward
approaches which proved to be very useful as they allow behavioural analysis
and verification (including model checking [26]). (Alternative semantics of EN-
systems and PT-nets, providing more and explicit information on concurrency,
causality, and conflict relations between occurrences of actions/transitions can
be based on occurrence nets (processes), partial orders, traces, event structures
and related temporal logics approaches [25, 17].)
Since state spaces may be infinite, for verification purposes an important (and
often assumed or guaranteed by construction) property is ‘boundedness’ of the
Petri net which amounts to saying that its state space is finite. A standard tool
to decide this for PT-nets is the ‘coverability tree’ introduced in [11] and then
investigated, among others, in [6, 18]. What is more, coverability trees can also
provide a tool for deciding many other relevant behaviour problems, such as
mutual exclusion, even in the case of infinite state spaces.

In net models like EN-systems and PT-nets it is not possible to test for
the absence of resources (zero-testing), and so, quite early on an additional
kind of relationship between places and transitions has been considered in the
form of inhibitor arcs [1, 8, 18]. An inhibitor arc gives the possibility of testing
rather than producing and consuming resources. If a place is connected to a
transition by an inhibitor arc, then this transition cannot occur if that place
is not empty. The extension with inhibitor arcs gives the resulting model of
PTI-nets the expressive power of Turing machines and thus has its price. Net
languages become recursively enumerable rather than recursive, and decidability
for certain important behavioural properties, such as reachability, is lost [7, 1, 5,
20]. In our own investigations aimed at the development of a process semantics for
PTI-nets with the view of verifying them through model checking, we combined
techniques first proposed for EN-systems with inhibitor arcs [10] (to deal with
the difference between concurrency and simultaneity in the context of inhibitor
nets) and PT-nets [9] (in which concurrency relations between transitions may
depend on preceding history). This has led in [12, 13] to the proposal of two
constructions, one for general (possibly unbounded) PTI-nets and the other for
PTI-nets with complemented (hence bounded) inhibitor places. Hence in the
latter case it was possible to adopt an approach as developed for EN-systems
with inhibitor arcs, resulting in a simple yet fully satisfactory solution.

In this paper we return to the basic questions concerning the boundedness of
PTI-nets. Since boundedness (like reachability) is undecidable for general PTI-
nets [7], we have however to be satisfied with partial solutions to our questions.
An important line of attack here is the construction of a coverability tree which in
finite time should provide information useful for a behavioural analysis of the net.
Since inhibitor arcs destroy the monotonicity in the behaviour (having more re-
sources available in a PTI-net may imply loss of behaviour), the coverability tree
construction has to be modified. In particular to guarantee termination of the
construction, the full class of PTI-nets has to be restricted. That is exactly why
in [2], ‘primitive’ PTI-nets have been introduced, a subclass of PTI-nets which
includes the ordinary PT-nets and still has more expressive power. However, the
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results in [2], as well as those by others on decidability issues for PTI-nets, are
derived for the firing sequence semantics (or a step sequence semantics with the
same reachability properties). We are, however, primarily interested in PTI-nets
operating under the a priori step sequence semantics for which reachability is
a richer concept than for the firing sequence semantics. Therefore, in this paper
we set out to investigate issues relating to coverability and the a priori step
sequence semantics in PTI-nets.

After a preliminary section, we introduce first the basic notations and con-
cepts relating to PTI-nets, and discuss their operational semantics. We compare
the purely sequential firing sequence semantics and the a priori step sequence
semantics in view of their reachable markings (the state spaces they define).
Next, we reconsider boundedness and reachability for PTI-nets. Using a result
from [20], it can be shown that in case of no more than one inhibitor place, at
least firing sequence reachability is a decidable property. We are mostly inter-
ested in the most general ‘weighted’ variant of PTI-nets, but as we demonstrate
in that section, for reachability and boundedness it is sufficient to consider only
the unweighted or ‘simple’ PTI-nets. In Section 5, the standard coverability tree
construction for PT-nets is revisited. We recall the properties which make cov-
erability trees useful and these serve later as guidelines when we discuss similar
constructions for PTI-nets. Then we try to adapt the construction for PTI-nets
(with the firing sequence semantics). Though the resulting tree reflects properly
the unboundedness of places it is not adequate. Even if it terminates (for the
subclass of PTI-nets with one inhibitor place), the new construction provides no
more than a semi-algorithm for boundedness. In the main Section 6, we investi-
gate the coverability tree construction for the a priori step sequence semantics.
First of all we have to extend the labelling of its edges from single transitions
to steps, because steps cannot always be simulated by firing sequences. Then it
turns out, that it is not only the non-monotonicity which spoils the algorithm,
but also the potential unboundedness of the steps. To properly capture this as-
pect of concurrency, the concept of a ‘covering’ or ‘extended’ step is introduced,
which we see as a main contribution of this paper. Combining covering steps and
the property of primitivity as in the coverability tree construction in [2] leads
to the construction of a step coverability tree for PTI-nets. We show that the
algorithm always terminates and that the resulting tree can indeed be used to
decide whether a primitive PTI-net working under the a priori step sequence
semantics is bounded. Moreover, similar to the coverability tree of PT-nets, the
step coverability tree may be useful also to decide other properties. We give the
example of executability of steps (comparable to the usefulness of transitions in
PT-nets). In a way, the step coverability tree may be a new tool which could
be useful also for other kinds of Petri nets, including PT-nets (when step exe-
cutability is considered), as argued in the concluding section, or for Petri nets
operating under the maximal parallelism execution semantics. To enhance the
readability we have moved a few rather technical proofs to the Appendix.
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2 Preliminaries

We use standard mathematical notation, in particular, ⊎ denotes disjoint set
union, N = {0, 1, 2, . . .} the set of natural numbers, and ω the first infinite
ordinal. We assume that ω + ω = ω, ω −ω = ω, n < ω, n− ω = 0, 0 · ω = 0 and
ω + n = ω − n = k · ω = ω, where n is any natural number and k any positive
natural number.

A multiset (over a set X) is a function µ : X → N, and an extended multiset
(over X) is a function µ : X → N ∪ {ω}. In this paper, X will always be a
finite set. We denote x ∈ µ if µ(x) > 0, and call the set of all such x the
carrier of µ. For two extended multisets µ and µ′ over X , we denote µ ≤ µ′

if µ(x) ≤ µ′(x) for all x ∈ X . We then also say that µ′ covers µ. As usual,
µ(x) < µ′(x) if µ(x) ≤ µ′(x) and µ(x) 6= µ′(x). Any subset of X may be viewed
through its characteristic function as a multiset over X , and a multiset may
always be considered as an extended multiset. The multiset 0 and the extended

multiset Ω are given respectively by 0(x)
df

= 0 and Ω(x)
df

= ω for all x.
In the examples, we will use notations like {w2yzω} to denote an extended

multiset µ such that µ(w) = 2, µ(y) = 1, µ(z) = ω and µ(x) = 0, for all
x ∈ X \ {w, y, z}. (For the examples, this kind of notation will not lead to
confusion with sets consisting of a single sequence.)

The sum of two extended multisets is given by (µ+µ′)(x)
df

= µ(x)+µ′(x), the

difference by (µ − µ′)(x)
df

= max{0, µ(x) − µ′(x)}, and the multiplication of an

extended multiset by a natural number by (n · µ)(x)
df

= n · µ(x). The cardinality

of µ is defined as |µ|
df

=
∑

x∈X µ(x). We write µω for the set of all x such that
µ(x) = ω, and µω 7→k is a multiset such, for all x, µω 7→k(x) = k if x ∈ µω, and
µω 7→k(x) = µ(x) otherwise.

If µ is a multiset, µ′ an extended multiset over the same set and k ≥ 0, then
we say that µ is a k-approximation of µ′ if, for all x, µ(x) = µ′(x) if µ′(x) < ω,
and otherwise µ(x) > k. We denote this by µ ⋐k µ′.

In some of the proofs we will be referring to Dickson’s Lemma which states
that every infinite sequence of extended multisets (over a common set) con-
tains an infinite non-decreasing subsequence. Another important technical tool
is König’s Lemma by which every infinite, finitely branching tree has an infinite
path starting from the root.

