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INTRODUCTION

Computational modeling and simulation of signaling pathways has 
become a valuable and established tool for studying the molecular 
aspects of biological systems (Bhalla, 2004; Doi et al., 2005; Holmes, 
2000; Kuroda et al., 2001; Lindskog et al., 2006; Miller et al., 2005; 
Smolen et al., 2006; Stefan et al., 2008). Modeling such systems 
consists of identifying the molecular players and describing the 
stoichiometry and rate constants of their chemical interactions. 
The resulting system is then often simulated by converting it to a 
set of coupled ordinary differential equations that can be numeri-
cally integrated (Press et al., 2007).

It has long been acknowledged that the discrete nature of reac-
tion events, caused by the very low numbers of key molecules being 
present, can make biological reaction systems noisy and affect their 
behavior on a macroscopic level. This aspect can be brought into 
the simulation by adding noise terms to the differential equa-
tions (Kloeden and Platen, 1999; van Kampen, 2007), or more 
commonly, by simulating the system with Gillespie’s Stochastic 
Simulation Algorithm or SSA (Gillespie, 1977) or one of its deriva-
tions (Gillespie, 2007).

For some pathways, however, even more realism is needed. One 
such case is when the spatial organization and morphology of the 
cell is known to play an active role in controlling the pathway, e.g. 
through chemical compartmentalization, spatial gradients and by 
various transport processes and diffusion (Lemerle et al., 2005). 
Such cases are common in neurons because of their complex den-
dritic arborization (Santamaria et al., 2006), but of course are not 
limited to them.

In order to study systems at the level where stochasticity, spatial 
gradients within complex boundary conditions and diffusion all 
come into play at the same time, we have developed a simulation 
platform called STEPS (STochastic Engine for Pathway Simulation) 
that uses an extension of Gillespie’s SSA to deal with diffusion 
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of molecules in 3-dimensional reconstructions of  neuronal 
 morphology and tissue (Wils and De Schutter, 2009). STEPS com-
putes reactions occurring between diffusing molecules in volumes, 
and, in addition, also surface reactions to simulate channel fl uxes 
and ligand-receptor binding. Our algorithm differs from a similar 
approach described in Elf and Ehrenberg (2004) mainly in that it 
is based upon the use of tetrahedral meshes which are particularly 
well-suited for representing biological morphology and that we 
avoid the use of a heap structure.

In this paper, based on a presentation made at the FACETS 
CodeJam #2 workshop ‘Building the meta-simulator tool-chain: 
leveraging Python for a robust and effi cient workfl ow in compu-
tational neuroscience’, describes how Python scripting is used for 
working with models in STEPS. We also show how, in this particular 
problem domain, adding Python scripting improved the quality 
and maintainability of STEPS in a fundamental way.

SOFTWARE

BRIEF DESCRIPTION OF STEPS ALGORITHM

Stochastic simulation of reaction-diffusion processes can occur 
in a number of ways. One way is to track each reacting molecule 
as an independent particle that undergoes Brownian motion and 
occasionally collides with one of the other tracked molecules. This is 
the approach taken by such programs as M-Cell (Stiles and Bartol, 
2001) and Smoldyn (Andrews and Bray, 2004).

Another approach is voxel-based; here one keeps track of how 
much molecules are present from any given species within a set of 
small volumes. By keeping these reaction volumes or voxels small 
enough, we can state that the concentration gradients within each 
voxel are negligible: the voxel is approximately well-mixed. Then 
we can apply SSA (Gillespie, 1976) by adding an extra reaction 
rule for each type of molecule for its diffusion step from one voxel 
to a neighboring one. Thus SSA handles both diffusion processes 
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and reaction mechanisms from within one single simulation 
 framework. Though this approach is abstracted more from the 
underlying physical mechanisms than modeling Brownian motion, 
it offers a number of advantages. Because diffusion is uncoupled 
from chemical reaction, the modeler can decide for each type of 
molecule, considering the timeframe being simulated, whether it 
makes sense to implement diffusion or not. At the coding level, 
much less bookkeeping is necessary because one does not track 
individual molecules, giving rise to leaner and potentially faster 
code. It also facilitates combining SSA with approximate, faster 
methods such as tau-leaping (Gillespie, 2001).

