
Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 | 1

NEUROINFORMATICS

ORIGINAL RESEARCH ARTICLE
published: 29 June 2009

doi: 10.3389/neuro.11.015.2009

INTRODUCTION

Computational modeling and simulation of signaling pathways has
become a valuable and established tool for studying the molecular
aspects of biological systems (Bhalla, 2004; Doi et al., 2005; Holmes,
2000; Kuroda et al., 2001; Lindskog et al., 2006; Miller et al., 2005;
Smolen et al., 2006; Stefan et al., 2008). Modeling such systems
consists of identifying the molecular players and describing the
stoichiometry and rate constants of their chemical interactions.
The resulting system is then often simulated by converting it to a
set of coupled ordinary differential equations that can be numeri-
cally integrated (Press et al., 2007).

It has long been acknowledged that the discrete nature of reac-
tion events, caused by the very low numbers of key molecules being
present, can make biological reaction systems noisy and affect their
behavior on a macroscopic level. This aspect can be brought into
the simulation by adding noise terms to the differential equa-
tions (Kloeden and Platen, 1999; van Kampen, 2007), or more
commonly, by simulating the system with Gillespie’s Stochastic
Simulation Algorithm or SSA (Gillespie, 1977) or one of its deriva-
tions (Gillespie, 2007).

For some pathways, however, even more realism is needed. One
such case is when the spatial organization and morphology of the
cell is known to play an active role in controlling the pathway, e.g.
through chemical compartmentalization, spatial gradients and by
various transport processes and diffusion (Lemerle et al., 2005).
Such cases are common in neurons because of their complex den-
dritic arborization (Santamaria et al., 2006), but of course are not
limited to them.

In order to study systems at the level where stochasticity, spatial
gradients within complex boundary conditions and diffusion all
come into play at the same time, we have developed a simulation
platform called STEPS (STochastic Engine for Pathway Simulation)
that uses an extension of Gillespie’s SSA to deal with diffusion

STEPS: modeling and simulating complex reaction-diffusion
systems with Python

Stefan Wils1,2 and Erik De Schutter1,2*

1 Theoretical Neurobiology, University of Antwerp, Belgium
2 Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan

We describe how the use of the Python language improved the user interface of the program

STEPS. STEPS is a simulation platform for modeling and stochastic simulation of coupled

reaction-diffusion systems with complex 3-dimensional boundary conditions. Setting up such

models is a complicated process that consists of many phases. Initial versions of STEPS relied

on a static input format that did not cleanly separate these phases, limiting modelers in how

they could control the simulation and becoming increasingly complex as new features and

new simulation algorithms were added. We solved all of these problems by tightly integrating

STEPS with Python, using SWIG to expose our existing simulation code.

Keywords: Python, software, simulator, reaction kinetics, 3D diffusion, signaling pathway, scripting

of molecules in 3-dimensional reconstructions of neuronal
 morphology and tissue (Wils and De Schutter, 2009). STEPS com-
putes reactions occurring between diffusing molecules in volumes,
and, in addition, also surface reactions to simulate channel fl uxes
and ligand-receptor binding. Our algorithm differs from a similar
approach described in Elf and Ehrenberg (2004) mainly in that it
is based upon the use of tetrahedral meshes which are particularly
well-suited for representing biological morphology and that we
avoid the use of a heap structure.

In this paper, based on a presentation made at the FACETS
CodeJam #2 workshop ‘Building the meta-simulator tool-chain:
leveraging Python for a robust and effi cient workfl ow in compu-
tational neuroscience’, describes how Python scripting is used for
working with models in STEPS. We also show how, in this particular
problem domain, adding Python scripting improved the quality
and maintainability of STEPS in a fundamental way.

SOFTWARE

BRIEF DESCRIPTION OF STEPS ALGORITHM

Stochastic simulation of reaction-diffusion processes can occur
in a number of ways. One way is to track each reacting molecule
as an independent particle that undergoes Brownian motion and
occasionally collides with one of the other tracked molecules. This is
the approach taken by such programs as M-Cell (Stiles and Bartol,
2001) and Smoldyn (Andrews and Bray, 2004).