3 PT-nets with inhibitor arcs

This section introduces the notation and terminology for Place/Transition nets
(PT-nets, for short) and PT-nets with inhibitor arcs (PTI-nets) and discusses
their operational semantics. We first define their underlying structures.

A net is a triple N = (P, T, W ) such that P and T are disjoint finite sets
of places and transitions, respectively, and W : (T × P ) ∪ (P × T ) → N is the
weight function of N . In diagrams, places are drawn as circles and transitions
as rectangles. If W (x, y) ≥ 1 for some (x, y) ∈ (T × P ) ∪ (P × T ), then (x, y)
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is an arc leading from x to y. As usual, arcs are annotated with their weight
if this is 2 or more. A double headed arrow between p and t indicates that
W (p, t) = W (t, p) = 1. We assume that, for every t ∈ T , there is a place p such
that W (p, t) ≥ 1 or W (t, p) ≥ 1 (i.e., transitions are never isolated).

An inhibitor net is a net together with a (possibly empty) set of weighted
inhibitor arcs leading from places to transitions. An inhibitor net N is specified
as a tuple (P, T, W, I) such that (P, T, W ) is a net (the underlying net of N ) and I
— the inhibitor mapping — is an extended multiset over P×T . If I(p, t) = k ∈ N,
then p is an inhibitor place of t meaning intuitively that t can only be executed
if p does not contain more than k tokens (defined below); in particular, if k = 0
then p must be empty. I(p, t) = ω means that t is not inhibited by the presence
of tokens in p. If I always returns 0 or ω, then we are dealing with unweighted
inhibitor arcs which can only be used to test whether a place is empty or not. A
net (P, T, W ), without inhibitor arcs, can be considered as a special instance of
an inhibitor net by identifying it with the inhibitor net (P, T, W,Ω). In diagrams,
inhibitor arcs have small circles as arrowheads. As for the standard Petri net arcs,
inhibitor arcs are annotated by their weights. In this case, the weight 0 is not
shown, and if I(p, t) = ω, then there is no inhibitor arc at all between p and t.

Given a transition t of an inhibitor net N = (P, T, W, I), we denote by t• the

multiset of places given by t•(p)
df

= W (t, p), by •t the multiset of places given

by •t(p)
df

= W (p, t), and by ◦t the extended multiset of places given by ◦t(p)
df

=
I(p, t). These notations extend to finite multisets U of transitions in the following

way: U• df

=
∑

t∈U U(t) · t• and •U
df

=
∑

t∈U U(t) · •t are multisets of places, while
◦U defined by ◦U(p)

df

= min({ω} ∪ {◦t(p) | t ∈ U}), is an extended multiset of
places. For a place p, we denote by •p and p• the multisets of transitions given

by p•(t)
df

= W (p, t) and •p(t)
df

= W (t, p), respectively.
The states of an inhibitor net N = (P, T, W, I) are given in the form of mark-

ings. A marking of N is a multiset of places. Following the standard terminology,
given a marking M of N and a place p ∈ P , we say that p is marked (under
M) if M(p) ≥ 1 and that M(p) is the number of tokens in p. In diagrams, every
token in a place is drawn as a small black dot. Also, if the set of places of N is
implicitly ordered, P = {1, . . . , n}, then we will represent any marking M of N
as the n-tuple (M(1), . . . , M(n)) of natural numbers.

Transitions represent actions which may occur at a given marking and then
lead to a new marking. First, we discuss the sequential semantics of inhibitor
nets based on the standard (and non-controversial) definition for the occurrence
of single transitions.

A transition t of N = (P, T, W, I) can occur at a marking M of N if for each
place p, the number of tokens M(p) is at least W (p, t), the number of tokens that
t needs as input from that place according to the weight function. In addition,
each inhibitor place p of t should not contain more than I(p, t) tokens. Formally,
t is enabled at M , denoted by M [t〉, if •t ≤ M ≤ ◦t. If t is enabled at M , then

it can be executed (or fired) leading to the marking M ′ df

= M − •t + t•, denoted
by M [t〉M ′. Thus M ′ is obtained from M by deleting W (p, t) tokens ‘consumed’
by t from each place p and adding W (t, p) tokens to each place p as output
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N1

1 2

3 4

t u

1 2

3 4

t u

N2

Fig. 1. Two marked inhibitor nets.

‘produced’ by t. A firing sequence from a marking M to marking M ′ in N is a
possibly empty sequence of transitions σ = t1 . . . tn such that

M = M0 [t1〉M1 [t2〉M2 · · · Mn−1 [tn〉Mn = M ′ ,

for some markings M1, . . . , Mn−1 of N . If σ is a firing sequence from M to M ′,
then we write M [σ〉fs M ′ and call M ′ fs–reachable from M (in N ). Note that
every marking is fs–reachable from itself by the empty firing sequence.

Figure 1 shows two inhibitor nets each with a marking (1, 1, 0, 0). The first of
them, N1, has three non-empty firing sequences starting from (1, 1, 0, 0): σ1 = t,
σ2 = u and σ3 = ut. However, the other one, N2, allows only the first two, σ1

and σ2. Moreover, the set of markings fs–reachable from the marking (1, 1, 0, 0)
for N1 comprises (1, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0) and (0, 0, 1, 1), whereas for N2

it comprises only (1, 1, 0, 0), (1, 0, 0, 1) and (0, 1, 1, 0).
Next we define a semantics of inhibitor nets in terms of concurrently occurring

transitions. A step of an inhibitor net N = (P, T, W, I) is a finite multiset of
transitions, U : T → N. The enabledness of steps is not defined in a unique way
in the literature. Following [10, 12, 13, 16], we consider here the operationally
defined a priori step sequence semantics which is based on a direct generalization
of the enabledness of single transitions to multisets of transitions. A step U is a
priori enabled or simply enabled, at a marking M of N if •U ≤ M ≤ ◦U . Thus, in
order for U to be enabled at M , for each place p, the number of tokens in p under
M should at least be equal to the accumulated number of tokens that are needed
as input to each of the transitions in U , respecting their multiplicities in U . By
the second inequality, each place p which is an inhibitor place of some transition t
occurring in U , should contain no more than I(p, t) tokens. If U is a priori enabled

at M , then it can be executed leading to the marking M ′ df

= M−•U+U•, denoted
M [U〉M ′. Thus the effect of executing U is the accumulated effect of executing
each of its transitions (taking into account their multiplicities in U). Note that
the empty step 0 is enabled at every marking of N , and that its execution has no
effect, i.e., M ′ = M . An (a priori) step sequence from a marking M to marking
M ′ in N is a possibly empty sequence τ = U1 . . . Un of non-empty steps Ui such
that

M = M0 [U1〉M1 [U2〉M2 · · · Mn−1 [Un〉Mn = M ′ ,

for some markings M1, . . . , Mn−1 of N . If τ is a step sequence from M to M ′

we write M [τ〉M ′ and M ′ is said to be a priori reachable or simply reachable
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from M (in N ). Note that every marking is reachable from itself by the empty
step sequence.

A Place/Transition net with inhibitor arcs (or PTI-net) is an inhibitor net
equipped with an initial marking. It is specified as a tuple N = (P, T, W, I, M0),
where N ′ = (P, T, W, I) is its underlying inhibitor net, and M0 is a marking of
N ′. If I = Ω, then N is a Place/Transition net (or PT-net) which may also be
specified as (P, T, W, M0). All terminology and notation with respect to enabling,
firing, and steps are carried over from N ′ to N .

A step sequence of N is an (a priori) step sequence starting from its initial

marking M0. The set of all its step sequences is steps(N )
df

= {τ | ∃M : M0[τ〉M}.

The set of reachable markings of N is given by [M0〉
df

= {M | ∃τ : M0[τ〉M}.

