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Abstract

Background: Models of cellular molecular systems are built from components such as biochemical reactions

(including interactions between ligands and membrane-bound proteins), conformational changes and active and

passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the

system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be

represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency

a particularly important consideration for software that is designed to simulate such systems.

Results: We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating

biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and

well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex

boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The

powerful Python interface facilitates model construction and simulation control. STEPS implements the composition

and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an

efficient search and update engine. Additional support for well-mixed conditions and for deterministic model

solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of

isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron

sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is

often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to

MesoRD we show the efficiency of the STEPS implementation.

Conclusion: STEPS simulates models of cellular reaction–diffusion systems with complex boundaries with high

accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free

for use and is available at http://steps.sourceforge.net/

Background
As the understanding of the molecular systems govern-

ing many aspects of cellular function improves it is be-

coming increasingly clear that the assumption of mass

action kinetics in well-mixed volumes is often invalid. A

good example is calcium signaling, which can be highly

localized with very steep concentration gradients [1-3].

Calcium signaling depends on the interaction between

membranes where the calcium channels are located and

the cytoplasm where calcium activates many different

enzymes [2,3]. The membrane channels are often

arranged into clusters containing only a few or tens of

channels [4,5] resulting in stochastic release events that

have been observed experimentally [6]. In neurons, the

resting concentration of calcium in dendritic spines,

where it plays an essential role in triggering synaptic

plasticity, corresponds to only a few ions in this small

volume [7], indicating that calcium dynamics can be

highly stochastic [8]. Moreover, dendritic spines have a

typical morphology that strongly affects the inward and

outward diffusion of molecules [9]. Taken together, these
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considerations point to the need of software that sup-

ports the simulation of stochastic reaction–diffusion sys-

tems with an accurate representation of the complex

geometries specified by the membranes of a cell and its

intracellular organelles. In this paper we describe STEPS,

STochastic Engine for Pathway Simulation, which was

designed to give modelers an efficient implementation

with a sophisticated user interface.

Stochastic reaction–diffusion can be solved using two

fundamentally different approaches: particle-based or

voxel-based methods. In the first method one keeps

track of the Brownian motion of each individual mol-

ecule in the simulation and reactions are based on colli-

sions between molecules, while in the second approach

the behavior of groups of molecules in subvolumes is

computed using the laws of chemical kinetics, and diffu-

sion is simulated as the transport of molecules from one

subvolume to another. Particle-based methods can be

further divided into those that track Brownian motion in

open space (examples are MCell [10,11] and Smoldyn

[12]) or those that use lattices on which molecules hop

from one site to another (examples are GridCell [13] and

see [14,15]). An advantage of these methods is the high

physicochemical fidelity of the approach, but this comes

at the price of having to track the behavior of every sin-

gle molecule in the system. This is computationally ex-

pensive and may not always be relevant in a biological

context.

Stochastic voxel-based approaches compute changes in

the number of molecules present in small volumes with-

out distinguishing among individual molecules. This can

be more efficient in large systems and also allows for

easier combination of exact solution methods with ap-

proximative ones [16], which may greatly speed up com-

putations (see Discussion for more detail). A widely used

approach to model chemical reactions is Gillespie’s Sto-

chastic Simulation Algorithm (SSA) [17], which can eas-

ily be extended to deal with diffusion (see further and

[17,18]), a method commonly referred to as “spatial

SSA” or “spatial Gillespie”. STEPS implements a deriva-

tive of the SSA in tetrahedral meshes to model the

geometry, which importantly allow for a much better

morphological resolution than the cubic voxels used in

most other SSA based software, e.g. MesoRD [19] and

NeuroRD [20].

This paper describes STEPS 1.3 and is structured as

follows: we first introduce the overall workflow and

structure of STEPS and its multiple solvers, the rest of

the paper largely focusing on the solver for stochastic re-

action–diffusion. We next introduce the SSA, tetrahedral

meshes and how to adapt the SSA to model diffusion in

such meshes. We then demonstrate the accuracy of

STEPS and compare efficiency to other reaction–diffu-

sion simulators. We finish with describing the Systems

Biology Markup Language (SBML) [21] import module

and demonstrate simulation of some SBML models using

STEPS.

Implementation
STEPS overview

The user interface to STEPS is in Python, a very power-

ful and versatile scripting language, while the core

STEPS code is in C/C++ for high efficiency. Figure 1

shows a typical STEPS workflow. Everything in the Py-

thon user front-end is contained in namespace ‘steps’,

within which there are a number of modules that contain

classes and functions separated by the different tasks

required to build a STEPS simulation. This means that

using STEPS largely consists of creating Python objects

to represent the various components of a reaction–

diffusion model (e.g. chemical species, reaction and dif-

fusion rules, compartments etc.) and invoking their

methods to set conditions and to control the simulation.

Figure 1 STEPS workflow. The biochemical model and the

geometry are described separately (using Python modules

steps.model and steps.geom respectively) and are brought

together by the solver object. The steps.utilities namespace

contains various helper modules that assist in model and

geometry construction. Python packages such as SciPy are a

convenient tool for post-simulation analysis.
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STEPS differs from many reaction–diffusion simulators

in that the chemical model and the geometry are

described completely separately, which can be an advan-

tage due to the challenging task of creating a suitable

complex geometry for spatial simulations. For example,

with the two tasks separated in this way one researcher

may dedicate all their time purely to mesh-construction

while another researcher constructs the biochemical

model. Meshes may then be saved, shared and reused in

other simulations as required. Uncoupling the model de-

scription from the simulation means that complex initial

conditions can be achieved [22] and modified without

making changes to the model. To compliment these pos-

sibilities compatibility with current developed standards

such as SBML is also achievable, yet relying purely on

SBML would disable some important features of STEPS

such as those mentioned above.

Running a STEPS simulation will usually involve creat-

ing one main Python module, which will import STEPS

modules and possibly other outside user-written modules

for the model (such as separate modules for tetrahedral

mesh description or user-defined helper functions) along

with some of the many powerful scientific tools available

for Python such as SciPy and NumPy. Python is generally

regarded as a relatively easy-to-learn, intuitive language

and the basic skills required to run a STEPS simulation -

such as creating and manipulating objects, running sim-

ple loops and perhaps reading and writing to files - can

usually be acquired quickly. We give a brief overview of

the main components of the STEPS Python user

interface:

steps.model

The steps.model module contains everything required to

describe how chemical species in the model interact. For

example, the chemical species themselves are described

by creating instances of class steps.model.Spec. Interac-

tions of chemical species are described by creating

objects to represent chemical reactions and diffusion

rules. At this stage nothing is said about where these

interactions take place, although different rules are

grouped into ‘volume systems’ and ‘surface systems’,

which are the objects that connect the biochemical

model with the geometry description.

steps.geom

The steps.geom module contains all the classes and func-

tions required to describe geometry to which a biochem-

ical model may be applied. The basic building blocks of

geometry in STEPS are ‘compartments’ and ‘patches’. A

compartment is a 3D volume with reflective boundaries

in which molecules may diffuse and react, and can either

be well-mixed (therefore defined only by volume), or

described by a collection of tetrahedrons in a mesh. A

patch is a 2D surface in which molecules may be embed-

ded and is connected to one or two compartments.

Analogously to compartments, in a well-mixed descrip-

tion patches are defined only by area and in a spatial

simulation they are described by a collection of triangles

forming a surface within a tetrahedral mesh. ‘Surface

reactions’ may take place in patches, which describe both

surface-volume and surface-surface reactions allowing,

for example, a molecule that is diffusing in a volume to

become embedded in a surface and a molecule that is

embedded in a surface to diffuse to a neighboring vol-

ume. Such features are used to model events such as lig-

and-binding and transport.