Another approach is voxel-based; here one keeps track of how
much molecules are present from any given species within a set of
small volumes. By keeping these reaction volumes or voxels small
enough, we can state that the concentration gradients within each
voxel are negligible: the voxel is approximately well-mixed. Then
we can apply SSA (Gillespie, 1976) by adding an extra reaction
rule for each type of molecule for its diffusion step from one voxel
to a neighboring one. Thus SSA handles both diffusion processes

Edited by:

Rolf Kötter, Radboud University

Nijmegen, The Netherlands

Reviewed by:

Jeanette Kotaleski, Karolinska Institute,

Sweden

Kim Avrama Blackwell, George Mason

University, Krasnow Institute, USA

*Correspondence:

Erik De Schutter, Theoretical

Neurobiology, Biomedical Sciences

Department, University of Antwerp,

Universiteitsplein 1, 2610 Wilrijk,

Belgium.

e-mail: erik@tnb.ua.ac.be

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 | 2

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

and reaction mechanisms from within one single simulation
 framework. Though this approach is abstracted more from the
underlying physical mechanisms than modeling Brownian motion,
it offers a number of advantages. Because diffusion is uncoupled
from chemical reaction, the modeler can decide for each type of
molecule, considering the timeframe being simulated, whether it
makes sense to implement diffusion or not. At the coding level,
much less bookkeeping is necessary because one does not track
individual molecules, giving rise to leaner and potentially faster
code. It also facilitates combining SSA with approximate, faster
methods such as tau-leaping (Gillespie, 2001).

STEPS simulates molecular reaction-diffusion in volumes
which are bounded by membranes. These membranes can con-
tain stationary reacting molecules, including channel proteins.
To simulate the behavior of these systems, STEPS adapts the
Direct Reaction Method version of SSA (Gillespie, 1976) for
large systems by storing the propensity values for each process
in a search tree. STEPS 0.4 implements two distinct stochastic
solvers: a spatial solver (called tetexact) and an auxiliary well-
mixed solver (called wmdirect, this does not model diffusion).
Such well-mixed solvers are useful assistants because setting up
a spatial model can benefi t greatly from analyzing and tuning
parts of the biochemical model under simpler conditions (Wils
and De Schutter, 2009). In the future additional solvers will be
added, including a deterministic one (based on Runge-Kutta
integration; Press et al., 2007) and an extension of tetexact that
includes diffusion in membranes.

STEPS WORKFLOW

Figure 1 shows a typical workfl ow for developing and simulating
a 3-dimensional reaction-diffusion system and how the different
phases can relate to each other. The fi rst step, biochemical mod-
eling, consists of describing reaction stoichiometry and selecting
reaction rates and diffusion constants. Since this is independent to
a large degree of the actual algorithm that will be used for simula-
tion (i.e. numerical integration of ODE’s vs stochastic simulation;
with or without diffusion; …), it is common practice to import and

compose this type of information from previous modeling efforts
through formats such as SBML (Hucka et al., 2003)1.

Mesh generation, or more generally speaking describing the geo-
metric boundaries of the problem, is another step. Since tetrahe-
dral meshes are supported both by stochastic solvers (Wils and De
Schutter, 2009) as well as more traditional methods based on numeri-
cal integration of systems of partial differential equations (Ferziger
and Peric, 2002), they are fairly independent of the algorithm that
will be used at a later stage. In addition, a mesh can be reused with
multiple modeling and simulation studies, a distinct advantage con-
sidering that their generation can be a rather elaborate task, especially
for meshes based on imaging data (Means et al., 2006).

Because of their independence, the previous two phases can
easily be performed in parallel, or even by separate groups. The
only point where everything needs to come together and link up,
is at the start of the third phase: running a simulation. This phase
is the focus of STEPS and will be detailed below.

The fourth and fi nal phase is the most important and daunt-
ing of all: collecting the simulation results, analyzing them and,
if necessary, readjusting the biochemical model. Even more than
was the case with the fi rst two phases, different modelers will want
to rely on different tools for this task. A logical option for STEPS
modeling results are the many packages already available for Python
(Scipy, Matplotlib, …).

In the rest of this section, we will implement the simple toy model
in Figure 2 to examine in more detail how different STEPS packages
support each of the fi rst three phases of our modeling cycle independ-
ently. We will show how easy it is to go from well-mixed to spatial
simulations and back. We will then conclude our discussion of STEPS
by looking at it from an architectural point of view and discuss the
multiple roles that Python plays in allowing STEPS users to combine
all the components of this cycle into a modeling pipeline.

BIOCHEMICAL MODEL DESCRIPTION

The objects that together defi ne the biochemical aspects of a STEPS
model are written directly in Python and are grouped in pack-
age steps.model. The following snippet of Python code shows how
to implement the simple toy model from Figure 2 using these
objects:

from steps.model import *

Create the model m

m = Model()

FIGURE 1 | Workfl ow for reaction-diffusion modeling with four phases.

FIGURE 2 | This simple model, which is inspired by calcium dynamics,

will be used to explain the STEPS implementation. It consists of two

distinct chemical environments separated by a membrane. A substance X can

be bound to buffer molecules of type A and B or it can be transported through

a membrane channel C from one volume to the other.