Similarly, the set of all firing sequences of N is fs(N )
df

= {σ | ∃M : M0[σ〉fsM},

and the set of fs–reachable markings of N is [M0〉fs
df

= {M | ∃σ : M0[σ〉fsM}.
Coming back to Figure 1, we observe that N1 has four non-empty step se-

quences: τ1 = {t}, τ2 = {u}, τ3 = {u}{t} and τ4 = {tu}, while N2, on the other
hand, generates τ1, τ2 and τ4. As a result, the set of reachable markings for
N2 comprises (1, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0) and (0, 0, 1, 1), which is different
from its set of fs–reachable markings which does not include (0, 0, 1, 1). Thus, in
contrast to, e.g., PT-nets, the a priori enabled steps of PTI-nets cannot always
be sequentialised to a firing sequence (with the same number of occurrences of
each transition. Moreover, this example has as an important implication that

for PTI-nets executed under the a priori step sequence semantics,
marking reachability cannot be reduced to marking fs–reachability.

This observation is a main motivation for the investigation reported in the rest
of this paper. In more formal terms, we can characterise situations where steps
cannot be sequentialised in the following way.

A non-singleton step U of transitions of N is (structurally) non-split if there
is a (multiplicity respecting) enumeration of its elements, t1, . . . , tn, such that
there is no place p such that tn

•(p) > 0 and ◦t1(p) ∈ N, nor p such that ti
•(p) > 0

and ◦ti+1(p) ∈ N for some i < n.

Proposition 1. Let U be a step enabled at a marking M of N such that there
is no (multiplicity respecting) enumeration t1, . . . , tn of its elements for which
{t1} . . . {tn} is a step sequence enabled at M . Then U contains a non-split sub-
step W .

Proof. Let U = {u1, . . . , un} and G be a directed graph with the nodes v1, . . . , vn,
where each vi is labelled by l(vi) = ui, and there is an arc from vi to vj if
l(vi)

• ∩ ◦l(vj) 6= ∅. From the non-existence of a sequentialisation of U it follows
that G must have a cycle. The labels of the nodes of such a cycle define a non-
split sub-step of U . ⊓⊔

That is, non-split steps cannot always be fully sequentialised (this may de-
pend on the weights) and, as a consequence, if we execute N in a sequential
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semantics then some of the markings reachable in the a priori semantics may be
unreachable.

A term often used in connection with steps — for any form of step semantics
— is auto-concurrency (of a transition). This means that there is an enabled
step U such that U(t) ≥ 2 for at least one transition t. Furthermore, a PTI-net
exhibits unbounded auto-concurrency if there is a transition t such that for every
integer n one can find a reachable marking which enables a step U such that
U(t) ≥ n.

As a preview of the later construction of coverability trees, we now briefly
mention the concepts of extended markings and extended steps generalizing the
finite multisets of respectively places and transitions defining the execution se-
mantics of PTI-nets. It should be stressed that the ω-components in these ex-
tended multisets do not represent actual tokens or fired transitions, rather, they
indicate that the number of tokens or simultaneous firings of transitions can
be arbitrarily high. The transition and step enabling and firing, as well as the
result of executing transitions(s), are defined in the same way as for the finite
case. Recall that we postulated ω−ω = ω, and so an ω marked place remains ω
marked even after the execution of a step which ‘removes’ from it ω tokens.

3.1 Alternative semantics of PTI-nets

As we already mentioned, the a priori step sequence semantics for PTI-nets is
not the only one to be found in the literature. An alternative is provided by
the a posteriori semantics (used in [3, 2] for the case of unweighted inhibitor
arcs) in which a step U is a posteriori enabled at a marking M if •U ≤ M and
M + (U − {t})• ≤ ◦t for each transition t with U(t) ≥ 1. Thus the difference
with the a priori approach lies in the second inequality which states that, for
each transition occurring in U , there is no combination of the other transition
occurrences that will produce an inhibiting amount of tokens in any of its in-
hibitor places. Switching to the a posteriori interpretation can have a dramatic
effect on marking reachability. Taking again Figure 1 and the PTI-net N2, we
observe that it has only two non-empty a posteriori step sequences: τ1 = {t} and
τ2 = {u}. As a result, the set of a posteriori reachable markings for N2 comprises
only (1, 1, 0, 0), (1, 0, 0, 1) and (0, 1, 1, 0). It is interesting to observe that on the
one hand, as for the a priori approach, the a posteriori enabledness of a singleton
multiset coincides with the enabledness of its only transition. On the other hand
however, the treatment of multisets in the a posteriori approach is not a direct
lifting of the enabledness of single transitions to multisets of transitions. Finally,
note that as a consequence of the check for the effect of the firing of the transi-
tions, every a posteriori enabled step can be sequentialised and a posteriori step
reachability coincides with fs–reachability. Actually, all transition occurrences
in an a posteriori enabled step can be executed in any order, as a firing sequence
from the current marking.

Another — intermediate — variation of the step sequence semantics is pro-
vided in [27] where it is assumed that a step of transitions is enabled if it is a
priori enabled and, in addition, it is possible to find at least one sequential way
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Fig. 2. A PTI-net.

of executing its members. For example, the step {tu} would be enabled in the
sense at the initial marking of N1 in Figure 1, but not at the initial marking
of N2. (Note that {tu} would be rejected by the a posteriori semantics in both
cases.)

4 Boundedness and reachability

A place p of a PTI-net N = (P, T, W, I, M0) is bounded if there is n ∈ N such that
M(p) ≤ n for every marking M reachable from M0; otherwise it is unbounded.
N itself is bounded if all its places are bounded. In addition, in the sequential
semantics where we consider only those markings of N which are fs–reachable, we
may use corresponding terminology adding the prefix fs– leading to: fs–bounded
and fs–unbounded. Considering the example PTI-net shown in Figure 2, one can
easily see that the inhibitor place is unbounded, and the other place bounded,
under both sequential and a priori step semantics.

The place (fs–)boundedness problem for PTI-nets is to decide whether a given
place of a PTI-net is (fs–)bounded; the (fs–)boundedness problem is to decide
whether all places in a given PTI-net are (fs–)bounded. The (fs–)reachability
problem is concerned with deciding whether a given marking is (fs–)reachable
from the initial one.

It is well-known that the reachability problem for PT-nets is decidable [15,
14]. Also for PTI-nets with no more than one unweighted inhibitor arc, the fs–
reachability problem is decidable [20] and thus also the reachability problem. To
see that reachability can indeed be reduced to fs–reachability in the case of a
unique unweighted inhibitor arc between transition t and place pinh , we observe
first that it follows from Proposition 1 that reachability and fs–reachability are
the same if pinh is not an output place of t. Otherwise one can simulate multiple
occurrences of t in a step using the following construction.
We may assume that there is no arc from pinh to t since otherwise t is never
enabled and can simply be deleted. It suffices to add fresh places, pmutex (marked
initially with single token), p′mutex and p′′mutex (initially empty), and p′ for every
original place p other than pmutex (initially empty), together with transitions,
t′, u, w and tp for every original place p other than pmutex . Then one adds
a number of arcs (unweighted, unless stated otherwise), as follows. First, each
original transition other than t is connected with pmutex using a pair of arcs
pointing in opposite directions; moreover, we add an arrow from pmutex to t,
and from t to p′mutex . Transition t′ acquires the original (weighted) incoming
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connectivity from t and the outgoing (weighted) connectivity to pinh but not
the inhibitor arc; moreover, the outgoing (weighted) connectivity to each place
p other than pinh is redirected to p′, and t′ is connected with p′mutex using a
pair of arcs pointing in opposite directions. We then add arcs from p′mutex to
u, from u to p′′mutex , from p′′mutex to w, and from w to pmutex . For each place p
other than pmutex we add arcs from p′ to tp and from tp to p. Finally, each tp is
connected with p′′mutex using a pair of arcs pointing in opposite directions. Thus
simultaneous firings of t are now simulated by one (first) occurrence of t followed
by the appropriate number of occurrences of t′. The places pmutex , p′mutex , and
p′′mutex sequentialise the behaviour and prevent that in the meantime the rest of
the net is already affected by these occurrences of t and t′. Now it is not difficult
to see the direct correspondence between the reachable markings of the original
net and the fs–reachable markings in the simulating net.