Groups of reaction and diffusion rules (‘volume sys-

tems’) defined in the biochemical model may be added

to all (or a selection of) compartments in the geometry,

and any groups of defined surface reaction rules (‘surface

systems’) may similarly be added to patches. Grouping in

this way can bring advantages of realism and complexity,

such as allowing the mobility of a species to differ be-

tween different environments, and performance because,

for example, it is possible to declare which reactions

from the overall set of reactions will occur in any given

compartment and thus save memory by omitting reac-

tions that can never occur (if, for example, a reactant

species never appears in that compartment).

The overall geometry used for any given simulation

must be either a collection of well-mixed compartments

and patches, or a collection of compartments and

patches all within a tetrahedral mesh. The steps.geom.

Tetmesh class, which represents a tetrahedral mesh, con-

tains a vast amount of information about the tetrahe-

drons and the triangle surfaces in the mesh and their

connectivity with many helper functions for retrieving

this information. This can be vital for initializing condi-

tions in and running a spatial simulation.

steps.rng

The steps.rng module contains the “Mersenne Twister”

[23] random number generator class that provides the

random numbers required by the STEPS algorithms.

steps.solver

The steps.solver module contains all the simulation sol-

vers available in STEPS. A solver requires access to a

biochemical model description along with a geometry

description in order to build and run a simulation. All

solver classes are derived from an abstract base class,

which means all solvers contain some shared functional-

ity such as the ability to inject molecule species into a

compartment, run a simulation for some time and rec-

ord updated concentrations. Separate solvers then imple-

ment some or all of the optional methods depending on

whether the function makes sense for that particular
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solver. The main focus for this work is solver ‘Tetexact’,

which is a stochastic solver that supports complex

morphology and diffusion and is described further in Im-

plementation of spatial SSA solver. In addition there are

two other solvers available in STEPS 1.3: ‘Wmdirect’,

which is a well-mixed stochastic solver based on Gilles-

pie’s SSA [17], and ‘Wmrk4’, which is a deterministic

solver based on the Runge–Kutta method [24].

Gillespie stochastic simulation algorithm (SSA)

A brief description of the direct method formulation of

the SSA and its implementation in the Wmdirect solver

can be found in the Additional file 1. For a more detailed

overview of the algorithm and its background see [16,25-

27]. The SSA is an event-driven algorithm that has been

demonstrated to give an exact solution to the chemical

master equation [17]. The fundamental assumption

made of the system is that elastic (non-reactive) colli-

sions greatly outnumber reactive ones, which means that

molecules become distributed uniformly throughout the

system volume and that their velocities become ther-

mally randomized to the Maxwell-Boltzman distribution.

Further, molecules are assumed to occupy a volume

which is negligible in comparison to the total system

volume.

Several optimizations to the original direct method

exist [25], such as the construction of a dependency

graph [28] so that only the propensities of affected reac-

tion and diffusion channels are updated in each iteration.

Such an approach is adopted by STEPS in solvers

Wmdirect and Tetexact, as well as some other subvo-

lume-based software (e.g. MesoRD).

Implementation of spatial SSA solver

As mentioned, the standard SSA assumes a well-mixed

system. However, one can introduce spatial gradients

into the SSA [17] by modeling a system of well-mixed

subvolumes with diffusion between them described as

first-order reactions.

In the well-mixed formulation the reaction con-

tainer is described only by its volume. In the spatial

SSA solver this reaction container is broken up in

Ntet smaller subvolumes and each of these subvo-

lumes is treated as a reaction container in its own

right by cloning the reaction channels. This means

that for M reaction rules, and assuming all reactions

may occur in all tetrahedrons (which is not required

by STEPS - see STEPS overview), the total number

of reaction channels will be Mreac =Ntet * M. The

state x of the simulation will also become much big-

ger, it consists of N * Ntet integers, with xi,k,t repre-

senting the number of molecules of species i in

subvolume k at time t.

If we make the subvolumes within a certain size win-

dow (see Subvolume size), the well-mixed assumption

applies to each subvolume independently and one can

accurately represent concentration gradients [29]. The

rate of diffusion of molecules of species i with diffusion

constant Di between two neighboring subvolumes will

depend on the shape of the subvolumes. In STEPS we

have chosen to use tetrahedral meshes, a type of non-or-

thogonal, unstructured mesh in which the problem do-

main is decomposed into a connected set of tetrahedral

elements [30]. Since the tetrahedra do not have to be

perfectly regular, they can smoothly follow any boundar-

ies and can adapt their size to the local level of detail.

Quite often the subvolumes in these meshes are the Vor-

onoi elements surrounding all edge nodes. STEPS in-

stead uses the tetrahedrons themselves, meaning that

each tetrahedral voxel has 4 triangular sides and, through

them, is connected to a maximum of 4 neighboring

tetrahedra. Compared to the Voronoi description this

reduces coding complexity (Voronoi elements have vari-

ous numbers of neighbors), maintains control over sub-

volume size and allows for a far more accurate

description of a surface that represents a membrane

within a mesh.

Diffusion of chemical species A between neighboring

tetrahedrons k and l is simulated by the following revers-

ible “reaction” channel:

Ak ⇌

dk;l

dl;k
Al

With the diffusion rates given by:

dk;l ¼
DiSi;k

Vkdxk;l

dl;k ¼
DiSi;l

Vldxl;k

Where S is the surface area of the triangle connecting

tetrahedrons k and l, V is the volume of the tetrahedron

and the distance dx is computed as the barycenter-to-

barycenter distance, therefore dxl,k == dxk,l.

Including diffusion greatly increases the total number

of reactions channels: Mtot=Mreac+Mdiff, with Mdiff< 4 *

N * Ntet (internal tetrahedrons are connected to 4 neigh-

bors, but tetrahedrons at boundaries are connected to

fewer). However, a diffusion channel in STEPS actually

consists of diffusion of a particular species from a tetra-

hedron to any one of its neighbors, with a total rate of

diffusion equal to the sum of the rates in each direction.

Once a diffusion channel is chosen by the SSA, one of

the possible directions is then chosen. This is mathemat-

ically equivalent to describing diffusion of a particular

species from a tetrahedron as 4 (maximum) separate dif-

fusion channels, but reduces memory requirements by
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approximately a factor of 4 with only a small cost to

efficiency.

The use of a tetrahedral mesh greatly increases the

complexity of the search for the next reaction in the

SSA. Since version 1.3, the implementation of Tetexact

solver has therefore adopted the Composition and Rejec-

tion (CR) Method [31], whose time complexity is con-

stant even for systems with large number of reactions.

The algorithm is described in more detail in Additional

file 1.

Importing and annotating tetrahedral meshes

High quality meshes are often essential to obtain accur-

ate simulation results. Instead of developing our own

mesh generator we make use of powerful mesh gener-

ation software, such as CUBIT [32], TetGen [33], and

Gmsh [34], and provide a set of utilities for importing

tetrahedral meshes. This approach is significantly differ-

ent from the approach taken by most other spatial SSA

simulators, for example MesoRD [19] and NeuroRD

[20], where cubic mesh generation is included in the

simulation.

The mesh importing utilities are carefully designed so

that STEPS is not only capable of importing meshes

from supported formats, but is also extendable. Cur-

rently, one-step importing functions support three com-

mon mesh formats: the Abaqus format exportable by

CUBIT, TetGen’s own formats (.node, .ele and .face), and

the MSH ASCII format used by Gmsh. These import

functions use the pure-Python-based ElementProxy class

which provides generic mesh importing functionalities

such as data storage, grouping and index mapping. Dur-

ing import, first a sufficient number of ElementProxy

objects are created of a type corresponding to the kind

of geometry element in the mesh data (e.g. tet_proxy for

tetrahedrons). After that, data about each geometry

element is inserted in its associated proxy. During the in-

sertion, the proxy automatically assigns a STEPS index

for the element and also records the index mapping be-

tween the import index and STEPS internal index of the

element, which are accessible during later simulation.

Once all element data is inserted, the proxy objects can

be directly used to create meshes, compartments and

patches in STEPS, as well as to perform further mesh

manipulations.