1http://www.sbml.org

http://www.sbml.org

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 | 3

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

Define all species of molecules in the model m

a = Spec('A', m)

b = Spec('B', m)

c = Spec('C', m)

x = Spec('X', m)

ax = Spec('AX', m)

bx = Spec('BX', m)

Set up volume A of m and define all reactions in A

vs_ak = Volsys('A_kin', m)

partners, right hand side partners and a rate

constant.

hand side partners and a rate constant.

ax_f = Reac('AX_f', vs_ak, lhs=[a,x], rhs=[ax],\

 kcst = 1.0e8)

ax_b = Reac('AX_b', vs_ak, lhs=[ax], rhs=[a,x],\

 kcst = 1.0e3)

Set a diffusion constant for x

vs_ak_xdiff = Diff('AX_xdiff', vs_ak, x,\

 dcst = 0.065e-9)

Set up volume B of m and define all reactions in B

vs_bk = Volsys('B_kin', m)

bx_f = Reac('BX_f', vs_bk, lhs=[b,x], rhs=[bx],\

 kcst = 2.0e8)

bx_b = Reac('BX_b', vs_bk, lhs=[bx], rhs=[b,x],\

 kcst = 2.0e3)

vs_bk_xdiff = Diff('BX_xdiff', vs_bk, x,\

 dcst = 0.065e-9)

Set up simple membrane channel kinetics for C. With

surface reactions, the reactants (lhs) and products

(rhs) have to be marked as being located on the

inside (i), outside (o) or surface (s) of the

membrane.

ss_cchan = Surfsys('C_chan', m)

c_xflux_f = SReac('C_Xflux_f', ss_cchan, vlhs=[x],\

 slhs=[c], orhs=[x], srhs=[c])

c_xflux_f.kcst = 10.0e6

c_xflux_b = SReac('C_Xflux_b', ss_cchan, vlhs=[x],\

 slhs=[c], irhs=[x], srhs=[c])

c_xflux_b.kcst = 10.0e6

As one can see the model is created through a series of Python
function calls that map onto STEPS code (see Figure 4). Volume
systems (objects of class Volsys) describe the chemical properties
of volume solutions, which comprise the stoichiometry and rate
constants of reaction channels and the diffusion constants for all
diffusing species in that solution. Surface systems (objects of class
Surfsys) describe the chemical properties of membranes, such as
ligand-receptor binding and unbinding or channel currents. Note
that some information is given implicitly: because no diffusion
constants are supplied for the molecular species A, B and AX, BX
these are considered immobile.

Demonstrating the independence between the model construc-
tion phases mentioned earlier, this code shows that this level of
description is completely separate from the geometry or the spatial
‘location’ of these volume and surface systems, and of the initial and
boundary conditions or simulation events. Volsys and Surfsys are
essentially just static template objects that group together related
reaction rules and that will, at a later point in time, be instantiated on
the actual simulation geometry. This uncoupling, which is somewhat

different from the approach used in SBML where the kinetic equa-
tions are usually mixed with compartment defi nitions and initial
conditions, makes it easy for modelers to compose and recombine
their biochemical models with different geometric descriptions. Since
the objects themselves are in the end still just static hierarchies, a
linking point with formats such as SBML or CellML2 remains.

3D BOUNDARIES: TETRAHEDRAL MESHES

STEPS uses unstructured, tetrahedral meshes (Ferziger and Peric,
2002; see Figure 3A for an example) to describe the geometric
domain in 3-dimensional detail. In these meshes, elements are not
numbered along principal axes and do not have to be perfectly
regular, allowing them to adapt to the local level of detail and to
follow an arbitrary set of domain boundaries rather smoothly. We
will not describe the Python scripting (steps.mesh) in detail, but
instead focus on the conceptual approach.

To organize the simulation space into biological structures
STEPS uses the notion of ‘compartment’ for volumes and ‘patches’
for surfaces. For example, compartments can represent physical
regions such as the cytoplasm, ER lumen or cellular exterior. In
order to be useful for a simulation, the tetrahedral mesh has to be
annotated so that each tetrahedron is assigned to a ‘compartment’
(objects of class Comp) and each triangle is assigned to a ‘patch’
(objects of class Patch). When these objects are used directly, instead
of a mesh, it is possible to describe a well-mixed geometry that can
be used in well-mixed simulations, similar to the compartments
found in SBML.