Both fs–reachability and reachability are however undecidable for PTI-nets
with two or more inhibitor places [1, 8].

We now provide a construction to simulate the inhibitor arcs connected to a
single inhibitor place by one unweighted inhibitor arc. This makes it possible to
extend the decidability result from [20].

Theorem 1. The fs–reachability problem for PTI-nets with one inhibitor place
reduces to the fs–reachability problem for PTI-nets with one unweighted inhibitor
arc.

Proof. Assume that N is a PTI-net with exactly one inhibitor place pinh and let
M be a marking of N . Our aim is to reduce the problem of checking whether
M is reachable from the initial marking M0 to that of the fs–reachability of
a related marking M̃ in a newly created PTI-net N ′ with a single unweighted
inhibitor arc.

Let t1, . . . , tn be the transitions inhibited by pinh , with weights k1, . . . , kn,
respectively. Moreover, let mi be the weight of the ordinary arc from pinh to ti
for i = 1, . . . , n. Without loss of generality, we may assume that ki ≥ mi, for
every i, since otherwise ti is never enabled and can simply be deleted.

Consider the transformation which removes the transitions t1, . . . , tn, adds
new places: pmutex , ptest , rtest , pi, ri, li, vij (for i = 1, . . . , n and j = 0, . . . , ki−mi),
as well as transitions: τ , uij , wij , t′i, t′′i (for i = 1, . . . , n and j = 0, . . . , ki−mi).
Their connections and initial marking are described in Figure 3. In addition,
•t′i = •ti and t′′i

•
= ti

• for i = 1, . . . , n. Let N ′ be the resulting net.

One can see that if M is fs–reachable in N then the marking M̃ of N ′ such
that, for all places p: M̃(pmutex ) = 1, M̃(p) = M(p) if p ∈ P , and otherwise

M̃(p) = 0; is fs–reachable in N ′ and vice versa.
The basic idea is that for any firing sequence σ of N , the firing of ti in N can
be simulated by the firing of t′iuijτwij t

′′
i in N ′ resulting in a firing sequence σ̃

leading to M̃ Conversely, since M̃(pmutex ) = 1, any firing sequence σ′ of N ′

leading to M̃ can be rearranged to a firing sequence σ′′ such that there exists a
firing sequence σ of N leading to M and such that σ′′ = σ̃. Since N ′ has one
unweighted inhibitor arc, we are done. ⊓⊔
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Fig. 3. Transformation from one inhibitor place to one inhibitor arc (fragment).

It thus follows that

Corollary 1. The fs–reachability problem for PTI-nets with one inhibitor place
is decidable. ✸

The transformation in the proof above can however not be used for the a
priori step sequence semantics, as a consequence of the role of the place pmutex

which sequentialises the firings of the simulating transitions.
A PTI-net is said to be simple if it has only unweighted inhibitor arcs (its

inhibitor mapping returns always 0 or ω) and, moreover, also only unweighted
ordinary arcs (its weight function always returns 0 or 1). With each PTI-net we
can associate a simple PTI-net with equivalent marking (fs–)reachability and
(fs–)boundedness problems as follows.

Let N = (P, T, W, I, M0) be a PTI-net. Without loss of generality, we assume
that, for every place p, there is at most one transition t connected to it by an
inhibitor arc, i.e., such that I(p, t) ∈ N. (We can always make enough copies
of a place retaining the standard connectivity and distribute the inhibitor arcs
among them). For each inhibitor place p, we let inhp be the weight of the only
inhibitor arc attached to it. Each inhibitor place p is now provided with two
‘assistants’ p1 (initially inhp tokens) and p2 (initially empty) connected to p via
two new transitions wp and up using unweighted arcs such that •wp = {p, p1},
wp

• = {p2} and •up = {p2}, up
• = {p, p1}. All inhibitor arc weights are changed

into weight 0. Observe that p2 acts as a ‘store’ of tokens in p with p1 as a bound
on the remaining capacity. Place p can be successfully tested for emptiness in
the new net if it can be emptied using at most inhp executions of wp moving
tokens from p to p2. These tokens are returned to p by executing transition up.

Next we apply a construction to the PTI-net obtained above which should
yield a simple PTI-net with equivalent boundedness and reachability problem. It
is essentially the transformation given in [6, 18] to switch from a general PT-net
to an equivalent unweighted PT-net.
Let maxp = max({W (p, t) | t ∈ T } ∪ {W (t, p) | t ∈ T }), for all original places
p, and maxp1

= maxp2
= maxp, for all new assistant places. The idea is now

that the tokens in every place p can be distributed over a ring of maxp places
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(arranged in a circular fashion with transitions connecting neighbouring places;
together these places and transitions induce an unweighted directed cycle) and
that each weighted arc connecting p with a transition t can be represented by
the corresponding number of unweighted arcs connecting t with individual places
from the conglomerate. Note however that it might be that some of the tokens
marking an original inhibitor place p are in ‘store’ in p2. For this reason, every
transition t taking tokens from a place p with an inhibitor arc will be represented
by several copies in the new inhibitor net: for each pair of natural numbers k, m
such that k + m = W (p, t) and m ≤ inhp there will be a representant of t
taking k tokens from the ring of places representing p and m tokens from the
ring representing p2 (with unweighted arcs pointing to this new transition); and
this copy of t adds m tokens to the ring representing p1. If t has more than
one inhibitor place as input place, then each of its representatives corresponds
with a combination of choices of such k, m for each of these inhibitor places. If
p is an output place of t, then there will be W (t, p) unweighted arcs from the
representants of t to the ring of p in the new net. Every (unweighted) inhibitor
arc from a place p to transition t is replaced by inhibitor arcs from every place
in the ring of p to each representant of t.
By construction, the resulting PTI-net is simple and every firing sequence of
the original net has an obvious translation into a firing sequence in the newly
constructed net and vice versa. Moreover, for every a priori step sequence of each
net, there is a corresponding one in the other net. Also the markings of both nets
are directly related as sketched above and corresponding (firing, step) sequences
lead to corresponding markings. Thus we can conclude that the decidability
status of the boundedness problem and that of the reachability problem of the
original PTI-net can be derived in the new simple PTI-net.

To avoid complicated proofs, in the last part of the paper, we consider sim-
plicity as a normal form of PTI-nets.

5 Coverability tree for the sequential semantics

In this section, we first recall the construction of coverability trees for PT-
nets [11, 6, 18], and then investigate a possible way of extending this construction
to PTI-nets.

5.1 Coverability tree construction for PT-nets

A coverability tree CT = (V, A, µ, v0) for a PT-net N = (P, T, W, M0) has a set
of nodes V , a root node v0, and a set of directed labelled arcs A. Each node v is
labelled by an extended marking µ(v) of N . An α-labelled arc from v to w will

be denoted as v
α

−→ w. We write v ❀σ
A w (or simply v ❀A w) to indicate that

node w can be reached from another node v with σ as the sequence of labels
along the path from v to w. The algorithm for the construction of coverability
trees which is given in Table 1, assumes the sequential semantics for PT-nets
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Table 1. Algorithm generating a coverability tree of a PT-net

CT = (V, A, µ, v0) where V = {v0}, A = ∅ and µ(v0) = M0

unprocessed = {v0}

while unprocessed 6= ∅

let v ∈ unprocessed

if µ(v) /∈ µ(V \unprocessed ) then

for every µ(v)[t〉M

V = V ⊎ {w} and A = A ∪ {v
t

−→ w} and unprocessed = unprocessed ∪ {w}

if there is u such that u ❀A v and µ(u) < M

then µ(w)(p) = (if µ(u)(p) < M(p) then ω else M(p))

else µ(w) = M

unprocessed = unprocessed \ {v}

(recall that this doesn’t affect reachability because enabled steps can always be
sequentialized).