The mesh importing utilities in STEPS also provide a

more advanced, flexible way to simulate systems with

complex geometries. Traditionally, meshes for subvo-

lume-based SSA simulations have been constructed from

combinations of standard geometry primitives such as

cubes, spheres and cylinders [9], where geometry fea-

tures are highly abstracted. A typical representative of

this method is the Constructive Solid Geometry (CSG),

adopted by MesoRD for geometry construction. This

type of mesh is relatively easy to construct, but the

highly abstracted models may not reflect real geometry

constraints to the system and may produce inaccurate

simulation results (see Results). A better, yet more chal-

lenging approach is to reconstruct volume meshes from

biological data based on closed surface meshes. However,

the surface meshes derived from series of electron

microscope images [35] are commonly unclosed and

have small intersecting surfaces, thus they cannot be

used directly in volume mesh generation. This problem

can be solved by semi-manually preprocessing the sur-

face meshes using mesh manipulation tools such as

MeshLab [36]. Once volume meshes are generated from

the cleaned-up surface meshes, they can be imported to

STEPS for simulations. Figure 2 gives an example STEPS

simulation running in a reconstructed mesh with realis-

tic geometry.

Subvolume size

When generating a mesh for STEPS, and other stochastic

voxel-based approaches to reaction–diffusion simulation,

an important consideration is the size of the subvolumes.

As described in Implementation of spatial SSA solver,

subvolumes are assumed to be of a size that represents a

well-mixed region. Most real biological systems will in-

deed exhibit a size-band where the natural motion of

molecules maintains the well-mixed condition and for a

STEPS simulation we should ensure that all tetrahedrons

fall within this band for maximum simulation accuracy.

How can we estimate the size at which a system exhi-

bits well-mixed behavior? By ‘well-mixed’ (or ‘well-

stirred’) we mean that there are many more nonreactive

collisions than reactive ones, quickly removing any

spatial gradients that appear from phenomena such as

chemical reactions or transport. At relatively large

volumes, however, spatial chemical gradients can persist

in a region, broadly speaking whenever reactions occur

at a faster rate than the region can be smoothed by diffu-

sion. If we were to represent such regions with well-

mixed subvolumes we would lose spatial detail. Deter-

mining the largest volume at which spatial gradients

don’t exist is a good estimate of the upper-bound for the

well-mixed condition and can be estimated mathematic-

ally by comparing reaction time to diffusion time in the

continuous case. However, it would be naive to assume

that below a certain volume the region is always well-

mixed; subvolumes can also be too small [37,38]. Sizes

that are comparable to the size of a molecule are intui-

tively too small since we require that molecules are well-

defined within subvolumes, and sizes smaller than the

mean-free path of a molecule are also too small because

there may not be enough elastic collisions taking place

inside a region to keep it well-mixed. In a discrete de-

scription the minimum number of molecules in a
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populated tetrahedron is 1, which means that, below a

certain size (where the mean number of molecules per

tetrahedron becomes much less than 1), reaction time

for a populated tetrahedron decreases with decreasing

volume (reaction rate increases) and comparison to dif-

fusion time for the discrete case is a good way to esti-

mate the minimum subvolume size.

So there exists a window of subvolume size at which

we can apply the well-mixed approximation, which may

be slightly different for each particular model. It is im-

portant to determine this window, but we will show that

it is usually relatively large for biologically realistic mod-

els and therefore poses only a minimal restriction on

mesh-generation. Simulation time increases with increas-

ing number of tetrahedrons, so tetrahedron size is also

an important consideration for simulation efficiency. The

greatest simulation efficiency possible with acceptable

accuracy would be with all tetrahedrons in the mesh at

the upper-bound of acceptable size. However, the tetra-

hedrons that represent the space around complex

boundaries may have to be significantly smaller than the

largest acceptable size so as to represent the boundaries

accurately. An ideal mesh for any given problem, there-

fore, is one that achieves the greatest simulation effi-

ciency at which the well-mixed assumption holds, but

with acceptable morphological resolution.

For an example problem with reasonable simulation

parameters, if the fastest reaction in the system is a sec-

ond order reaction Aþ B→
k
C with k = 100/μM.s, the

slowest diffusion coefficient is D = 0.1 μm2/ms, and con-

centrations are [A] = [B] = 1 μM, our upper bound esti-

mate is approximately 0.4 μm with a lower bound of

approximately 0.02 μm (see Additional file 2). This size

window is large enough not to place much restriction on

our mesh-generation at all. Though a factor of 20 for the

tetrahedron size may not sound like a large window, it

means of the order of a 104 factor difference in volume.

Put another way, the number of tetrahedrons per cubic

micron of mesh for this problem should number more

than approximately 100 and fewer than approximately

1,000,000 to ensure the well-mixed subvolume condition.

There are several reasons why we may wish to stay sig-

nificantly larger than the calculated lower bound in this

example, the practical reasons that a mesh of 1 million

tetrahedrons per cubic micron would consume enor-

mous amounts of memory and result in an unnecessarily

slow simulation, and another reason is that at 20 nan-

ometers we are approaching the size of proteins.

Figure 3 shows the simulation of this system in

STEPS with three different tetrahedral meshes repre-

senting the same total volume of one cubic micron.

The three meshes are reasonably regular and range

Figure 2 STEPS import of a tetrahedral mesh with realistic geometry. The mesh is reconstructed from a surface triangular mesh provided at

http://synapses.clm.utexas.edu/anatomy/Ca1pyrmd/radiatum/K24/K24.stm . For a test simulation in STEPS molecules are distributed uniformly and

the system is then visualized in CUBIT.
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from the upper bound of accepted subvolume size

(with approximately 100 tetrahedrons) to a size of 30

nanometers (approximately 350,000 tetrahedrons).

There are no significant errors in results and no dis-

crepancies between the different mesh sizes, showing

that the spatial Gillespie method is accurate over this

range for this simple problem.

We may find for other types of simulations that our

window may even be larger than in this example. How-

ever, with slower diffusion the window may become nar-

rower, but is often still large enough not to pose too

much restriction on mesh generation. For example, with

the same example parameters except for a diffusion coef-

ficient of 0.02 μm2/ms, which is about the slowest diffu-

sion coefficient of the very largest proteins in water [39-

41], the mesh should contain more than approximately

300 tetrahedrons and fewer than approximately 20,000

tetrahedrons per cubic micron, so some care should be

taken in this case not to go below the lower bound of ac-

ceptable subvolume size (i.e. not going higher than

20,000 tetrahedrons). The crowded environment of the

cell can cause the observed apparent diffusion coefficient

to be lower than that in water by a factor that may be

dependent on the size of the molecule [41]. However,

crowding at the same time is expected to also decrease

the rate of fast, diffusion-limited association reactions

[42-44]. Therefore a scenario where large, very slowly-

diffusing molecules are involved in fast reactions that in-

crease the minimum subvolume size enough to approach

the upper bound is rather unlikely. The Results section

contains a validation of the well-mixed subvolume calcu-

lation for a problem with slow diffusion, approximately

in the range for the apparent diffusion coefficient mea-

sured of large proteins in the cytoplasm.

Recent proposals have been made to correct reaction

rates at the algorithmic level if subvolumes approach a

small, “critical” size [38], however in STEPS we prefer to

keep the larger minimum size as a constraint on the

model, in effect constraining the subvolume size to be

significantly larger than the “critical” size. This is partly

because the small sizes typically involved often consume

huge amounts of memory and slow simulations unneces-

sarily or may even be unattainable, so to go below the

lower bound and approach the critical size is often im-

possible or impractical. In the case for very slow diffu-

sion it may be necessary for modelers to take some care

to ensure tetrahedrons do not become too small, but in

practice, for most biologically realistic models, mesh gen-

eration is not significantly restricted by the subvolume

size consideration and the major challenge is realistic

boundary representation.

Mesh quality

Consideration should also be given to the quality of the

mesh used for the STEPS simulation. Tetrahedrons,

compared to cubic elements, have the benefit of being

able to adapt their size and shape to local levels of detail,

however one must make sure that they do not become

too irregular, or “stretched” in any regions of the mesh.