STEPS simulates molecular reaction-diffusion in volumes 
which are bounded by membranes. These membranes can con-
tain stationary reacting molecules, including channel proteins. 
To simulate the behavior of these systems, STEPS adapts the 
Direct Reaction Method version of SSA (Gillespie, 1976) for 
large systems by storing the propensity values for each process 
in a search tree. STEPS 0.4 implements two distinct stochastic 
solvers: a spatial solver (called tetexact) and an auxiliary well-
mixed solver (called wmdirect, this does not model diffusion). 
Such well-mixed solvers are useful assistants because setting up 
a spatial model can benefi t greatly from analyzing and tuning 
parts of the biochemical model under simpler conditions (Wils 
and De Schutter, 2009). In the future additional solvers will be 
added, including a deterministic one (based on Runge-Kutta 
integration; Press et al., 2007) and an extension of tetexact that 
includes diffusion in membranes.

STEPS WORKFLOW

Figure 1 shows a typical workfl ow for developing and simulating 
a 3-dimensional reaction-diffusion system and how the different 
phases can relate to each other. The fi rst step, biochemical mod-
eling, consists of describing reaction stoichiometry and selecting 
reaction rates and diffusion constants. Since this is independent to 
a large degree of the actual algorithm that will be used for simula-
tion (i.e. numerical integration of ODE’s vs stochastic simulation; 
with or without diffusion; …), it is common practice to import and 

compose this type of information from previous modeling efforts 
through formats such as SBML (Hucka et al., 2003)1.

Mesh generation, or more generally speaking describing the geo-
metric boundaries of the problem, is another step. Since tetrahe-
dral meshes are supported both by stochastic solvers (Wils and De 
Schutter, 2009) as well as more traditional methods based on numeri-
cal integration of systems of partial differential equations (Ferziger 
and Peric, 2002), they are fairly independent of the algorithm that 
will be used at a later stage. In addition, a mesh can be reused with 
multiple modeling and simulation studies, a distinct advantage con-
sidering that their generation can be a rather elaborate task, especially 
for meshes based on imaging data (Means et al., 2006).

Because of their independence, the previous two phases can 
easily be performed in parallel, or even by separate groups. The 
only point where everything needs to come together and link up, 
is at the start of the third phase: running a simulation. This phase 
is the focus of STEPS and will be detailed below.

The fourth and fi nal phase is the most important and daunt-
ing of all: collecting the simulation results, analyzing them and, 
if necessary, readjusting the biochemical model. Even more than 
was the case with the fi rst two phases, different modelers will want 
to rely on different tools for this task. A logical option for STEPS 
modeling results are the many packages already available for Python 
(Scipy, Matplotlib, …).

In the rest of this section, we will implement the simple toy model 
in Figure 2 to examine in more detail how different STEPS packages 
support each of the fi rst three phases of our modeling cycle independ-
ently. We will show how easy it is to go from well-mixed to spatial 
simulations and back. We will then conclude our discussion of STEPS 
by looking at it from an architectural point of view and discuss the 
multiple roles that Python plays in allowing STEPS users to combine 
all the components of this cycle into a modeling pipeline.

BIOCHEMICAL MODEL DESCRIPTION

The objects that together defi ne the biochemical aspects of a STEPS 
model are written directly in Python and are grouped in pack-
age steps.model. The following snippet of Python code shows how 
to implement the simple toy model from Figure 2 using these 
objects:

from steps.model import *

# Create the model m

m = Model()

FIGURE 1 | Workfl ow for reaction-diffusion modeling with four phases.