A coverability tree is a finite representation of the reachable markings of a
PT-net. Initially, it has one node corresponding to the initial marking. A node
labelled with an (extended) marking that already occurs as a label of a processed
node is terminal and doesn’t need to be processed since its successors already
appear as successors of this earlier node. (Strictly speaking the algorithm is not
deterministic, but with this interpretation the defined reachability structure is
unique; see also Fact 2.) For each transition enabled at the marking of a node
that is being processed, a new node and an arc labelled with that transition
between these two nodes is added. The label of the new node is the extended
marking reached by executing that transition. A key aspect of the algorithm
in Table 1 is the condition which allows one to replace some of the integer
components of an extended marking by ω’s. Suppose that at some point of the
operation of the algorithm, we generated through the firing of a transition an
extended marking M . Then, provided that there is an ancestor node of the
current node labelled by marking M ′ such that M ′ < M , we replace each M(p)
by ω whenever M ′(p) < M(p). The intuition behind such decision is that the
sequence of transitions labelling the path from the ancestor node to the newly
generated one can be repeated indefinitely, implying the unboundedness of any
place p for which M ′(p) < M(p).

The following are well-known facts about the algorithm in Table 1 and its
result (see, e.g., [2]). They demonstrate that the algorithm in Table 1 always
terminates and, moreover, that in the coverability tree obtained, all firing se-
quences of the PT-net are represented; each reachable marking of the PT-net
is covered by an extended marking; and each ω-component corresponds exactly
with an unbounded number of tokens in that place.
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Let CT be the coverability tree generated for PT-net N by a run of the
algorithm in Table 1. The first result is that CT is finite, or in other words, the
algorithm always terminates.

Fact 1 CT is finite. ✸

The next result is fairly technical but it has a clear interpretation, namely, it
states that any firing sequence of the PT-net can be re-traced in the coverability
tree although sometimes one needs to ‘jump’ from one node to another provided
that the two nodes are labelled by the same extended marking.

Fact 2 For each firing sequence M0[t1〉M1 . . . Mn−1[tn〉Mn of N , there are arcs

v0
t1−→ w1, v1

t2−→ w2, . . . , vn−1
tn−→ wn in CT such that:

– µ(wi) = µ(vi) for i = 1, . . . , n − 1.
– Mi ≤ µ(vi) (for i = 0, . . . , n − 1) and Mn ≤ µ(wn). ✸

Note, however, that the converse of Fact 2 does not, in general, hold. That is,
there may be traversals of a coverability tree which do not correspond to valid
firing sequences of the PT-net. This highlights the difference between coverability
trees and reachability graphs as in the latter a converse of Fact 2 does hold (but
the counterpart of Fact 1 does not!)

Fact 3 For every node v of CT and k ≥ 0, there is a reachable marking M of
N which is a k-approximation of µ(v), i.e., M ⋐k µ(v). ✸

This result validates the meaning of extended markings appearing in the
coverability tree, by showing they are in some sense minimal (note that the
all-ω extended marking Ω covers any marking of the PT-net, but is usually
too rough to be a useful approximation). More precisely, Fact 3 shows that
the ω-components in an extended marking appearing in CT indicate that there
are reachable markings of N which simultaneously grow arbitrarily large on
all places with an ω and are exactly the same on all the remaining places. A
straightforward application of this is that coverability trees can be used to decide
the boundedness of places.

Fact 4 A place p of N is bounded iff µ(v)(p) 6= ω for every node v of CT. ✸

5.2 Adapting the coverability tree construction to inhibitor arcs

When trying to extend the construction of coverability trees as given in Table 1
to PTI-nets, the main problem one encounters, is the non-monotonicity of nets
with inhibitor arcs: given two markings M ′ < M and a firing sequence σ which
can be fired from M ′, one cannot be sure that σ can also be fired from M . As
a consequence, the condition for generating ω-components may be too weak. It
can be strengthened by making sure that no inhibitor arc features were used
along the path from u to v for those places in which the number of tokens has
grown. We thus modify the construction in Table 1 by replacing the line
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if there is u such that u ❀A v and µ(u) < M

by

if there is u such that u ❀σ
A v and µ(u) < M and such that

µ(u)(p) < M(p) implies that ◦t′(p) = ω, for all transitions t′ in σt

From here we will refer to this modification of the algorithm in Table 1 as
the modified CTC. In what follows, N = (P, T, W, I, M0) is a PTI-net and CT
an object (optimistically referred to as a coverability tree) generated for N by
the modified CTC. Note that this algorithm only considers the firing of single
transitions and not of steps. Hence, if it works correctly, it provides us with a
coverability tree for PTI-nets under the sequential semantics.

First we demonstrate that the construction terminates at least for PTI-nets
with one inhibitor place. (In case of no inhibitor places, the PTI-net is a PT-net
and the modification would be void.)

Theorem 2. If N has exactly one inhibitor place then the modified CTC always
terminates.

Proof. Suppose that the algorithm generates an infinite CT , and that p is the
only inhibitor place of N . Since T is finite, CT is finitely branching. Hence
there exists, by König’s Lemma, an infinite path ξ from the root. Furthermore,
the ω-components in markings are never changed to integers when moving to a
child node, and we thus may assume that there is a node starting from which
all markings labelling the nodes of ξ have ω-components at exactly the same
positions. Let φ be a sequence of such nodes. Since the markings labelling nodes
in ξ are all different (by the definition of the algorithm) and there are only finitely
many places, it follows from Dickson’s lemma that there is a subsequence v1v2 . . .
of φ such that µ(v1) < µ(v2) < . . . . We then observe that µ(vi)(p) 6= µ(vi+1)(p),
for every i, since otherwise we would have µ(vi)ω 6= µ(vi+1)ω. In particular, this
means that µ(vi)(p) 6= ω, for every i, since ω-components are persistent along
the arcs in CT .

We have therefore shown that µ(v1)(p) < µ(v2)(p) < . . . < ω. Hence between
each pair vi and vi+1, there is at least one arc labelled by a transition which
is inhibited by p. Thus there is an infinite sequence i1 < i2 < . . . such that
µ(vij

)(p) = l, for every j, where l is an integer less or equal to the highest of
the weights of inhibitor arcs adjacent to p. Thus, again by the fact that there
are only finitely many places and Dickson’s lemma, there is an infinite sequence
m1 < m2 < . . . such that µ(vim1

) < µ(vim2
) < . . . . This, however, means

that the algorithm would need to generate infinitely many ω-components, a
contradiction. ⊓⊔

We do not know at the moment whether Theorem 2 holds for all PTI-nets
with two inhibitor places. There is however a PTI-net with three inhibitor places
for which the modified coverability tree construction does not terminate.

Proposition 2. There are PTI-nets for which the modified CTC will never ter-
minate.
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Fig. 4. A PTI-net for which the modified CTC does not terminate.

Proof. Consider the PTI-net N in Figure 4. N can execute exactly one infinite
sequence of transitions σ = σ1σ2σ3 . . . , where

σi = aa . . . a︸ ︷︷ ︸
i times

bb . . . b︸ ︷︷ ︸
i times

cc . . . c︸ ︷︷ ︸
i times

for every i ≥ 1. (Note that there is no choice offered at any stage.) The sequence
σ has the following properties:

– No subsequence of σ involving all three transitions can ever be repeated.
– No markings reachable through two different finite prefixes of σ are the same.
– Between any two <-comparable markings reachable through two different

finite prefixes of σ, each of the three transitions a, b and c must be fired at
least once.

Hence the modified CTC will never generate any ω components, and so never
terminates when applied to the PTI-net in Figure 4. ⊓⊔

The next result shows that CT encodes in a sound way the unboundedness of
places even if the algorithm does not terminate, and so we obtain a counterpart
of Fact 3 which holds for all PTI-nets.

Theorem 3. For every node v of CT and k ≥ 0, there is a reachable marking
M of N which is a k-approximation of µ(v), i.e., M ⋐k µ(v).

Proof. (sketch) We proceed by induction on the distance from the root. In the
base case, v = v0 is the root of the tree and so µ(v) = M0. Suppose that the

result holds for a node w, w
t

−→ v and µ(w)[t〉M ′.
By the induction hypothesis, there is M1 ∈ [M0〉 such that M1 ⋐k+|•t| µ(w).

We have M1[t〉M2 and, for every p ∈ P , µ(v)(p) < ω implies M2(p) = M ′(p) =
µ(v)(p).