Eventually, Comp and Patch objects will refer to one or more vol-
ume systems or surface systems, respectively. As detailed in the next
section, these references are resolved during the initialization phase
of a simulation, when a model description is combined with a mesh
object. At any point prior to simulation, however, these references
are stored simply as string values, allowing users to manipulate
meshes independently of any biochemical model. A mesh can be
stored with or without such references, making it easy to reuse a
mesh for simulating many different biochemical models.

As is the case with the objects of package steps.model, meshes are
Python objects that can be manipulated using Python scripts or from
the Python command line. It therefore becomes easier to automate
many tasks and to write custom importers or exporters for various
forms of 3D data. Currently, STEPS directly supports importing
meshes from the freely available tetmesh generator TetGen3.

In the following snippet of code, we load a previously gener-
ated mesh (Figure 3A) stored in an archive. The mesh, which is
used for demonstration purposes only, consists of two cylindrical
compartments (called outer and inner) separated by a membrane
patch called imem. This could represent, for example, a segment of
dendrite with endoplasmic reticulum in its center. We link the mesh
to our toy model by assigning these compartments and patches to
volume systems and surface systems as needed.

load the annotated mesh from a Python pickled archive

meshf = open('cyl.dat')

mesh = pickle.load(meshf)

2http://www.cellml.org
3http://tetgen.berlios.de

http://www.cellml.org
http://tetgen.berlios.de

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 | 4

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

meshf.close()

assign volume and surface systems to different parts

of the mesh

mesh.getComp('outer').addVolsys('A_kin')

mesh.getComp('inner').addVolsys('B_kin')

mesh.getPatch('imem').addSurfsys('C_chan')

Notice that we only needed three line of code to perform this
link to a fairly complex mesh.

RUNNING A SIMULATION

The third phase in the modeling cycling is to simulate the model
with a numerical solver. To do this in STEPS, a solver object must
be created. This basically consists of one line of code in which
this object is created and initialized with the biochemical model, a

geometric description and a random number generator. It is from
within the constructor of this solver object that all references from
the Comp and Patch objects to the Volsys and Surfsys objects are
resolved in order to create the appropriate data structures needed
to represent the state of the simulation.

rng = steps.rng.create('mt19937')

rng.initialize(datetime.datetime.now().microsecond)

sim = steps.tetexact.Solver(m, mesh, rng)

Make the simulator ready for action.

sim.reset()

The spatial solver (steps.tetexact) used in this example only
accepts tetrahedral meshes, whereas the well-mixed solver (steps.

wmdirect) can accept both a well-mixed description or a tetmesh,

FIGURE 3 | The mesh used in the code examples for setting up initial conditions. (A) This opaque view with a cut-out shows that 21090 tetrahedons are used to

describe one cylinder surrounding another one. (B) Membrane channels C are distributed randomly over the inner membrane. (C) A uniform initial distribution for

molecules A and B. (D) A Gaussian distribution in the center of the outer cylinder for X.

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 | 5

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

from which the well-mixed features can be transparently extracted.
Note that in the latter case the defi nition of diffusion constants in
our toy model would be ignored automatically. The only change
needed for setting up a well-mixed simulation would be in the
third line of the code example, where steps.wmdirect.Solver would
be evoked instead.

All current and future solver objects, regardless of their under-
lying algorithm or of their spatial or well-mixed nature, provide
the same API through which the modeler can access the inter-
nal state of the simulation from within Python, in order to set
initial conditions and to control the simulation. This internal
state includes the local amount of molecules for different spe-
cies, but also whether these species are buffered, the reaction and
diffusion constants and whether reaction channels are active or
not. All of these properties can be manipulated for individual
tetrahedrons and triangles (in mesh-based solvers), or for entire
compartments and patches at a time (in both mesh-based and
well-mixed solvers). In Figures 3B–D we show three possible ini-
tial conditions for the concentration of X from our toy model.
We fi rst inject 100 channels of species C in the inner membrane
imem (Figure 3B):

sim.setPatchCount('imem','C',100)

Next, we inject 1500 molecules of species A in the outer compart-
ment and set the concentration of species B in the inner compart-
ment to 1 µM, spread out uniformly (Figure 3C):

sim.setCompCount('outer', 'A', 1500)

sim.setCompConc('inner', 'B', 1.0e-6)

Note that in both examples the position of channels or molecules
is automatically randomized with uniform distributions. Because
the API also allows access to the simulation state at the level of
individual tetrahedrons, we can program arbitrarily complex initial
conditions and runtime events. In the next piece of code we show
how this can be used to generate a normally distributed pulse injec-
tion of X in the outer compartment with a given peak amplitude
and width centered in the middle (Figure 3D):

Set the concentration of a species in a compartment

using a 3D density function.