FIGURE 2 | This simple model, which is inspired by calcium dynamics, 

will be used to explain the STEPS implementation. It consists of two 

distinct chemical environments separated by a membrane. A substance X can 

be bound to buffer molecules of type A and B or it can be transported through 

a membrane channel C from one volume to the other.

1http://www.sbml.org

http://www.sbml.org
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# Define all species of molecules in the model m

a = Spec('A', m)

b = Spec('B', m)

c = Spec('C', m)

x = Spec('X', m)

ax = Spec('AX', m)

bx = Spec('BX', m)

# Set up volume A of m and define all reactions in A

vs_ak = Volsys('A_kin', m)

# partners, right hand side partners and a rate

# constant.

# hand side partners and a rate constant.

ax_f = Reac('AX_f', vs_ak, lhs=[a,x], rhs=[ax],\

  kcst  =  1.0e8)

ax_b = Reac('AX_b', vs_ak, lhs=[ax], rhs=[a,x],\

  kcst  =  1.0e3)

# Set a diffusion constant for x

vs_ak_xdiff = Diff('AX_xdiff', vs_ak, x,\

  dcst = 0.065e-9)

# Set up volume B of m and define all reactions in B

vs_bk  =  Volsys('B_kin', m)

bx_f  =  Reac('BX_f', vs_bk, lhs=[b,x], rhs=[bx],\

  kcst = 2.0e8)

bx_b  =  Reac('BX_b', vs_bk, lhs=[bx], rhs=[b,x],\

  kcst = 2.0e3)

vs_bk_xdiff  =  Diff('BX_xdiff', vs_bk, x,\

  dcst = 0.065e-9)

# Set up simple membrane channel kinetics for C. With

# surface reactions, the reactants (lhs) and products

# (rhs) have to be marked as being located on the

# inside (i), outside (o) or surface (s) of the

# membrane.

ss_cchan = Surfsys('C_chan', m)

c_xflux_f = SReac('C_Xflux_f', ss_cchan, vlhs=[x],\

  slhs=[c], orhs=[x], srhs=[c])

c_xflux_f.kcst = 10.0e6

c_xflux_b = SReac('C_Xflux_b', ss_cchan, vlhs=[x],\

  slhs=[c], irhs=[x], srhs=[c])

c_xflux_b.kcst = 10.0e6

As one can see the model is created through a series of Python 
function calls that map onto STEPS code (see Figure 4). Volume 
systems (objects of class Volsys) describe the chemical properties 
of volume solutions, which comprise the stoichiometry and rate 
constants of reaction channels and the diffusion constants for all 
diffusing species in that solution. Surface systems (objects of class 
Surfsys) describe the chemical properties of membranes, such as 
ligand-receptor binding and unbinding or channel currents. Note 
that some information is given implicitly: because no diffusion 
constants are supplied for the molecular species A, B and AX, BX 
these are considered immobile.

Demonstrating the independence between the model construc-
tion phases mentioned earlier, this code shows that this level of 
description is completely separate from the geometry or the spatial 
‘location’ of these volume and surface systems, and of the initial and 
boundary conditions or simulation events. Volsys and Surfsys are 
essentially just static template objects that group together related 
reaction rules and that will, at a later point in time, be instantiated on 
the actual simulation geometry. This uncoupling, which is somewhat 

different from the approach used in SBML where the kinetic equa-
tions are usually mixed with compartment defi nitions and initial 
conditions, makes it easy for modelers to compose and recombine 
their biochemical models with different geometric descriptions. Since 
the objects themselves are in the end still just static hierarchies, a 
linking point with formats such as SBML or CellML2 remains.