In part this is due to considerations of subvolume size (if

a tetrahedron is stretched the size of the tetrahedron in

some directions may be much larger than the edge-

length assumed for the regular tetrahedron) and also to

do with an assumed level of regularity for the derivation

of the diffusion rates.

There are many different quality measurements for a

tetrahedron and each mesh-generator usually comes with

one or more from this set. The software may use these

measures internally so as to ensure good quality mesh

output, and can also report quality of the generated

mesh to the user. The quality measure used in TetGen is

the radius-edge ratio: the ratio of the radius of the tetra-

hedron’s circumsphere to the length of the shortest edge.

This value is approximately 0.61 for a perfectly regular

tetrahedron. Values up to 2.0, which is currently the de-

fault value in Tetgen for Quality mesh generation, pro-

duce a mesh in which no tetrahedron is too stretched

out. CUBIT incorporates many quality measurements,

for example the Aspect Ratio Beta [45], which is the cir-

cumsphere radius divided by 3 times the inscribed

sphere radius and takes acceptable values between 1

(regular tetrahedron) and 3.

STEPS itself comes with a quality measure that can be

performed on the imported mesh, the radius-edge ratio

that is also used in TetGen. As well as quality, it may be

desirable for example to find the minimum, maximum

and standard deviation of tetrahedron volumes so as to

ensure they fall within the acceptable range, and this can
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Figure 3 Subvolume size. The model described in the text is

simulated for different uniform meshes over a range of tetrahedron

sizes, all within the acceptable upper and lower bound of 0.4 μm to

0.02 μm, and each mesh representing the same geometry. Mean

results for 10 iterations in each case are identical for each mesh size

with no errors, demonstrating the accuracy of the well-mixed

approximation in this range.
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be achieved with a simple loop over mesh elements in

the Python interface. STEPS will not fail to run a simula-

tion on a poor quality mesh, since setting an internal tol-

erance may be too restrictive, so users should decide

whether to perform their own analysis on a mesh to de-

termine if it is of acceptable quality before running a

simulation.

Results
Accuracy of geometry representation

To test our intuition that complex geometry may be bet-

ter represented by tetrahedral meshes than cubic meshes

we constructed five geometrical shapes each representing

a dendritic spine on a neuron [7,9] by a simple combin-

ation of a spherical head and cylindrical neck. All spines

were generated randomly within constraints to cover a

broad range recorded experimentally from rat Purkinje

neurons [46] (see Additional file 3). We then compared

the accuracy of these meshes for two biologically import-

ant measures: volume, important for chemical reactions

and diffusion in the spine, and surface area, important

for membrane transport mechanisms like voltage-gated

calcium channels on the spine [1].

For each spine shape, first an adaptive tetrahedral

mesh was generated in CUBIT with the coarsest mesh

(minimal number of tetrahedrons) permissible by the

software, and then a cubic mesh was generated in

MesoRD from CSG input, with the cube size controlled

to result in a mesh with a similar number of subvolumes

to the tetrahedral mesh (further information about the

meshes can be found in Additional file 3). Furthermore,

for each spine a more detailed (greater number of subvo-

lumes) tetrahedral and cubic mesh was generated, with a

close match between the number of tetrahedral and

cubic subvolumes. The more detailed meshes typically

approached the approximate minimum subvolume size

for a system of slow diffusion and fast reaction previ-

ously discussed, and so are approximately the most

detailed mesh that would be acceptable for simulation.

Figure 4 shows spine #4 represented by both a tetrahe-

dral mesh and cubic mesh in the coarser case.

For all meshes the volume and surface area of both the

head and neck regions were measured and compared.

Figure 5 shows a plot of the normalized measurements.

All meshes appeared to represent the spine head volume

quite accurately, yet the cubic meshes often failed to rep-

resent the neck volume sufficiently, and only a marginal

improvement was noticeable in the more detailed

meshes. This demonstrates that, while one could always

find an optimal cube size to represent any one region of

a geometry accurately, the cube size will not necessarily

suffice for other regions which may have different

morphologies. This is a clear drawback for cubic meshes,

which originates from the need for all subvolumes to be

of the same size. Any error in volume will of course pro-

duce an error in reaction rates as well as for diffusion

rates. It may be possible with a very detailed mesh to

represent all regions sufficiently, yet a larger number of

subvolumes means a slower simulation and may result in

loss of accuracy caused by the small subvolume size.

In terms of surface area in all cases the cubic meshes

failed to represent the boundaries accurately, in fact

slightly worsening in the more detailed meshes. This ob-

viously arises from a discrepancy between the surface/

volume ratio of a cube compared to a sphere or cylinder.

This failure to represent surface area closely could for

example be important if modeling the mobility of surface

molecules, or if a density of surface molecules is speci-

fied in a model then the total number of molecules

would end up being too high in a cubic mesh due to the

larger surface area. In such a case it may be possible to

overcome such difficulties by introducing a correction

factor, yet a further complication is that, in tests, we

determined that such a correction factor is not constant

and varies considerably throughout regions of the spine

meshes.

In all cases the tetrahedral meshes represented volume

and surface area throughout all regions of the mesh with

high accuracy.

Validation

Although STEPS uses established methods to simulate

reaction–diffusion systems, errors can be made in the

coding that would lead to erroneous results. Therefore it

is important to validate the accuracy of the program by

simulating models for which the correct response is

known. To our knowledge no standard benchmarking li-

brary for reaction–diffusion systems exists, so we devel-

oped a representative set of models that test different

aspects of the code.

Here we briefly describe each model and show the ac-

curacy of the results in STEPS. The models and para-

meters used are described in detail in Additional file 4

and in the model scripts which can be downloaded from

the STEPS website.

Simple well-mixed reactions

We tested STEPS accuracy for four types of reactions,

chosen for their prevalence in real systems and models,

as well as for their fitness for analytical investigation.

The Python interface to STEPS made it easy to take the

mean and standard deviation of a large number of indi-

vidual simulation runs and in each case the mean STEPS

output was converted to a 95% confidence interval (CI),

which was then compared to the known analytical value

(detailed in Additional file 4).

One of our simplest validation systems, the first-order

irreversible reactions system, is also perhaps one of our
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most important due to the fact that we test the resulting

noise from our implementation of the SSA. This vital as-

pect of stochastic reaction–diffusion simulator output is

usually insufficiently tested, often with simple visual

comparison of the amplitude of the noise from the out-

put of two different simulators. The standard deviation

matched the analytical solution to the chemical master

equation closely, and the mean behavior also behaved as

expected (20 of 20 points fell in the 95% CI) (Figure 6A).

For first-order reversible reactions the steady state

can be computed and the mean concentrations of

the STEPS simulation evolved properly to this steady

state (14 of 14 points in CI) (Figure 6B). For the sec-

ond-order irreversible reaction with equal reactant

concentrations (Figure 6C) and unequal concentra-

tions (Figure 6D) the mean behavior of the STEPS

simulations followed the analytical solutions (38 of

40 and 19 of 20 points within CI respectively).

We also tested a ‘Production and Degradation’ reaction

system described by two reactions: a first-order annihila-

tion reaction and a zero-order production reaction. Such

reactions, though they may be unphysical in biological

systems, are useful simplifications that are commonly

used in models and as such are supported in STEPS.

Due to the simplicity of this system an analytical solution

to the steady-state version of the chemical master equa-

tion can be found (see Additional file 4). The stationary

distribution from the simulation in STEPS followed the

analytical prediction (15 of 16 points within CI)

(Figure 7), providing another validation of the noise in

our SSA implementation.