Thus M2 satisfies the required condition for all p such that µ(v)(p) < ω
or µ(w)(p) = ω. Therefore, the required condition may not be satisfied only if
there are places p such that µ(v)(p) = ω and µ(w)(p) < ω. In such a case, by the

construction, we have that there is a node u and a path u = w1
t1−→ w2 . . . wn

tn−→



Steps and Coverability in Inhibitor Nets 17

1

23

b

c

a

(0, 0, 0)

(ω, 0, 0)

(ω, 0, 0)

(ω,ω, 0)
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Fig. 5. A PTI-net for which the modified CTC in Table 1 does not detect all unbounded
places.

wn+1 = v (i.e., wn = w and tn = t) in the tree CT such that µ(u) < M ′. Let
k′ = k + |•t| + k ·

∑n

i=1 |
•ti| . By the induction hypothesis, there is M3 ∈ [M0〉

such that M3 ⋐k′ µ(w). One can then show that σ = t(t1 . . . tn) . . . (t1 . . . tn)
(with k times (t1 . . . tn)) is a firing sequence enabled at the marking M3 leading
to a marking which is a k-approximation of µ(v). ⊓⊔

The above result cannot, in general, be reversed in the sense that not all
finite coverability trees provide full information about the unbounded places of
a PTI-net (not even if it has only a single inhibitor arc).

Proposition 3. There is a PTI-net with one inhibitor arc and an unbounded
place p such that the modified CTC does not yield a CT with a node label with
an ω-component corresponding to p.

Proof. Consider the PTI-net N in Figure 5 together with its finite coverability
tree CT which is unique up to isomorphism. It may be observed that place 3
which is unbounded because of the infinite firing sequence

abc abc abc abc . . .

is not detected as such by the modified CTC. ⊓⊔

Thus to conclude this section, for the sequential semantics of PTI-nets we
only have the modified CTC which provides some information on possible (simul-
taneous) unboundedness of places, but supports no more than a semi-algorithm
for the (place) fs–boundedness problem.

6 Coverability tree and step semantics

We now turn to the a priori step sequence semantics of PTI-nets. We start by re-
considering the very concept of a coverability tree in the context of a semantics
based on steps rather than single transitions.

To start with, we observe that if a PTI-net does not exhibit unbounded
auto-concurrency and we know the bound k on the size of steps enabled at
the reachable markings, then the boundedness problem can be reduced to the
interleaving case. Simply, one can add (finitely many) transitions representing
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Fig. 6. PTI-net with associated reachability and coverability trees.

all potential steps. I.e., for each step U of transitions satisfying U(t) ≤ k for each
transition t of the net, we add a fresh transition tU such that •tU = •U , tU

• = U•

and ◦tU = ◦U . It is easy to see that a place is bounded in the resulting PTI-net
under the sequential semantics if and only if it is bounded in the original PTI-
net. Note also that such a transformation does not create additional inhibitor
places.

As we have already seen, non-monotonicity in the executions of inhibitor nets
is the reason why the standard definition of a coverability tree is too weak to
detect unbounded places. The inhibitor net in Figure 5 illustrates one of the
ways in which this actually happens. Intuitively, the example combines non-
monotonicity with the persistence of ω-components in the extended markings
labelling the nodes of a coverability tree. The mechanism is quite simple: since
such components are never replaced by integer values when generating descen-
dant nodes, one can miss the chance of detecting the situation that a place can
be emptied at some point in the future and de-activating a current inhibitor
constraint. But it would be wrong to think that this is the only way in which
non-monotonicity can spoil the construction.

Consider, for example, the PTI-net in Figure 6(a). Its interleaving coverabil-
ity graph, shown in Figure 6(b), is fully satisfactory as in this case no place is
unbounded. The situation changes radically when we start generating a cover-
ability tree for the a priori step sequence semantics, using steps instead of single
transitions and a natural adaptation of the CTC shown in Table 1. The reason
is that in such a case there are no ω-markings at all, but the generated CT is
infinite, as shown in Figure 6(c). This is unsatisfactory since, intuitively, one
should be able to handle unboundedness in simple cases like this. Intuitively,
the example inhibitor net exhibits unboundedness ‘in breadth’ which cannot be
replaced by unboundedness ‘in depth’. This never happens in the case of PT-
nets and the difference is caused by the non-monotonicity in the behaviours of
inhibitor nets.

To address the problem, we propose to adapt the coverability tree construc-
tion by incorporating not only ordinary steps, but also ‘infinite’ steps. For our
example this leads to the step coverability tree shown in Figure 6(d), where the
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Table 2. Algorithm generating a step coverability tree of a PTI-net; select and ❁ need
to be specified separately, depending on the subclass of PTI-nets under consideration

SCT = (V, A, µ, v0) where V = {v0}, A = ∅ and µ(v0) = M0

unprocessed = {v0}

while unprocessed 6= ∅

let v ∈ unprocessed

if µ(v) /∈ µ(V \unprocessed ) then

for every µ(v)[U〉M with U ∈ select(µ(v))

V = V ⊎ {w} and A = A ∪ {v
U

−→ w} and unprocessed = unprocessed ∪ {w}

if there is u such that u ❀A v and µ(u) ❁ M

then µ(w)(p) = (if µ(u)(p) < M(p) then ω else M(p))

else µ(w) = M

unprocessed = unprocessed \ {v}

infinite step {aω} covers infinitely many steps {ai}, and leads to an extended
marking which implies the unboundedness of the only place.3

Table 2 shows a generic algorithm for constructing a step coverability tree for
a given PTI-net. It is similar to the construction described in Table 1 but uses
extended steps rather than single transitions to label edges. Since the set of steps
enabled at a marking can be infinite, the for-loop is executed for steps from a
finite yet sufficiently representative subset select(.) of extended steps enabled
at the extended marking under consideration. Another difference in comparison
with the original construction is the use of the relation ❁ to compare extended
markings rather than <. In the next subsection, we will instantiate this algorithm
for a subclass of PTI-nets.

6.1 Primitive PTI-nets

Here we concentrate on the class of PTI-nets introduced in [2] which enjoy the
property that once an inhibitor place contains more than a certain threshold of
tokens (its emptiness limit), no transition which tests it for emptiness can occur
anymore.

A PTI-net N = (P, T, W, I, M0) is primitive (or is a PPTI-net) if there is
an integer EL (the ‘emptiness limit’) such that for every reachable marking M
and every inhibitor place p, if M(p) > EL then for every marking M ′ reachable

3 Note that if one required that each transition had both at least one input place
and at least one output place (rather than just being non-isolated), we would still
maintain the same approach. Simply, in our example, we would add a new input
place to transition a and introduce a transition with a marked loop to fill this input
place with an arbitrary large number of tokens.
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from M and transition t enabled at M ′, it is the case that M ′(p) > ◦t(p). For
example, the PTI-net in Figure 6 is trivially primitive with EL = 0 since its only
place is an inhibitor place and output place of the only transition. In general,
if no inhibitor place has an outgoing (ordinary) arc, we may set EL = 0, and
if there are no inhibitor places (i.e., if N is a PT-net), we may set EL = −1.
In [2] the threshold value EL is chosen separately for each individual inhibitor
place. Since the number of places in N is finite, ours is an equivalent definition
(though less efficient algorithmically).

In what follows we consider a fixed simple PPTI-net N = (P, T, W, I, M0)
with a fixed emptiness limit EL. (Note that primitivity is preserved by the con-
struction described at the end of Section 4.)

For PPTI-nets, the algorithm in Table 2 is instantiated as follows:

– select(µ(v)) is the set of all extended steps of transitions U enabled at µ(v)
such that U(t) ∈ {0, 1, . . . ,EL, ω}, for each transition t such that {tω} is
enabled at µ(v).

– For any two extended markings, M and M ′, we have M ⊑ M ′ if M(p) ≤
M ′(p), for all places p, and M(p) = M ′(p) for all inhibitor places p, whenever
M(p) ≤ EL.
Moreover, M ❁ M ′ if M ⊑ M ′ and M 6= M ′.

We refer to the algorithm resulting from this instantiation as the SCTC (step
coverability tree construction).