3D BOUNDARIES: TETRAHEDRAL MESHES

STEPS uses unstructured, tetrahedral meshes (Ferziger and Peric, 
2002; see Figure 3A for an example) to describe the geometric 
domain in 3-dimensional detail. In these meshes, elements are not 
numbered along principal axes and do not have to be perfectly 
regular, allowing them to adapt to the local level of detail and to 
follow an arbitrary set of domain boundaries rather smoothly. We 
will not describe the Python scripting (steps.mesh) in detail, but 
instead focus on the conceptual approach.

To organize the simulation space into biological structures 
STEPS uses the notion of ‘compartment’ for volumes and ‘patches’ 
for surfaces. For example, compartments can represent physical 
regions such as the cytoplasm, ER lumen or cellular exterior. In 
order to be useful for a simulation, the tetrahedral mesh has to be 
annotated so that each tetrahedron is assigned to a ‘compartment’ 
(objects of class Comp) and each triangle is assigned to a ‘patch’ 
(objects of class Patch). When these objects are used directly, instead 
of a mesh, it is possible to describe a well-mixed geometry that can 
be used in well-mixed simulations, similar to the compartments 
found in SBML.

Eventually, Comp and Patch objects will refer to one or more vol-
ume systems or surface systems, respectively. As detailed in the next 
section, these references are resolved during the initialization phase 
of a simulation, when a model description is combined with a mesh 
object. At any point prior to simulation, however, these references 
are stored simply as string values, allowing users to manipulate 
meshes independently of any biochemical model. A mesh can be 
stored with or without such references, making it easy to reuse a 
mesh for simulating many different biochemical models.

As is the case with the objects of package steps.model, meshes are 
Python objects that can be manipulated using Python scripts or from 
the Python command line. It therefore becomes easier to automate 
many tasks and to write custom importers or exporters for various 
forms of 3D data. Currently, STEPS directly supports importing 
meshes from the freely available tetmesh generator TetGen3.

In the following snippet of code, we load a previously gener-
ated mesh (Figure 3A) stored in an archive. The mesh, which is 
used for demonstration purposes only, consists of two cylindrical 
compartments (called outer and inner) separated by a membrane 
patch called imem. This could represent, for example, a segment of 
dendrite with endoplasmic reticulum in its center. We link the mesh 
to our toy model by assigning these compartments and patches to 
volume systems and surface systems as needed.

# load the annotated mesh from a Python pickled archive

meshf = open('cyl.dat')

mesh = pickle.load(meshf)

2http://www.cellml.org
3http://tetgen.berlios.de

http://www.cellml.org
http://tetgen.berlios.de
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meshf.close()

# assign volume and surface systems to different parts

# of the mesh

mesh.getComp('outer').addVolsys('A_kin')

mesh.getComp('inner').addVolsys('B_kin')

mesh.getPatch('imem').addSurfsys('C_chan')

Notice that we only needed three line of code to perform this 
link to a fairly complex mesh.

RUNNING A SIMULATION

The third phase in the modeling cycling is to simulate the model 
with a numerical solver. To do this in STEPS, a solver object must 
be created. This basically consists of one line of code in which 
this object is created and initialized with the biochemical model, a 

geometric description and a random number generator. It is from 
within the constructor of this solver object that all references from 
the Comp and Patch objects to the Volsys and Surfsys objects are 
resolved in order to create the appropriate data structures needed 
to represent the state of the simulation.

rng = steps.rng.create('mt19937')

rng.initialize(datetime.datetime.now().microsecond)

sim = steps.tetexact.Solver(m, mesh, rng)

# Make the simulator ready for action.

sim.reset()

The spatial solver (steps.tetexact) used in this example only 
accepts tetrahedral meshes, whereas the well-mixed solver (steps.

wmdirect) can accept both a well-mixed description or a tetmesh, 

FIGURE 3 | The mesh used in the code examples for setting up initial conditions. (A) This opaque view with a cut-out shows that 21090 tetrahedons are used to 

describe one cylinder surrounding another one. (B) Membrane channels C are distributed randomly over the inner membrane. (C) A uniform initial distribution for 

molecules A and B. (D) A Gaussian distribution in the center of the outer cylinder for X.
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from which the well-mixed features can be transparently extracted. 
Note that in the latter case the defi nition of diffusion constants in 
our toy model would be ignored automatically. The only change 
needed for setting up a well-mixed simulation would be in the 
third line of the code example, where steps.wmdirect.Solver would 
be evoked instead.