def setCompConcDensity(sim, mesh, compname, specname,

 conc, dens, sampling=10):

 r = steps.rng.create('mt19937')

 r.initialize(datetime.datetime.now().microsecond)

 # Loop over all tetrahedrons of the requested

 # compartment

 for t in mesh.getComp(compname).tets:

 # Generate a number of random points in the

 # current tetrahedron and use these points

 # to sample the density function.

 dens2 = dens(t.getRanPnt(r, sampling)).mean()

 # Set the concentration in the tetrahedron to

 # the product of mean density value and the

 # peak concentration.

 sim.setTetConc(t.idx, specname, conc * dens2)

Example of a density function which generates a

Gaussian distribution

def dGaussian(p):

 m = 0.0

 s = 1.0e-6

 m2 = (p[:,0]-m)

 return np.exp(-(m2*m2) / (2*s*s))

use both functions to set the initial conditions

setCompConcDensity(sim, mesh, 'outer', 'X', 20.0e-6,\

dGaussian)

These examples show the great fl exibility that Python offers in
setting up initial conditions for the simulation. In addition, the API
also features the actual control functions that allow one to reset a
simulation, to advance the simulation to some future time and to
sample the simulation state.

WHY PYTHON?

To understand the design of the STEPS software package, a short
history is useful. An earlier incarnation of STEPS consisted of a sin-
gle standalone C++ application. Being focused on the simulation
algorithm itself, not much thought was given to issues related to
model description and simulation control and these aspects were put
together in a single custom XML-based format. We didn’t use SBML
at the time because it lacked support for models with detailed 3D fea-
tures. Meshes had to be stored in a separate custom data format and
were referenced by fi lename from within these XML input fi les.

The limitations of our fi rst implementation became apparent
rather quickly. We discovered that, because of the spatial aspects,
describing the initial state of a 3D reaction-diffusion system is more
complicated than describing the initial state of a well-mixed simu-
lation. People might not just want to set initial values in compart-
ments as a whole, but inject molecules or manipulate rate constants
using more sophisticated geometric patterns, for instance using
a Gaussian distribution to mimic the result of a laser uncaging
event (Wang and Augustine, 1995; see Figure 3D). Sometimes the
simulation might require this release pattern to be confi ned to a
particular compartment; other simulations might want the pattern
to be applied globally.

Coming up with an XML-based way of describing a wide range
of in-simulation events, a problem similar and closely related
to the problem of setting up initial conditions, and output gen-
eration proved to be quite diffi cult. By far the most common
use case would be to have events occur on specifi c times during
the course of a simulation. But what if an event would have to
depend on some condition being met, such as the concentra-
tion of some species reaching a threshold? We ended up with
an increasingly rich fauna of trigger, action and output objects
which covered many possibilities, but which was complicated and
costly to maintain and in the end still left many rare but sensible
use cases uncovered.

When at some point we also started thinking about supporting
well-mixed solvers directly from within STEPS, we decided that
our old approach had reached its limits and set out to redesign
STEPS by integrating it closely with a fully-featured scripting lan-
guage. Python was chosen because it is a mature language, simple
to learn and already had a widespread user base in the computa-
tional sciences, with a wide selection of third-party packages and
documentation to match. As described above, its object oriented

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 | 6

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

features allowed us to express the relationship between well-mixed
and spatial models in a way that facilitates switching between the
corresponding classes of simulators. Python’s excellent XML fea-
tures will allow us to keep up with projects such as SBML when their
support for spatial modeling matures. Finally, Python can be used
to integrate many miscellaneous tasks related to simulation that
would otherwise typically be done with shell scripting. Examples
are copying fi les to their right location, cleaning up, initiating a
data processing or compacting method directly after a simulation
fi nishes, etc.

The redesign was a major effort. The only part that could be
reused from the old STEPS was the core simulator code, i.e. the
solver currently known as tetexact. Everything else had to be rewrit-
ten following the modeling workfl ow described in Figure 1. We
designed the solver API mentioned above and implemented it for
our two current solvers. These API implementations were then
exposed to Python using SWIG4, where they were further wrapped
in a Python-side Solver base class that performs argument checking
and provides some extra higher-level functionality. Much of the
code for setting up a solver is the same for all current and future
solvers and was therefore put in a shared set of C++ fi les. This
reduces the amount of ‘plumbing code’ that needs to be written for
a new solver, while still allowing considerable freedom in choosing
the ultimate algorithm-specifi c internal data structures.