In total for the well-mixed reaction systems, for 106 of

110 measurements the analytical mean fell within the

confidence interval of STEPS output, a success rate of

Figure 5 Comparison between cubic and tetrahedral spine

meshes. A scatter plot of the properties of the tetrahedral meshes

(red triangles; many points overlap) and the cubic meshes (blue

squares; some overlap) representing geometry which consists of a

spherical head joined to a cylindrical neck to approximate dendritic

spines. All properties were plotted as a ratio of measured value/ideal

value. A. The coarsest meshes ranging from approximately 2500–

3000 subvolumes per mesh. B. The more detailed meshes ranging

from approximately 11000 to 16000 subvolumes per mesh.

Figure 4 Example tetrahedral and cubic spine meshes. The ideal geometry for Spine #4 (A) represented by a cubic mesh of 2576 cubes (B)

and by a tetrahedral mesh of 2571 tetrahedrons (C). The mesh surfaces are displayed in CUBIT.
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96% which is approximately equivalent to the 95% suc-

cess that is expected.

Diffusion

Many of the diffusion models could not undergo such

precise statistical analysis as the reaction models because

in most cases the analytical concentration of an exact

position in 1-dimensional axial or radial space is com-

pared to the mean concentration at the center of a small

bin of finite tetrahedral volumes in STEPS, which is not

a precise comparison. However, simply by visual com-

parison it could be seen whether STEPS output followed

closely what was expected.

We first tested the most universal case: 3D diffusion

from a point source in an infinite volume (Figure 8A),

which has a known analytical solution for the time and

evolution of the radial mean concentration [47]. While

we could ensure the absence of boundary effects, it was

not possible to mimic a point source in a tetrahedral

mesh. The small deviations between the analytical solu-

tion and the STEPS simulation at short distances from

the source for early simulation times are due to the finite

volume of this source (see Additional file 4). At further

distances or later times the match between the mean of

the STEPS simulation showed no significant deviation

from the analytical solution.

Next we tested three different scenarios for 1D diffu-

sion: from a point source at one end of a finite tube

(Figure 8B), in a semi-infinite tube with a clamped

concentration at the end (Figure 8C) and in a finite tube

with constant influx of the same species at both ends

(Figure 8D). These systems each have a known or

deduced analytical solution of the time evolution of the

axial mean concentration for 1D diffusion, which may in

each case be compared to simulation output due to the

radial symmetry of the problem. In all three cases the

mean of the STEPS simulation and the analytical solu-

tion matched closely at all spatial locations for all times.
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Figure 6 Validation of reactions. A. First-order irreversible reaction. Mean for 1000 iterations of STEPS (points with error bars showing the sd)

matches the analytical solution (full line, broken lines are the predicted sd). B. First-order reversible reaction. The STEPS simulation (mean of 100

iterations) evolves correctly to the predicted steady state concentrations. C, D. Second order irreversible reaction. With equal reactant

concentrations the evolution in time of the inverse of the concentration of one of the source species in comparison to the analytical solution is

shown (C) and with unequal reactant concentrations the comparison of the source species ratio with the analytical solution is shown (D).
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(histogram) with the analytical solution (solid line).
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Reaction–diffusion

In testing the combined simulation of chemical reactions

and diffusion we were limited by the paucity of available

analytical solutions. A first simple test was to add diffu-

sion to an irreversible first-order reaction with an initial

uniform concentration of the reagent. Diffusion should

not affect this process, which is confirmed (30 of 30

points fell within 95% confidence interval) (Figure 9A).

Next, a very discrete reaction–diffusion problem, typic-

ally containing only about 10 molecules in the system,

was analyzed. This consisted of two reactions: a zero-

order reaction and second order reaction [38]. Ensuring

that subvolume size was larger than the accepted lower

bound, and significantly larger than the “critical value”

discussed in [38], the deviation of the stationary distribu-

tion of the reactant from the analytical solution to the

master equation was small (Figure 9B).

Finally we present a reaction–diffusion system contain-

ing spatial gradients for which we found an analytical so-

lution [48] and where diffusion is important. This is a

second-order degradation process where the initially

separated reactants diffuse from separate halves of a tube

and the assumption that they degrade so fast on contact

that their concentration at the center is always zero. The

analytical solution then corresponds to diffusion with a

concentration clamped at zero, which matched the

STEPS simulation closely (Figure 10).

Algorithm efficiency

To make comparisons between the efficiency of the reac-

tion–diffusion algorithm in STEPS to a similar tool we

compared to MesoRD [19] and to make comparisons to

particle methods we chose Smoldyn since it has been

reported to be an efficient particle simulator [12]. All

simulations were run on a Macbook Pro 2.4 GHz Intel

Core 2 Duo processor and 4 GB 667 MHz DDR2

SDRAM. Care was taken to ensure that the computer

performance was as equal as possible for every test, with

a measured pystone score of approximately 54500 pys-

tones/second.

Precise comparisons of the subvolume approach

employed by STEPS and MesoRD with the particle ap-

proach of Smoldyn are difficult due to different factors

affecting the efficiency of the two approaches, however

we tested a range of simulation conditions with notable

comparisons when the simulators are estimated to be at

the most efficient with acceptable accuracy. The accept-

able spatial resolution in STEPS and MesoRD is esti-

mated as the size at which there are approximately 10

diffusion events per reaction event (of the fastest reac-

tion) per subvolume (see Additional file 2). Smoldyn is

not exact for all length time-steps due to the fact that

the reactants can only undergo one interaction at the

end of a time-step and it is not possible for a molecule

to be in existence for less than the length of a time-step.
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Figure 8 Validation of diffusion. In all panels the analytical solution is compared with the mean for 10 (A-C) or 30 (D) iterations of the STEPS

simulation at three different times after start of the simulation. A. 3D diffusion in an infinite volume from a point source. B. 1D diffusion in a finite

tube: all the molecules are positioned at the border (distance= 0) initially. C. 1D diffusion in a semi-infinite tube with the concentration at the

border (distance= 0) clamped. D. 1D diffusion in a finite tube with a constant and equal influx of the same species of molecule at both ends

(displacement =−5 and +5).
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This means that if products are involved in further inter-

actions (as is the case for this model) then errors are

introduced for large time-steps. An acceptable time-step

in Smoldyn is stated as that at which it is “significantly

smaller” than the timescale of the fastest reaction in the

system, which we will choose as the time-step that is 10

times lower than the fastest reaction in the system.

In a comparison to the Smoldyn benchmark [12]

STEPS appears to perform favorably. This model is a

Michaelis-Menten enzyme reaction and the simulation

parameters suggest an upper bound of tetrahedron size

in STEPS of 2 μm, which corresponds to approximately

140 tetrahedrons in the simulation volume. Simulating in

a mesh of 284 tetrahedrons took 10 seconds in STEPS

compared to 46 seconds for the Smoldyn simulation

(close to the 47 seconds reported on the author’s

computer).

The more interesting comparisons in efficiency, how-

ever, come in larger models with a greater number of

distinct diffusing species with multiple chemical interac-

tions. We ran a test model in STEPS, MesoRD and

Smoldyn consisting of 10 molecular species in different

concentrations, that diffuse with different diffusion con-

stants, and interact by 8 reaction channels (described in

further detail in Additional file 5). STEPS and MesoRD

runtime increases with increasing spatial resolution and

Smoldyn runtime increases with decreasing time-step, so

we compared a range of conditions with an estimate of

the point at which the simulators are most efficient yet

accurate. All simulations were run 3 times and a median

value taken, and in all cases the differences in runtimes

between the 3 tests were found to be small.