All current and future solver objects, regardless of their under-
lying algorithm or of their spatial or well-mixed nature, provide 
the same API through which the modeler can access the inter-
nal state of the simulation from within Python, in order to set 
initial conditions and to control the simulation. This internal 
state includes the local amount of molecules for different spe-
cies, but also whether these species are buffered, the reaction and 
diffusion constants and whether reaction channels are active or 
not. All of these properties can be manipulated for individual 
tetrahedrons and triangles (in mesh-based solvers), or for entire 
compartments and patches at a time (in both mesh-based and 
well-mixed solvers). In Figures 3B–D we show three possible ini-
tial conditions for the concentration of X from our toy model. 
We fi rst inject 100 channels of species C in the inner membrane 
imem (Figure 3B):

sim.setPatchCount('imem','C',100)

Next, we inject 1500 molecules of species A in the outer compart-
ment and set the concentration of species B in the inner compart-
ment to 1 µM, spread out uniformly (Figure 3C):

sim.setCompCount('outer', 'A', 1500)

sim.setCompConc('inner', 'B', 1.0e-6)

Note that in both examples the position of channels or molecules 
is automatically randomized with uniform distributions. Because 
the API also allows access to the simulation state at the level of 
individual tetrahedrons, we can program arbitrarily complex initial 
conditions and runtime events. In the next piece of code we show 
how this can be used to generate a normally distributed pulse injec-
tion of X in the outer compartment with a given peak amplitude 
and width centered in the middle (Figure 3D):

# Set the concentration of a species in a compartment

# using a 3D density function.

def setCompConcDensity(sim, mesh, compname, specname,

  conc, dens, sampling=10):

    r = steps.rng.create('mt19937')

    r.initialize(datetime.datetime.now().microsecond)

    # Loop over all tetrahedrons of the requested

    # compartment

    for t in mesh.getComp(compname).tets:

        # Generate a number of random points in the

        # current tetrahedron and use these points

        # to sample the density function.

        dens2 = dens(t.getRanPnt(r, sampling)).mean()

        # Set the concentration in the tetrahedron to

        # the product of mean density value and the

        # peak concentration.

        sim.setTetConc(t.idx, specname, conc * dens2)

# Example of a density function which generates a

# Gaussian distribution

def dGaussian(p):

    m = 0.0

    s = 1.0e-6

    m2 = (p[:,0]-m)

    return np.exp(-(m2*m2) / (2*s*s))

# use both functions to set the initial conditions

setCompConcDensity(sim, mesh, 'outer', 'X', 20.0e-6,\ 

dGaussian)

These examples show the great fl exibility that Python offers in 
setting up initial conditions for the simulation. In addition, the API 
also features the actual control functions that allow one to reset a 
simulation, to advance the simulation to some future time and to 
sample the simulation state.

WHY PYTHON?

To understand the design of the STEPS software package, a short 
history is useful. An earlier incarnation of STEPS consisted of a sin-
gle standalone C++ application. Being focused on the simulation 
algorithm itself, not much thought was given to issues related to 
model description and simulation control and these aspects were put 
together in a single custom XML-based format. We didn’t use SBML 
at the time because it lacked support for models with detailed 3D fea-
tures. Meshes had to be stored in a separate custom data format and 
were referenced by fi lename from within these XML input fi les.