The main fl aw of our fi rst version of Pythonizing STEPS, as
shown in Figure 4, is the many layers that have to be passed to go
from calling a solver object method to the actual solver code and
back. This may become a performance bottleneck when one is
running a simulation that is interrupted repeatedly over small time
intervals. This problem may be resolved in several ways. We can
recode the Python-side Solver class, which is shared by all solvers,
in C++ and derive an actual individual solver by overriding pro-
tected virtual methods. To avoid even the cost of virtual calls in this
scenario, we can employ the Curiously Recurring Template Pattern
(Vandevoorde and Josuttis, 2003). Alternatively, we can switch from
SWIG to Boost.Python5, an ingenious method of exposing C++

code to Python that does not result in a Python-side shadow class,
as is the case with SWIG.

DISCUSSION

We have described how STEPS mixes C++ with Python script-
ing to give modelers greater freedom in setting up and simulat-
ing a model, while maintaining the effi ciency of compiled and
optimized C++ code. We described how going the extra mile to
make a scientifi c simulator fully scriptable in this way has con-
siderable advantages. Because of the many scientifi c computing
packages already available for Python, computational scientists
are encouraged to develop sophisticated pipelines in which mod-
eling, simulation and even post processing and visualization are
highly automated. In addition, we fi nd that the neural simulators
such as Neuron (Carnevale and Hines, 2006) and Moose6 have
committed to supporting Python, leading some to forward the
challenging but intriguing possibility of using Python to actually
‘glue’ together simulations (Cannon et al., 2007). One should keep
in mind, however, that naively using an interpreted language like
Python to exchange and map state information between simula-
tors at each time step might quickly run into performance and
numerical issues that could be avoided only by deeper integra-
tion at the algorithmic level. Alternatives like the MUSIC project
(Ekeberg and Djurfeldt, 2008) might therefore be better suited
for this.

Like many before us, we have successfully used SWIG to expose
our existing C++ simulation core to Python. The main techni-
cal issue that we encountered is the many layers between the user
script and the C++ code which, as mentioned, can be resolved by
porting the solver interface to C++ and possibly by switching to
Boost.Python.

In the specifi c context of modeling 3D reaction-diffusion
simulations we found that using Python had a large advantage
for describing a complex internal state. There are many ways in
which a biologist might want to set up and control this state and
sample it for output. Switching to a scripting language allowed
us to eliminate a great deal of complexity that was ultimately
caused by sticking to a static, purely declarative input format in
which model and simulation were thoughtlessly mixed. Since
maintaining a backwards compatible API of basic getter/setter
functions is less of an effort than designing and maintaining an
increasingly ‘baroque’ set of trigger, action and output objects,
we expect that this investment will keep paying off as STEPS
keeps growing by adding more solvers and more capabilities. In
other words, our switch to Python has actually saved us quite
some time.

Finally, we believe that our experience suggests that a language
like Python, as was proposed earlier in Cannon et al. (2007), can
play a positive role in supporting the development of formal stand-
ards for sharing scientifi c models. Mirroring the requirements of
understanding biology itself, biological simulators will necessar-
ily become more complex and will be able to simulate more and
more aspects of the living cell. Codes such as M-Cell (Stiles and

FIGURE 4 | Layered view of STEPS code after exposing it to Python with

SWIG.

4http://www.swig.org
5http://www.boost.org

6http://moose.sourceforge.net

http://www.swig.org
http://www.boost.org
http://moose.sourceforge.net

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 | 7

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

Bartol, 2001), MesoRD (Hattne et al., 2005), Smoldyn (Andrews
and Bray, 2004) and also STEPS expand on the idea of ODE-based,
well-mixed simulations of reaction kinetics by adding stochastic-
ity and spatial processes such as diffusion. But this is only the
beginning. The future will see developments such as simulations
of electrophysiological phenomena in high 3D detail or full elec-
trodiffusion (Lopreore et al., 2008), volume-occupying molecules
(Gillespie et al., 2007; Schnell and Turner, 2004), dynamic meshes
whose shape is controlled by simulated chemistry and, as men-
tioned earlier, possibly even the integration of simulators that work
on different scales.

The designers of formal standards, such as SBML, can not
be expected to keep up with these new trends as they come
out, and still maintain a clean standard. This fact fl ows from a
fundamental tension between on the one hand having a clean,
 simulator-independent standard for publishing models, and on
the other hand the turbulent, seemingly endless expansion of
exactly what is required in a biological model to be relevant

and how to breathe it all to life on a computer. The advan-
tages of having such standards is obviously too great to discard
(Bergmann and Sauro, 2008), and successes have been achieved
to where classes of modeling efforts have suffi ciently crystal-
lized, together with the methods to simulate them (Hucka et al.,
2003). The combination of Python and XML eases this tension
by allowing projects that explore new types of simulations to
mature independently from the standards for model sharing. It
allows them to catch up with each other whenever and wherever
it makes sense to do so.