Figure 11 shows simulation times in STEPS, MesoRD

and Smoldyn for the test system for two different mod-

els, which differ only by the total number of molecules

as the initial condition. All simulators are very fast in the

most efficient case (very large time-step in Smoldyn, only

one volume in STEPS, eight subvolumes in MesoRD) but

may be inaccurate. As we then decrease efficiency and

increase accuracy we can see that simulation time even-

tually scales approximately linearly for all simulators, al-

though MesoRD initially scales logarithmically. In the

first model a total of 5500 molecules were injected,

which corresponds to a concentration of ~0.3 μM, and

during simulation the total number of molecules

increased to around 6000. The estimated upper limit of

acceptable subvolume size in STEPS corresponds to ap-

proximately 300 tetrahedrons in the mesh, making the

results for a 454 tetrahedron mesh accurate with a simu-

lation time of 13 seconds. The estimate for a cubic mesh

puts an acceptable number of cubes at approximately

380 (a small discrepancy from the tetrahedral case aris-

ing from the different geometry), giving the fastest simu-

lation with acceptable accuracy at 512 subvolumes in the
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Figure 9 Validation of reaction–diffusion. A. Lack of effect of

diffusion in STEPS (points with error bars showing the sd) on first-

order irreversible reaction (analytical solution, full line) with uniform

initial concentration. Setting the diffusion constant to zero did not

change the simulation results (not shown). B. Diffusion does not

significantly affect stationary distribution of molecule that undergoes

a zero-order production reaction and second order reaction with
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minimum. STEPS simulation (histogram) compared to analytical

solution to chemical master equation (open circles).
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MesoRD mesh with a simulation time of 66 seconds (it

was in fact not possible to generate a 7x7x7 mesh of 343

cubes). The fastest reaction in the system has a charac-

teristic time of 1 ms, so a time-step of 0.1 ms was esti-

mated as the upper-bound for accuracy in Smoldyn with

a runtime of 73 seconds. So, at the estimate for the most

efficient conditions with acceptable accuracy, STEPS

runtime was more than 5 times faster than MesoRD and

Smoldyn. As we increase accuracy further in Smoldyn

with 10 times more iterations the runtime slows to 726

seconds (not plotted), and with approximately 10 times

more subvolumes in STEPS (4520) and MesoRD (4096)

STEPS slows to 109 seconds compared to 169 seconds

for MesoRD. So, in the lower molecule number case, at

the most efficient simulation possible for acceptable con-

ditions STEPS appears to perform favorably, and as we

increase detail STEPS appears to maintain an advantage

over the other two simulators. At the most detailed

meshes tested for STEPS (13871 tetrahedrons) and

MesoRD (13824 cubes) runtime was 263 seconds in

STEPS and 347 seconds in MesoRD (not plotted).

The spatial SSA approach shows increasing benefit with

larger numbers of molecules. In the second model a total

of 55000 molecules were injected, which corresponds to a

concentration of ~3 μM, and during simulation increased

to around 60000. The upper-limit of acceptable spatial

resolution was estimated to correspond to approximately

1200 tetrahedrons in the mesh for STEPS and 1500 cubes

in the MesoRD mesh, and the fastest reaction time in

Smoldyn at the start of the simulation remained 1 ms.

The STEPS simulation with 2090 tetrahedrons took 413

seconds compared to 1205 seconds in a mesh of 1728

cubes in MesoRD. In Smoldyn, with a time-step of 0.1

ms, simulation time was 2857 seconds. With approxi-

mately double the number of subvolumes in STEPS

(4520) and MesoRD (4096) runtimes increased to 831

seconds and 1910 seconds respectively. With twice the

number of iterations in Smoldyn (time step of 0.05 ms)

simulation time was 5745 seconds.

Direct comparison between STEPS and MesoRD show

that STEPS performs significantly better in all tested

conditions. Direct comparisons to Smoldyn are not pos-

sible, however something that can clearly be seen is that

the magnitude of the slopes between the two different

initial conditions means that, for a factor of 10 increase

in the number of molecules, STEPS slows by a factor of

approximately 8, whereas Smoldyn slows by a factor of

approximately 33 and this factor is expected to become

even larger in models with a greater numbers of mole-

cules. Notice, however, that a higher molecule number

does mean a slightly finer mesh must be used in STEPS

and MesoRD to ensure the well-mixed subvolume

condition.

Importing SBML models

STEPS provides thorough and well-validated support for

SBML [21], a common format for representing biochem-

ical models. STEPS has been tested to successfully run

the majority of the SBML Test Suite models and

“curated” models from the BioModels Database [49],

Figure 11 Simulator efficiency. Test system simulation runtimes in STEPS, MesoRD and Smoldyn. Filled circles show points where the simulation

is calculated to be accurate and open circles show where simulation may be inaccurate. A. Low number of molecules initial condition. Left panel:

STEPS and MesoRD simulation runtimes at different number of subvolumes describing the same total mesh volume. Right panel: Smoldyn

runtimes with varying number of simulation iterations due to a change in time-step. B. High number of molecules initial condition, which is the

only difference from simulations shown in A. Notice different y-scale between A and B but not between left panels and right panels.
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with results validated against published solutions. The

high-level of support has largely been made possible by

supporting MathML expressions. Such expressions,

which are very common in SBML models, often include

simulation variables that must be stored and available to

use by the solver. STEPS stores the MathML expressions

in Python structures, updates variables in the expressions

during simulation, and can solve the expressions when-

ever necessary. This has been crucial for STEPS support

for SBML components such as Function Definitions, Ini-

tial Assignments, Assignment Rules, Rate Rules, Event

Triggers and Event Assignments. For the special case of

Reactions, STEPS is able to examine the form of the Re-

action Kinetic Law maths and separate them into two

categories: those that can be represented as an ordinary

reaction in STEPS, and those that must be solved by an

approximate method because the Kinetic Law maths dif-

fers from a fundamental reaction (many models contain

at least one of these types of reaction). This ensures that

a reaction will never be represented incorrectly in

STEPS. Any simulator, such as MesoRD, that does not

provide thorough MathML support is limited in its sup-

port of many SBML components, and any stochastic

simulator that does not examine the form of Reaction

Kinetic Law maths will represent most published models

incorrectly. STEPS support extends to models containing

multiple compartments and surfaces, along with volume-

surface and surface-surface reactions. In the end STEPS

successfully imported 654/980 SBML Test Suite 2.0.0

l3v1 models (Additional file 6: Figure S1). Solutions are

provided with the Test Suite for every model, so by auto-

mated testing a large number of models could be

imported, simulated in the deterministic Wmrk4 solver

in STEPS and results compared against given solutions.

Of the 326 models that failed 262 fell into 3 categories,

those that contained: (1) 0-dimension or 1-dimension

compartments that are not supported in STEPS, (2) no

chemical species (STEPS requires at least one chemical

species in order to run a simulation) and (3) Algebraic

Rules, which are difficult to support in a STEPS context

and rarely appear in SBML models. The other models

that failed included some that are not possible to run in

a discrete stochastic context such as those that include

partial stoichiometry or negative concentrations and as

such are also not supported in the STEPS deterministic

solver, which shares model construction with the sto-

chastic solvers. STEPS also successfully imported 223/

326 curated BioModels Database models (downloaded in

June 2011), where possible the most recent versions of

each model (often l2v4) were imported. The majority of

the failures were again because of no chemical species in

the model, partial or high reactant stoichiometry, and

also included those with unsupported units such as

amperes or volts.

Imported models may be directly simulated in STEPS

using the deterministic solver or the well-mixed stochastic

solver, although many models are not suitable for stochastic

simulation without some modification. It is worth noting

that SBML models may potentially form the basis of simula-

tions in the spatial stochastic solver, but not without some

modifications; for example diffusion coefficients and non-

uniform initial conditions must currently be defined outside

of SBML. Figure 12A shows a deterministic simulation in

STEPS of model BIOMD0000000184 from the BioModels

Database in comparison to a BioModels Online Simulation.

This model of spontaneous calcium oscillations in astro-

cytes [50] contains two compartments (cytoplasm and

endoplasmic reticulum) with transport reactions between

them. Some reactions in the model can be represented as

fundamental reactions, but some reactions contain complex

maths, which is therefore converted to Python structures

allowing for solution by the approximate method.

Figure 12A shows close agreement between the STEPS

simulation and the BioModels Online Simulation, and also

matches the published results [50] (not shown).

Some SBML models are suitable for well-mixed sto-

chastic simulation without any modification. One ex-

ample is BIOMD0000000152, which contains a

femtoliter compartment and micromolar concentrations.