The limitations of our fi rst implementation became apparent 
rather quickly. We discovered that, because of the spatial aspects, 
describing the initial state of a 3D reaction-diffusion system is more 
complicated than describing the initial state of a well-mixed simu-
lation. People might not just want to set initial values in compart-
ments as a whole, but inject molecules or manipulate rate constants 
using more sophisticated geometric patterns, for instance using 
a Gaussian distribution to mimic the result of a laser uncaging 
event (Wang and Augustine, 1995; see Figure 3D). Sometimes the 
simulation might require this release pattern to be confi ned to a 
particular compartment; other simulations might want the pattern 
to be applied globally.

Coming up with an XML-based way of describing a wide range 
of in-simulation events, a problem similar and closely related 
to the problem of setting up initial conditions, and output gen-
eration proved to be quite diffi cult. By far the most common 
use case would be to have events occur on specifi c times during 
the course of a simulation. But what if an event would have to 
depend on some condition being met, such as the concentra-
tion of some species reaching a threshold? We ended up with 
an increasingly rich fauna of trigger, action and output objects 
which covered many possibilities, but which was complicated and 
costly to maintain and in the end still left many rare but sensible 
use cases uncovered.

When at some point we also started thinking about supporting 
well-mixed solvers directly from within STEPS, we decided that 
our old approach had reached its limits and set out to redesign 
STEPS by integrating it closely with a fully-featured scripting lan-
guage. Python was chosen because it is a mature language, simple 
to learn and already had a widespread user base in the computa-
tional sciences, with a wide selection of third-party packages and 
documentation to match. As described above, its object oriented 
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features allowed us to express the relationship between well-mixed 
and spatial models in a way that facilitates switching between the 
corresponding classes of simulators. Python’s excellent XML fea-
tures will allow us to keep up with projects such as SBML when their 
support for spatial modeling matures. Finally, Python can be used 
to integrate many miscellaneous tasks related to simulation that 
would otherwise typically be done with shell scripting. Examples 
are copying fi les to their right location, cleaning up, initiating a 
data processing or compacting method directly after a simulation 
fi nishes, etc.

The redesign was a major effort. The only part that could be 
reused from the old STEPS was the core simulator code, i.e. the 
solver currently known as tetexact. Everything else had to be rewrit-
ten following the modeling workfl ow described in Figure 1. We 
designed the solver API mentioned above and implemented it for 
our two current solvers. These API implementations were then 
exposed to Python using SWIG4, where they were further wrapped 
in a Python-side Solver base class that performs argument checking 
and provides some extra higher-level functionality. Much of the 
code for setting up a solver is the same for all current and future 
solvers and was therefore put in a shared set of C++ fi les. This 
reduces the amount of ‘plumbing code’ that needs to be written for 
a new solver, while still allowing considerable freedom in choosing 
the ultimate algorithm-specifi c internal data structures.

The main fl aw of our fi rst version of Pythonizing STEPS, as 
shown in Figure 4, is the many layers that have to be passed to go 
from calling a solver object method to the actual solver code and 
back. This may become a performance bottleneck when one is 
running a simulation that is interrupted repeatedly over small time 
intervals. This problem may be resolved in several ways. We can 
recode the Python-side Solver class, which is shared by all solvers, 
in C++ and derive an actual individual solver by overriding pro-
tected virtual methods. To avoid even the cost of virtual calls in this 
scenario, we can employ the Curiously Recurring Template Pattern 
(Vandevoorde and Josuttis, 2003). Alternatively, we can switch from 
SWIG to Boost.Python5, an ingenious method of exposing C++ 

code to Python that does not result in a Python-side shadow class, 
as is the case with SWIG.