Intuitively, select(µ(v)) is defined in such a way that if a non-selected ex-
tended step enabled at µ(v) inserts some tokens into an inhibitor place p, then it
necessarily inserts at least EL+1 tokens, making from this point on the inhibit-
ing features of p void. And the step itself will be covered by at least one step in
select(µ(v)).

The ordering ❁ was introduced in [2] and is intended to ensure that inhibitor
places are treated as such (and their marking not being replaced by ω’s) until
the threshold value EL has been passed. It is easy to show (see [2]) that Dick-
son’s lemma also holds for this ordering, i.e., every infinite sequence of extended
markings contains an infinite subsequence ordered w.r.t. ⊑.

Figure 7 shows how the algorithm works for three PTI-net where inhibitor
arcs influence the execution semantics.

Let SCT be the step coverability tree generated for N by a run of the SCTC.
Our immediate aim is to re-establish the main properties of the CTC defined
for PT-nets. First, we show that SCT is finite and SCTC always terminates (cf.
Fact 1).

Theorem 4. SCT is finite.

Proof. Suppose that SCT is not finite. We first observe that, since select(µ(v))
is always a finite set which follows directly from the definition and T being
finite, SCT is finitely branching. Hence, by König’s Lemma, there is an infinite
path v0v1 . . . from the root. By Dickson’s Lemma for ⊑ and the definition of
SCTC, there is an infinite sequence of indices i1 < i2 < . . . such that µ(vi1) ⊑
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Fig. 7. PPTI-nets with EL = 0 (top), EL = 1 (middle) and EL = 2 (bottom), and
their coverability trees derived according to the algorithm in Table 2. Note that for the
last tree we only show the root and its three child nodes.

µ(vi2 ) ⊑ . . . is a sequence of distinct markings. Hence µ(vi1) ❁ µ(vi2 ) ❁ . . ..
For every j > 1, by µ(vij

) ❁ µ(vij+1
) and the construction, there is p such that

µ(vij
)(p) < ω = µ(vij+1

)(p). Hence the number of ω-components in µ(vi|P |+1
) is

greater than the total number of places, a contradiction. ⊓⊔

The next result is similar to Fact 2; we show that every step sequence of the
PTI-net can be retraced in the SCTC if not exactly, then at least through a step
sequence covering it.

Proposition 4. For each step sequence M0[U1〉 . . . [Un〉Mn of N , there are arcs

v0
V1−→ w1, v1

V2−→ w2, . . . , vn−1
Vn−→ wn in SCT such that:

– Ui ≤ Vi for i = 1, . . . , n.
– µ(wi) = µ(vi) for i = 1, . . . , n − 1.
– Mi ≤ µ(vi) (for i = 0, . . . , n − 1) and Mn ≤ µ(wn).
– For all places p, µ(vi)(p) = ω whenever Mi(p) 6= µ(vi)(p) for i = 0, . . . , n−1,

and µ(wn)(p) = ω whenever Mn(p) 6= µ(wn)(p).

Proof. This is an immediate consequence of Proposition 9 in the Appendix. ⊓⊔

Moreover, the extended markings appearing in SCT cover in a minimal way
the markings of N and their ω-components indicate the components which si-
multaneously grow arbitrarily large. In other words, we obtain a counterpart of
Fact 3.
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Proposition 5. For every node v of SCT and k ≥ 0, there is a reachable mark-
ing M of N which is a k-approximation of µ(v), i.e., M ⋐k µ(v).

Proof. See Appendix. ⊓⊔

As an immediate consequence of the last two results, we now can formulate
a central result of this paper that SCTC can be used to decide the boundedness
of PPTI-nets working under the a priori step sequence semantics.

Theorem 5. A place p of N is bounded iff there is no node v in the coverability
tree constructed by the algorithm in Table 2 such that µ(v)(p) = ω. Consequently,
N is bounded iff no extended marking annotating a node of its step coverability
tree contains an ω-component.

Proof. Follows from Propositions 4 and 5. ⊓⊔

We finally observe that SCTC can also be used to decide marking coverability.

Theorem 6. For a marking M of N , there is a reachable marking M ′ of N
such that M ≤ M ′ iff there is a node v in SCT such that M ≤ µ(v).

Proof. Follows from Proposition 4. ⊓⊔

6.2 Deciding step executability

The coverability tree constructed as in Table 2 has arcs labelled by extended
steps, and so it is a valid question to ask whether such a tree could be used
to investigate issues related to the executability of steps. In other words, there
may now be an opportunity to investigate concurrency aspects with the help of
coverability trees. In what follows, the step executability problem for PTI-nets is
to decide whether a step of a PTI-net can be executed at some of its reachable
markings. As it turns out, this problem is indeed decidable for the subclass of
PPTI-nets. We start by providing two auxiliary results.

Again, N = (P, T, W, I, M0) is a PPTI-net (not necessarily simple) and SCT
is any step coverability tree for N generated by the SCTC.

Proposition 6. If step U is enabled at a reachable marking M of N , then there

is an arc v
W
−→ w in SCT such that M ≤ µ(v) and U ≤ W .

Proof. Follows from Proposition 4. ⊓⊔

Proposition 7. For every k ≥ 0 and every W labelling an arc in SCT, there
is a step U enabled at a reachable marking of N satisfying U ⋐k W .

Proof. Let U = Wω 7→k+1 and k′ = |•U |. Moreover, let v
W
−→ w be an arc in SCT .

From W being enabled at µ(v), it follows that (•W )ω ⊆ µ(v)ω . By Proposition 5,
there is M ∈ [M0〉 such that M ⋐k′ µ(v) and so U is enabled at M . This and
U ⋐k W completes the proof. ⊓⊔



Steps and Coverability in Inhibitor Nets 23

We then obtain a result which, together with Theorem 4, implies that the
step executability problem for PPTI-nets is decidable.

Theorem 7. A step U is enabled at some reachable marking of N iff there is
an arc in SCT labelled by W such that U ≤ W .

Proof. (=⇒) Follows from Proposition 6.
(⇐=) Follows from Proposition 7 and the observation that if a step U ′ is enabled
at a marking of a PTI-net and U ≤ U ′, then U is also enabled. ⊓⊔

Corollary 2. A transition t of N is dead iff there is no arc in SCT labelled by
a step containing t. ✸

In order to improve the efficiency of the algorithm in Table 2 one could try
to reduce the size of the set select(µ(v). A natural possibility would be, as in [2],
to define the values EL(p) individually for each inhibitor place to be as small as
possible. Another would be to require that only those steps be selected which
cannot be replaced by the sequential execution of their elements.

7 Concluding remarks

The step coverability tree construction can be used to decide boundedness and
other properties of primitive PTI-nets working under the a priori step sequence
semantics. It must be noted however that primitivity itself is an undecidable
property even when only firing sequences are considered (see [2]). Still, as ar-
gued in [2], primitive PTI-nets are an interesting subclass and often primitivity is
guaranteed by construction. In particular, PTI-nets with bounded and comple-
mented inhibitor places satisfy primitivity and, as noted in Section 6.1, PT-nets
can be considered as PPTI-nets with EL = −1. Hence the results we obtained
here are directly applicable to these classes of PTI-nets. Note that for PT-nets,
❁ becomes <, and U ∈ select(µ(v)) if U is enabled at µ(v) and U(t) = ω, for
each transition t such that {tω} is enabled at µ(v).