As described further in [51] this is a larger model con-

taining 63 Species and 120 Reactions, and also 21 Events

which represent ‘cAMP’ and ‘Ca’ signals. At time 400 s a

pulse of cAMP is introduced, and then intermittently be-

tween times 450 s and 490 s the reaction parameter con-

trolling calcium influx is toggled between a low and high

value by Events. When running the simulation in STEPS

the mathematics representing Event Triggers and Event

Assignments is stored in Python structures, which makes

it possible to represent these important features of the

model. Figure 12B shows simulation results using the

STEPS stochastic solver superimposed on deterministic

results from a BioModels Online Simulation, displaying

the two species directly involved in Events: cAMP and

Ca. STEPS matches the BioModels Online Simulation

results, with some small expected variability arising from

the stochastic simulation.

Discussion
Advantages and disadvantages

As described by example in [22] the Python interface to

STEPS brings a number of advantages over reaction–

diffusion simulators that have a non-interactive interface.

STEPS modelers have greater freedom and control over

a simulation, and may utilize the many powerful scien-

tific tools already available for Python for tasks such as

data analyses and visualization. In fact we believe a

powerful interface is the only way to be able to achieve
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the complex tasks that go with initializing, running and

collecting data from simulations in complex 3D

geometries.

STEPS provides substantial functionality (significantly

more than is often available in similar software) in the

Python interface that a modeler may use for building a

model and customizing a simulation, which can be par-

ticularly important for spatial simulations. Examples are

the steps.geom.Tetmesh class functions that are crucial

for acquiring and utilizing information about complex

3D mesh geometry, and the functionality in the STEPS

Tetexact solver that allows for the manipulation of mol-

ecule counts, reaction and diffusion rates, both compart-

ment and patch-wide or individually for tetrahedrons

and triangles. There are many possible applications for

such functionality, including complex initial conditions

[22], chemical localization, control over reaction rates by

external variables such as voltage or temperature, and

support for some of the more advanced features of

SBML such as Rules and Events. All functions are

described in detail in the user documentation.

Python is becoming particularly important in the neu-

rosciences and as more and more neural simulators

adopt a Python interface the future may even see Python

used to glue simulators together so that phenomena on

different spatial scales can be integrated, although there

may be more efficient alternatives [52]. The Python

interface is an advantage now and as biological simula-

tion becomes more and more complex, will be an advan-

tage for the future.

STEPS is capable of accurately representing complex

boundaries by supporting unstructured tetrahedral

meshes. We demonstrated that while the regular cubic

meshes supported by some other simulators are very

easy to generate they limit the morphological resolution.

Tetrahedrons are able to adapt their shape and size to

regions of high morphological detail, which means that

such meshes (with sufficient spatial resolution) are able

to follow the complex boundaries of a cell very closely.

Tetrahedrons may be larger for regions of less interest,

which is an important consideration for simulator effi-

ciency. However, with tetrahedron-based geometry

comes the difficulty of generating high-quality meshes,

which is a drawback for this approach. Specialist mesh

generation software is best left to this task and there are

some powerful tools available, with common output for-

mats supported by STEPS. Complex boundary gener-

ation is not a unique problem to STEPS and particle-

based simulators that support complex surfaces, which

may for example be represented by collections of trian-

gles or squares, may also require outside software to de-

velop sufficient quality surfaces.

STEPS has the advantage of supporting both spatial

and non-spatial stochastic simulations as well as deter-

ministic simulations, and in the near future will even be

able to combine spatial and non-spatial compartments in

the same stochastic simulation. This may be a very im-

portant feature for efficiency in some models while still

allowing for complex boundary representation. For ex-

ample, if one wished to simulate calcium release from

intracellular calcium stores in the endoplasmic reticulum

(ER), it would be vital to represent the resulting calcium

gradients in the cytoplasm in a spatial compartment, yet

the simulation would be severely slowed by simulating

diffusion in the highly-concentrated ER, which may only

have a negligible effect on outcome. Representing the ER

as a well-mixed compartment would reduce runtime

considerably without affecting accuracy.

Chemical accuracy of reaction–diffusion algorithms

Any representation of a biochemical system on a

computer is of course not an exact replication of the

real system. Simplifications are made, both by the

modeling software and in the designed model itself,

to ensure that the problem is tractable and may be

simulated on the limited computational power avail-

able in an acceptable amount of time. For example,
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Figure 12 Example simulations. A. SBML model of calcium

oscillations in astrocytes simulated in STEPS with the deterministic

solver Wmrk4 (results plotted at 4 second intervals) shows perfect

agreement with BioModels Online simulation. B. SBML model in a

femtoliter compartment is simulated in STEPS with the stochastic

solver Wmdirect (results plotted at 0.8 second intervals) and

compared to BioModels Online deterministic simulation. Shown are

cAMP and Ca signals, which are controlled by Events. Small

stochastic differences are noticeable between simulations.
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many approaches to biochemical reaction diffusion

simulation ignore the crowded environment of the

cell formed by macromolecular structures, a feature

that can have a significant affect on apparent diffu-

sion coefficients and reaction rates [44,53]. Every ap-

proach to incorporating spatial detail into stochastic

biochemical simulations makes a different set of sim-

plifying assumptions, which means that the most ac-

curate approach may depend on the properties of the

simulated model.

A popular approach to reaction–diffusion modeling

is based on Smoluchowski theory [54], which tracks

diffusing point-like particles that may react when

they fall within a certain distance of another reactive

molecule. This theory has the advantage of including

some consideration of molecule size, but is limited

by its own simplifying assumptions about the system,

which can lead to small errors if, for example, two

reactants are at a similar concentration to each other

[55,56], which is of course often the case for bio-

logical systems. In addition, the theory is derived for

a system with only one reaction present, making

results for all systems with more than one reaction

approximate. However, a small time-step can often

ensure good accuracy, but this comes at a cost to

efficiency.

The spatial Gillespie approach makes the assump-

tion that the subvolumes represent well-mixed

regions and, as we have seen, at relatively very large

or very small sizes this may not be the case, so some

care must be taken by the modeler to ensure subvo-

lumes are in the well-mixed range. A benefit of this

approach is the potential gain in efficiency, but a

drawback is that it is as yet unclear how to incorpor-

ate molecule size and macromolecular crowding into

simulations, although this may be possible in the fu-

ture. The unstructured mesh in STEPS already allows

for complex boundaries that could potentially form

impenetrable fixed structures within the volume that

could go some way towards replicating the crowded

environment of the cell. The incorporation of react-

ant size into the Gillespie framework is an active

area of research and it has already been found that

for a unimolecular second-order reaction system in

one dimension reactant size may be simply incorpo-

rated by replacing system volume with the “free vol-

ume” [57] and in two dimensions the propensity

function is still applicable, yet with a larger correc-

tion than just the free volume [58]. This suggests an

extension to 3 dimensions will involve a correction

to the propensity function based on the excluded

volume from the molecules, which could potentially

be found from a fixed user-defined parameter of

molecule size. Allowing the molecule size to be

defined explicitly could ensure that it is always bio-

logically feasible. Where the implied molecules size

is found intrinsically from reaction and diffusion

parameters (as is the case for Smoluchowski models)

the calculated binding radius can be very different

from the physical size of the molecules; typical reac-

tion and diffusion parameters of proteins give a

binding radius that is unrealistically small [38], and

slow diffusion with a fast reaction can lead to a

binding radius that is very large. In addition to this

possibility, one intriguing approach to this problem

is to apply a hybrid method where discrete and con-

tinuous spatial descriptions are both permitted, and

the simulator combines the spatial Gillespie method

and Brownian dynamics [59].

Despite their limitations, current voxel-based and par-

ticle methods can often both be shown to be good

approximations for a range of biological conditions and

a lot of useful information about many systems can be

extracted from their simulation. In the future, as compu-

tational power increases, our understanding of cellular

systems improves and new algorithms are developed (or

existing algorithms modified), biochemical computing

will surely become more and more powerful and accur-

ate. Only time will tell how significant these future

improvements will be, or whether current methods are

accurate enough for most studies. At present, with differ-

ent methods for stochastic reaction–diffusion simulation

within complex boundaries essentially producing the

same results for a wide range of biological conditions,

software efficiency, reliability and ease of use are often

the most important considerations for a modeler.