ACKNOWLEDGEMENTS

This work was supported by grants from GOA (UA, Belgium),
HFSP and OIST (Japan).

SUPPLEMENTARY MATERIAL

Our software is released under the GNU public license and can be
downloaded from http://sourceforge.net/projects/steps.

REFERENCES

Andrews, S. S., and Bray, D. (2004).
Stochastic simulation of chemical reac-
tions with spatial resolution and single
molecule detail. Phys. Biol. 1, 137–151.

Bergmann, F. T., and Sauro, H. M. (2008).
Comparing simulation results of SBML
capable simulators. Bioinformatics 24,
1963–1965.

Bhalla, U. S. (2004). Models of cell signal-
ing pathways. Curr. Opin. Genet. Dev.
14, 375–381.

Cannon, R. C., Gewaltig, M.-O., Gleeson, P.,
Bhalla, U. S., Cornelis, H., Hines, M. L.,
Howell, F. W., Muller, E., Stiles, J. R.,
Wils, S., and De Schutter, E. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Carnevale, T. C., and Hines, M. L. (2006).
The NEURON Book. Cambridge,
Cambridge University Press.

Doi, T., Kuroda, S., Michikawa, T., and
Kawato, M. (2005). Spike-timing
detection by calcium signaling path-
ways of cerebellar Purkinje cells in dif-
ferent forms of long-term depression.
J. Neurosci. 25, 950–961.

Ekeberg, Ö., and Djurfeldt, M.
(2008). MUSIC – Multisimulation
C o o r d i n a t o r : Re q u e s t Fo r
Comments. Nature Precedings.
Ava i lab le a t : h t tp : / /dx .doi .
org/10.1038/npre.2008.1830.1.

Elf, J., and Ehrenberg, M. (2004).
Spontaneous separation of bi-sta-
ble biochemical systems into spatial
domains of opposite phases. Syst. Biol.
1, 230–236.

Ferziger, J. H., and Peric, M. (2002).
Computational Methods for
Fluid Dynamics, 3rd Edn. Berlin,
Springer-Verlag.

Gillespie, D. T. (1976). A general method
for numerically simulating the sto-
chastic time evolution of coupled
chemical species. J. Comput. Phys. 22,
403–434.

Gillespie, D. T. (1977). Exact stochas-
tic simulation of coupled chemi-
cal reactions. J. Phys. Chem. 81,
2340–2361.

Gillespie, D. T. (2001). Approximate accel-
erated stochastic simulation of chemi-
cally reacting systems. J. Chem. Phys.
115, 1716–1733.

Gillespie, D. T. (2007). Stochastic simula-
tion of chemical kinetics. Annu. Rev.
Phys. Chem. 58, 35–55.

Gillespie, D. T., Lampoudi, S., and
Petzold, L. R. (2007). Effect of reactant
size on discrete stochastic chemical
kinetics. J. Chem. Phys. 126, 034302.

Hattne, J., Fange, D., and Elf, J. (2005).
Stochastic reaction-diffusion simula-
tion with MesoRD. Bioinformatics 21,
2923–2924.

Holmes, W. R. (2000). Models of cal-
modulin trapping and CaM kinase
II activation in a dendritic spine. J.
Comput. Neurosci. 8, 65–68.

Hucka, M., Finney, A., Sauro, H. M.,
Bolouri, H., Doyle, J. C., Kitano, H.,
Arkin, A. P., Bornstein, B. J., Bray, D.,
Cornish-Bowden, A., Cuellar, A. A.,
Dronov, S., Gilles, E. D., Ginkel, M.,
Gor, V., Gorvanin, I. I., Hedley, W. J.,
Hodgman, T. C., Hofmeyr, J. H.,
Hunter, P. J., Juty, N. S., Kasberger, J. L.,
Kremling, A., Kummer, U., Le
Novère, N., Loew, L. M., Lucio, D.,
Mendes, P., Minch, E., Mjolness, E. D.,
Nakayama, Y. , Nelson, M. R.,
Ni e l s e n , P. F. , S a k u r a d a , T. ,
S c h a f f , J . C . , S h a p i r o , B . E . ,
Shimizu, T. S . , Spence, H. D. ,
Stelling, J., Takahashi, K., Tomita, M.,

Wagner, J., and Wang, J. (2003). The
systems biology markup language
(SBML): a medium for representa-
tion and exchange of biochemical
network models. Bioinformatics 19,
524–531.