DISCUSSION

We have described how STEPS mixes C++ with Python script-
ing to give modelers greater freedom in setting up and simulat-
ing a model, while maintaining the effi ciency of compiled and 
optimized C++ code. We described how going the extra mile to 
make a scientifi c simulator fully scriptable in this way has con-
siderable advantages. Because of the many scientifi c computing 
packages already available for Python, computational scientists 
are encouraged to develop sophisticated pipelines in which mod-
eling, simulation and even post processing and visualization are 
highly automated. In addition, we fi nd that the neural simulators 
such as Neuron (Carnevale and Hines, 2006) and Moose6 have 
committed to supporting Python, leading some to forward the 
challenging but intriguing possibility of using Python to actually 
‘glue’ together simulations (Cannon et al., 2007). One should keep 
in mind, however, that naively using an interpreted language like 
Python to exchange and map state information between simula-
tors at each time step might quickly run into performance and 
numerical issues that could be avoided only by deeper integra-
tion at the algorithmic level. Alternatives like the MUSIC project 
(Ekeberg and Djurfeldt, 2008) might therefore be better suited 
for this.

Like many before us, we have successfully used SWIG to expose 
our existing C++ simulation core to Python. The main techni-
cal issue that we encountered is the many layers between the user 
script and the C++ code which, as mentioned, can be resolved by 
porting the solver interface to C++ and possibly by switching to 
Boost.Python.

In the specifi c context of modeling 3D reaction-diffusion 
simulations we found that using Python had a large advantage 
for describing a complex internal state. There are many ways in 
which a biologist might want to set up and control this state and 
sample it for output. Switching to a scripting language allowed 
us to eliminate a great deal of complexity that was ultimately 
caused by sticking to a static, purely declarative input format in 
which model and simulation were thoughtlessly mixed. Since 
maintaining a backwards compatible API of basic getter/setter 
functions is less of an effort than designing and maintaining an 
increasingly ‘baroque’ set of trigger, action and output objects, 
we expect that this investment will keep paying off as STEPS 
keeps growing by adding more solvers and more capabilities. In 
other words, our switch to Python has actually saved us quite 
some time.

Finally, we believe that our experience suggests that a language 
like Python, as was proposed earlier in Cannon et al. (2007), can 
play a positive role in supporting the development of formal stand-
ards for sharing scientifi c models. Mirroring the requirements of 
understanding biology itself, biological simulators will necessar-
ily become more complex and will be able to simulate more and 
more aspects of the living cell. Codes such as M-Cell (Stiles and 

FIGURE 4 | Layered view of STEPS code after exposing it to Python with 

SWIG.

4http://www.swig.org
5http://www.boost.org

6http://moose.sourceforge.net

http://www.swig.org
http://www.boost.org
http://moose.sourceforge.net
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Bartol, 2001), MesoRD (Hattne et al., 2005), Smoldyn (Andrews 
and Bray, 2004) and also STEPS expand on the idea of ODE-based, 
well-mixed simulations of reaction kinetics by adding stochastic-
ity and spatial processes such as diffusion. But this is only the 
beginning. The future will see developments such as simulations 
of electrophysiological phenomena in high 3D detail or full elec-
trodiffusion (Lopreore et al., 2008), volume-occupying molecules 
(Gillespie et al., 2007; Schnell and Turner, 2004), dynamic meshes 
whose shape is controlled by simulated chemistry and, as men-
tioned earlier, possibly even the integration of simulators that work 
on different scales.

The designers of formal standards, such as SBML, can not 
be expected to keep up with these new trends as they come 
out, and still maintain a clean standard. This fact fl ows from a 
fundamental tension between on the one hand having a clean, 
 simulator-independent standard for publishing models, and on 
the other hand the turbulent, seemingly endless expansion of 
exactly what is required in a biological model to be relevant 

and how to breathe it all to life on a computer. The advan-
tages of having such standards is obviously too great to discard 
(Bergmann and Sauro, 2008), and successes have been achieved 
to where classes of modeling efforts have suffi ciently crystal-
lized, together with the methods to simulate them (Hucka et al., 
2003). The combination of Python and XML eases this tension 
by allowing projects that explore new types of simulations to 
mature independently from the standards for model sharing. It 
allows them to catch up with each other whenever and wherever 
it makes sense to do so.
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