It might not seem to be prudent to use SCTC for the investigation of prop-
erties of PT-nets, as a sequential construction would in general exhibit a much
lower degree of branching and therefore yield smaller trees. However, the situ-
ation changes if we move to a problem which could be seen as a counterpart
of the marking reachability, but this time involving steps. First, directly from
Theorem 7, we obtain

Corollary 3. Let N be a PT-net and CT any coverability tree for N generated
by SCTC. Then a step U is enabled at some reachable marking of N iff there is
an arc in CT labelled by W such that U ≤ W . ✸

What is more, the standard CTC cannot be used to decide step executability.
A counterexample is provided by the two PT-nets in Figure 8(a, b) for which the
algorithm in Table 1 generates the same coverability tree shown in Figure 8(c).
Yet, clearly, the first one enables arbitrarily large steps at all reachable markings
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Fig. 8. Two PT-nets and their sequential coverability tree.

whereas the latter enables only singleton steps. Note, again, that if one required
that each transition had both at least one input place and at least one output
place (rather than just being non-isolated), we would could still produce a pair
of PT-nets as in Figure 8. Simply, in our example, we would give both transitions
fresh input places and new transitions with marked loop filling these input place
with an arbitrary large number of tokens.
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A Proofs of various results

As in subsection 6.1, we consider here a simple PPTI-net N = (P, T, W, I, M0)
with emptiness limit EL. For every marking M , Z(M) denotes the set of inhibitor
places which are active as such in markings reachable from M , i.e., p ∈ Z(M) if
there is M ′ reachable from M and t enabled at M ′ such that p ∈ ◦t.
An extended marking M ′ Z-covers a marking M if, for every place p,

– M(p) ≤ M ′(p). (C1)
– p ∈ Z(M) implies M(p) = M ′(p). (C2)
– M(p) 6= M ′(p) implies M ′(p) = ω. (C3)

We denote this by M ✂ M ′.

Proposition 8. If M ✂ M ′ and M [U〉M̂ then M ′[U〉M̂ ′ and M̂ ✂ M̂ ′.

Proof. That M ′[U〉M̂ ′ for some M̂ ′ follows from (C1) and (C2) for M and M ′.

Clearly, (C1) holds for M̂ and M̂ ′. Moreover, since Z(M̂) ⊆ Z(M) and (C2)

holds for M and M ′, it also holds for M̂ and M̂ ′. Similarly, if M̂(p) 6= M̂ ′(p) then

M(p) 6= M ′(p) and so, by (C2) for M and M ′, M ′(p) = ω. Hence M̂ ′(p) = ω,

and we conclude that M̂ ✂ M̂ ′. ⊓⊔

Proposition 9. For each step sequence M0[U1〉 . . . [Un〉Mn of N , there are arcs

v0
V1−→ w1, v1

V2−→ w2, . . . , vn−1
Vn−→ wn in SCT such that:

– Ui ≤ Vi for i = 1, . . . , n.
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– µ(wi) = µ(vi) for i = 1, . . . , n − 1.
– Mi ✂ µ(vi) (for i = 0, . . . , n − 1) and Mn ✂ µ(wn).

Proof. We proceed by induction on n. Clearly, the base case for n = 0 holds.
Assume that the result holds for n and consider Mn[Un+1〉Mn+1.

Let vn be the first generated node such that µ(vn) = µ(wn). As Mn ✂ µ(vn)
and Mn[Un+1〉Mn+1, it follows from Proposition 8 that there exists M such
that µ(vn)[Un+1〉M and Mn+1 ✂ M . Let Vn+1 be the ❁-smallest marking in
select(µ(vn)) satisfying Un+1 ≤ Vn+1 (such a step always exists). Moreover, let
M ′ be such that µ(vn)[Vn+1〉M ′.

Consider now any place p such that M(p) 6= M ′(p). Then there is t such
that p ∈ •t ∪ t• and Un+1(t) 6= Vn+1(t). From Un+1 ≤ Vn+1, the ≤-minimality
of Vn+1 and the definition of select(), it then follows that Un+1(t) > EL and
Vn+1(t) = ω. Consequently, if p ∈ •t then µ(vn)(p) = ω = M(p) = M ′(p), a
contradiction. So p ∈ t• and we have M(p) ≥ Un+1(t) > EL and M ′(p) = ω.
Hence we have shown that:

M(p) 6= M ′(p) =⇒ EL < M(p) < ω = M ′(p) . (†)

Taking Mn+1 and M ′, clearly (C1) and (C3) hold due to Mn+1 ✂ M and (†).
Suppose now that p ∈ Z(Mn+1) and Mn+1(p) 6= M ′(p). By Mn+1 ✂ M , we
have Mn+1(p) = M(p) and so M(p) 6= M ′(p). Hence, by (†), M(p) > EL. This,
Mn+1(p) = M(p) and the fact that N is primitive, mean that p /∈ Z(Mn+1),
contradiction. Hence (C2) also holds and so Mn+1 ✂ M ′.

Now, during the processing of vn an arc vn

Vn+1

−→ wn+1 is created such that
Mn+1 ✂ µ(wn+1). The latter follows from the following, for any place p:

– (C1) follows from Mn+1(p) ≤ M ′(p) and the fact that M ′(p) 6= µ(wn+1)(p)
implies µ(wn+1)(p) = ω.

– To show (C2), suppose that p ∈ Z(Mn+1). Then, by Mn+1 ✂ M ′, we have
Mn+1(p) = M ′(p) 6= ω. If µ(wn+1)(p) = M ′(p) then µ(wn+1)(p) = Mn+1(p).
Otherwise, there is a node v such that µ(v) ❁ M ′ and µ(v)(p) < M ′(p). The
latter and µ(v) ❁ M ′ implies µ(v)(p) > EL. We have Mn+1(p) = M ′(p) >
µ(v)(p) > EL and, by N being primitive, p /∈ Z(Mn+1), a contradiction.

– To show (C3), suppose that Mn+1(p) 6= µ(wn+1)(p) 6= ω Then, by construc-
tion, µ(wn+1)(p) = M ′(p) and so Mn+1(p) 6= M ′(p). Hence, by Mn+1 ✂ M ′,
we have M ′(p) = ω, a contradiction.

This completes the proof of the induction step. ⊓⊔

Proof of Proposition 5

Without loss of generality we may assume k > EL and proceed by induction on
the distance from the root of the nodes of the tree.
We denote maxcons

df

=
∑

(w,U,v)∈A |•(Uω 7→0)|, i.e., maxcons is the total number of
tokens consumed along the arcs of the tree by non-ω occurrences of transitions.

Moreover, k′ df

= maxcons · |P | · (k + 1).
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In the base case, v = v0 is the root of the tree and so µ(v) = M0.

Suppose that the result holds for a node w, and that w
U
−→ v with µ(w)[U〉M ′.

Let Y
df

= Uω 7→k+1+k′ and k′′ df

= |•Y | + k′ + k + 1.
By the induction hypothesis, there exists a marking M1 ∈ [M0〉 such that

M1 ⋐k′′ µ(w). Clearly, Y is enabled at M1, and we denote by M2 the marking
satisfying M1[Y 〉M2. We now observe that the following hold:

– µ(w)(p) < ω and p /∈ Uω
• implies M2(p) = M ′(p).

– µ(w)(p) = ω implies M2(p) > k.
– p ∈ Uω

• implies M2(p) > k.

From the construction of µ(v) it follows that µ(v)(p) < ω implies µ(v)(p) =
M ′(p). Thus M2 satisfies the required condition for all p such that µ(v)(p) < ω
or µ(w)(p) = ω or p ∈ Uω

• (note that p ∈ Uω
• implies µ(v)(p) = ω). Therefore,

the required condition may not be satisfied only if the set R
df

= {r ∈ P | µ(v)(r) =
ω ∧ µ(w)(r) < ω ∧ r /∈ Uω

•} is non-empty.
If R 6= ∅ one needs to increase the numbers of tokens in the places of R on

the basis of paths leading to the node v in the constructed tree. To explain the
idea, let us assume that r ∈ R. In such a case, by the construction, we have that

there is a node u and a path u = w1
U1−→ w2 . . . wn

Un−→ wn+1 = v (i.e., wn = w
and Un = U) in the tree such that µ(u) ❁ M ′ and µ(u)(r) < M ′(r).
Let Wi = (Ui)ω 7→0 for i = 1, . . . , n. Following the same line of reasoning as
in [2], one can show that the step sequence consisting of k + 1 repetitions of
W1 . . .Wn is enabled at the marking M2 and in the resulting marking M ′′, place
r contains more than k tokens (and the required condition has not been lost for
any other place). This procedure is repeated starting from M ′′ for another place
still violating the required condition (if any), until all the places satisfy it. ⊓⊔