Software efficiency

The core algorithm in STEPS is an efficient implementa-

tion of the spatial Gillespie approach to reaction–diffu-

sion modeling and contains the potential for further

improvements to runtime in the future with the intro-

duction of approximate methods such as tau-leaping [60]

adapted for diffusion [61,62]. Efficiency in a spatial Gille-

spie simulation depends on the number of mesh subvo-

lumes so care must be taken to ensure that, where

possible, the subvolumes are close to the upper bound of

accepted size, as discussed in Subvolume size.

STEPS performed favorably in direct comparison to

another subvolume-based simulator, MesoRD, in a wide

range of conditions, which demonstrates the efficiency of

the STEPS implementation. Although it is difficult to

precisely compare simulator efficiency between spatial

Gillespie and particle methods, partly because of the dif-

ficulty of pinpointing the exact point at which the simu-

lator becomes accurate, what can clearly be seen by

comparison to the efficient particle simulator Smoldyn is

that the spatial Gillespie method in STEPS has a
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significant advantage over particle methods at higher

molecule numbers. Also, once accurate conditions have

been met, STEPS performs better than Smoldyn with in-

creasing spatial resolution in STEPS compared to de-

creasing time-step and increasing accuracy in Smoldyn.

This is important because simulation conditions are

often more detailed than the very upper-bound of ac-

ceptable conditions so as to ensure accuracy or because

of complex boundary restrictions.

An important point is that voxel-based software such

as STEPS only begins to lose accuracy when subvolumes

become very small (as discussed in Subvolume size) and

efficiency is low, whereas, conversely, accuracy in particle

methods generally increases with smaller time-step and

therefore lower efficiency. This means that spatial SSA

methods are most accurate at efficient simulation condi-

tions, whereas particle methods are generally most ac-

curate at inefficient conditions.

Validation

Regardless of the approach and the capabilities of the

simulator it is important that all supported features are

validated by analyzing output, where possible comparing

to known analytical solutions. Validation ensures that

there are no numerical errors resulting from bugs in the

code so that the software may be reliably used for re-

search purposes, and repeating this validation every so

often checks that any recent changes to code have not

resulted in loss of accuracy. STEPS is well tested and

validated for the majority of its capabilities as we have

reported in this paper, yet other simulators are often

poorly validated and may be unreliable, particularly when

it comes to capturing the noise resulting from stochastic

chemical reactions. As reaction–diffusion simulators be-

come more and more widely used to investigate the mo-

lecular properties of neural and other biochemical

systems it is vital that each simulator is known to be reli-

able and accurate. For this reason it is important that

standards for validation for reaction–diffusion simulators

are developed, as has been achieved for example for the

electrical properties modeled by neuronal simulators

[63]. The set of validations that we have presented in this

paper could contribute towards such a future reaction–

diffusion standard.

The future

The future will see further additions to STEPS as more

and more biological phenomena are added to models. In

neurons in particular, the intracellular signaling pathways

are highly coupled to the electric excitability of the cell

through the activity of voltage-gated channels on the

membrane. A powerful addition to future versions of

STEPS will be the calculation of the potential across sur-

faces representing membranes within the tetrahedral

mesh geometry, to which voltage-gated ion channels may

be added. In the near future lateral diffusion will also be

implemented to simulate the mobility of molecules in

membranes. Further ahead, one possibility is to allow

meshes to dynamically alter their shape during simula-

tion to replicate real changing cell shape. One potential

application for this is the simulation of the enlargement

of dendritic spines associated with long-term potenti-

ation [64,65].

Future additions to STEPS will also be based on con-

siderations of efficiency. Since spatial simulations are

mainly dominated by diffusion, the largest gain in effi-

ciency may come with implementing approximate meth-

ods for diffusion.

Currently STEPS is developed and tested under 32-bit

systems, thus the simulation size is restricted by 4 GB of

addressable memory, approximately 108 kinetic pro-

cesses. Although this restriction can be eased by convert-

ing STEPS to a 64-bit version, the simulation of very

large scale systems on individual workstations can be im-

practical due to a long runtime. Solution of this problem

will depend on the development of an efficient parallel

framework, where the whole system is distributed and

simulated in different nodes of a computing cluster. A

great challenge for such a parallel framework is the need

to reduce network communication as well as preventing

unnecessary rollbacks caused by state conflicts between

nodes.

Conclusions
Discreteness, stochasticity and spatial effects are vital

considerations for capturing the dynamics of many cellu-

lar molecular systems, yet this high level of detail makes

efficiency a particularly important consideration for tools

such as STEPS that are designed to simulate such sys-

tems. Efficiency is tied to accuracy, gains in one often

coming at a cost to the other. STEPS employs the spatial

SSA approach to discrete reaction–diffusion simulation,

which is generally more efficient than particle-based

methods, yet more abstracted conceptually. However, we

have shown that there is usually no loss or a minimal

loss of accuracy for biochemical systems, provided that

due consideration is given to subvolume size. The opti-

mized algorithm in STEPS was shown to out-perform

both another SSA-based simulator, MesoRD, and particle

methods by comparison to Smoldyn, with increasing

benefit in larger systems and increasing simulation detail.

In terms of spatial accuracy, STEPS offers improvement

over other spatial SSA software by supporting tetrahedral

meshes, which provide higher morphological resolution

than cubic voxels. The problem of representing complex

boundaries in surfaces or meshes is best left to powerful,

specialist software, and common formats are imported

by STEPS. The distinction between biochemical model,
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geometry description and solver method offer a number

of advantages, such as the ability to apply different simu-

lation techniques to the same model, and to reuse com-

plex geometry descriptions. Solver accuracy was

confirmed in an extensive validation suite consisting of a

set of reaction, diffusion and reaction–diffusion systems.

The Python interface to STEPS was found to play an im-

portant role in almost all aspects of creating models,

running test simulations and building additional features,

including reliable support for SBML.

Therefore, STEPS successfully combines both high per-

formance and high accuracy within a powerful and user-

friendly interface, allowing application to a large number

of biochemical network models where stochasticity and

spatial organization play a prominent role. The frame-

work in STEPS offers the potential for future improve-

ments to performance, such as approximate method

implementation and parallelization, which will add more

power and open up even more applications as larger sys-

tems may be simulated. Further additions to the code

will open up the exciting possibility of full integration

with the electrical properties of the cell, allowing accur-

ate and efficient parallel multi-scale neural simulations.

For these and further future additions, which could for

example potentially include new algorithms to represent

the crowded environment of the cell, scientific accuracy

and software efficiency will both continue to play prom-

inent roles in STEPS development.

Availability and requirements
Project name: STochastic Engine for Pathway

Simulation

Project home page: http://steps.sourceforge.net

Operating system(s): Platform independent

Programming languages: C/C++, Python

Other requirements: Python 2.5 ~ 2.7

License: GNU General Public License version 3

Source code and pre-compiled binaries for Windows

and Mac OS X are available at the home page where fur-

ther information about STEPS can also be found, includ-

ing the Online User Manual.
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optimizations and implementations in STEPS. A description of the

algorithms and optimizations used in STEPS solvers Wmdirect and

Tetexact [66,67].

Additional file 2: Subvolume Size. An analysis of acceptable

tetrahedron size range for reaction-diffusion simulations in STEPS.

Additional file 3: Cubic and Tetrahedral mesh comparison. A

statistical comparison between cubic and tetrahedral mesh

representation of five different dendritic spine geometries.

Additional file 4: Validation. Detailed descriptions of the validation
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STEPS simulations. [68].
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given solutions. The chart shows the proportion of models supported

(red) and unsupported (other colors). The unsupported models are

separated into 4 categories.
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