Kloeden, P. E., and Platen, E. (1999).
Numerical Solution of Stochastic
Differential Equations, 3rd Edn.
Berlin, Springer-Verlag.

Kuroda, S., Schweighofer, N., and
Kawato, M. (2001). Exploration of
signal transduction pathways in
cerebellar long-term depression by
kinetic simulation. J. Neurosci. 21,
5693–5702.

Lemerle, C., Di Ventura, B., and
Serrano, L. (2005). Space as the fi nal
frontier in stochastic simulations of
biological systems. FEBS Lett. 579,
1789–1794.

Lindskog, M., Kim, M., Wikström, M. A.,
Blackwell, K. T., and Kotaleski, J. H.
(2006). Transient calcium and
dopamine increase PKA activity and
DARPP-32 phosphorylation. PLoS

Comput. Biol. 2, e119.
Lopreore, C. L., Bartol, T. M., Coggan, J. S.,

Keller, D. X., Sosinsky, G. E.,
Ellisman, M. H., and Sejnowski, T. J.
(2008). Computational modeling of
three-dimensional electrodiffusion
in biological systems: applications to
the node of Ranvier. Biophys. J. 95,
2624–2635.

Means, S., Smith, A. J., Shepherd, J.,
S h a d i d , J . , F o w l e r , J . ,
Wojcikiewicz, R. J. H., Mazel, T.,
Smith, G. D., and Wilson, B. S.
(2006). Reaction diffusion modeling
of calcium dynamics with realistic ER
geometry. Biophys. J. 91, 537–557.

Miller, P., Zhabotinsky, A. M., Lisman, J. E.,
and Wang, X. J. (2005). The stability

of a stochastic CaMKII switch:
 dependence on the number of enzyme
molecules and protein turnover. PLoS

Biol. 3, e107.
Press, W. H., Teukolsky, S. A., Vetterling, W. T.,

and Flannery, B. P. (2007). Numerical
Recipes in C: The Art of Scientific
Computing, 3rd Edn. Cambridge,
Cambridge University Press.

Santamaria, F., Wils, S., De Schutter, E.,
and Augustine, G. J. (2006).
Anomalous diffusion in Purkinje cell
dendrites caused by spines. Neuron
52, 635–648.

Schnell, S., and Turner, T. E. (2004).
Reaction kinetics in intracellular
environments with macromolecular
crowding: simulations and rate laws.
Prog. Biophys. Mol. Biol. 85, 235–260.

Smolen, P., Baxter, D. A., and Byrne, J. H.
(2006). A model of the roles of essential
kinases in the induction and expres-
sion of late long-term potentiation.
Biophys. J. 90, 2760–2775.

Stefan, M. I., Edelstein, S. J., and Le
Novère, N. (2008). An allosteric
model of calmodulin explains dif-
ferential activation of PP2B and
CaMKII. Proc. Natl. Acad. Sci. U.S.A.
105, 10768–10773.

Stiles, J. R., and Bartol, T. M. (2001).
Monte Carlo methods for simulat-
ing realistic synaptic microphysiol-
ogy using MCell. In Computational
Neuroscience: Realistic Modeling for
Experimentalists, E. De Schutter, ed.
(Boca Raton, CRC Press).

van Kampen, N. G. (2007). Stochastic
Processes in Physics and Chemistry,
3rd Edn. Amsterdam, Elsevier.

Vandevoorde, D., and Josuttis, N. M.
(2003). C++ Templates: The
Complete Guide. Reading, MA,
Addison-Wesley.

http://sourceforge.net/projects/steps
http://dx.doi.org/10.1038/npre.2008.1830.1

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 | 8

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

Wang, S. S., and Augustine, G. J. (1995).
Confocal imaging and local photoly-
sis of caged compounds: dual probes
of synaptic function. Neuron 15,
755–760.

Wils, S., and De Schutter, E. (2009).
STEPS: an algorithm for stochastic
simulation of reaction-diffusion

systems using tetrahedral meshes. In
preparation.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict or interest.

Received: 17 September 2008; paper pending

published: 11 November 2008; accepted: 09

May 2009; published online: 29 June 2009.

Citation: Wils S and De Schutter E

(2009) STEPS: modeling and simulating

complex reaction-diffusion systems with

Python. Front. Neuroinform. (2009) 3:15.

doi:10.3389/neuro.11.015.2009

Copyright © 2009 Wils and De Schutter.

This is an open-access article subject to

an exclusive license agreement between

the authors and the Frontiers Research

Foundation, which permits unrestricted

use, distribution, and reproduction in any

medium, provided the original authors and

source are credited.

