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Abstract

Background: Accurate calling of SNPs and genotypes from next-generation sequencing data is an essential

prerequisite for most human genetics studies. A number of computational steps are required or recommended

when translating the raw sequencing data into the final calls. However, whether each step does contribute to the

performance of variant calling and how it affects the accuracy still remain unclear, making it difficult to select and

arrange appropriate steps to derive high quality variants from different sequencing data. In this study, we made a

systematic assessment of the relative contribution of each step to the accuracy of variant calling from Illumina

DNA sequencing data.

Results: We found that the read preprocessing step did not improve the accuracy of variant calling, contrary to

the general expectation. Although trimming off low-quality tails helped align more reads, it introduced lots of false

positives. The ability of markup duplication, local realignment and recalibration, to help eliminate false positive

variants depended on the sequencing depth. Rearranging these steps did not affect the results. The relative

performance of three popular multi-sample SNP callers, SAMtools, GATK, and GlfMultiples, also varied with the

sequencing depth.

Conclusions: Our findings clarify the necessity and effectiveness of computational steps for improving the

accuracy of SNP and genotype calls from Illumina sequencing data and can serve as a general guideline for

choosing SNP calling strategies for data with different coverage.

Background
Next-generation sequencing (NGS) technology is a power-

ful and cost-effective approach for large-scale DNA

sequencing [1]. It has significantly propelled the sequence-

based genetics and genomics research and its downstream

applications which include, but are not limited to, de novo

sequencing [2,3], quantifying expression level s[4-7], pro-

viding a genome-scale look at transcription-factor binding

[8,9], creating a foundation for understanding human dis-

ease [10-12] and systematically investigating of human

variation [13,14]. A number of projects based on NGS

technology are underway. For example, 1000 Genomes

Project http://www.1000genomes.org/ aims to provide

a comprehensive resource of human genetic variation as a

foundation for understanding the relationship between

genotype and phenotype [14]. The NHLBI GO Exome

Sequencing Project (ESP) http://evs.gs.washington.edu/

EVS/ focuses on protein coding regions to discover novel

genes and mechanisms contributing to heart, lung and

blood disorders. TCGA (The Cancer Genome Atlas)

http://cancergenome.nih.gov/ has been sequencing a large

number of tumor/normal pairs to provide insights into the

landscape of somatic mutations and the great genetic het-

erogeneity that defines the unique signature of individual

tumor [15]. The ability to discover a comprehensive list of

human genetic variation and to search for causing varia-

tion or mutation underlying diseases depends crucially on

the accurate calling of SNPs and genotypes [16].
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Translating the raw sequencing data into the final SNP

and genotype calls requires two essential steps: read map-

ping and SNP/genotype inference. First, reads are aligned

onto an available reference genome, then variable sites

are identified and genotypes at those sites are deter-

mined. SNP and genotype calling suffers from high error

rates that are due to the following factors. Poor quality or

low-quality tails prevent reads from being properly

mapped. Each read is aligned independently, causing

many reads that span indels are misaligned [17]. The raw

base-calling quality scores often co-vary with features

like sequence technology, machine cycle and sequence

context and, thus, cannot reflect the true base-calling

error rates [17]. These alignment and base-calling errors

propagate into SNP and genotype inference and lead to

false variant detection. Moreover, low-coverage sequen-

cing always introduces considerable uncertainty into the

results and makes accurate SNP and genotype calling dif-

ficult. To obtain high quality SNP and genotype data,

most contemporary algorithms use a probabilistic frame-

work to quantify the uncertainty and to model errors

introduced in alignment and base calling [17-20]. In addi-

tion, a number of optional steps are recommended. Some

are prior to variant calling, including raw reads prepro-

cessing, duplicate marking, local realignment, and base

quality score recalibration[17]. Others are posterior to

variant calling, including linkage-based genotype refining

[21-23] and SNP filtering [24] or variant quality score

recalibration [17].

Here we focused on those optional steps preceding var-

iant calling. We assessed their relative contributions and

evaluated the effect of their orders on the accuracy of SNP

and genotype calling with data generated on Illumina

sequencing platform, which is currently the most widely

used sequencing technology. Besides, we also compared

the performance of three popular multi-sample SNP call-

ers, SAMtools [20], GATK [17], and GlfMultiples [14], in

terms of dbSNP rate, transition to transversion ratio

(Ti/Tv ratio), and concordance rate with SNP arrays

(Methods section). Our findings can serve as a general

guide for choosing appropriate steps for SNP and geno-

type calling from Illumina sequencing data with different

coverage.

Methods
Sequencing data and SNP calling

Five samples were selected for whole exome sequencing.

All samples were taken from women with very early-onset

(22-32 years old) breast cancer or early-onset (38-41 years

old) plus a first-degree family history of breast cancer [25].

Genomic DNA from buffy coat was extracted using

QIAmp DNA kit (Qiagen, Valencia, CA) following the

manufacture’s protocol. Exonic regions were captured

using Illumina TruSeq Exome Enrichment Kit. It targeted

201,071 regions (62.1 million bases; 49.3% inside exons;

average length 309 bp), covering 96.5% of consensus cod-

ing sequence database (CCDS). An Illumina HiSeq 2000

was used to generate 100-bp paired-end reads (five sam-

ples per lane).

Reads were mapped to the NCBI Build 37 reference gen-

ome with BWA [26], sorted and indexed with SAMtools

[20]. Those reads were classified into three categories by

their mapped locations on the genome, inside target

regions, outside target regions with ≤ 200 bp distance and

outside target regions > 200 bp distance. For these five

samples, there was an average of 43.4% bases (42.7-43.7%)

mapped to target regions, 21.4% (21.3-21.7%) mapped to

outside ≤ 200 bp regions, and 35.2% (34.6-36.2%) mapped

to outside > 200 bp regions(Table 1). As expected, the

depth of coverage was the highest for inside target regions

(~60× coverage per sample on average) and lowest for

outside > 200 bp regions (~4× coverage per sample on

average) (Table 1). 98.8% target regions, 92.1% of outside

≤ 200 bp regions and 58.3% of outside > 200 bp regions

are accessed by sequencing data (Table 1).

Poor-quality tails of reads were dynamically trimmed

off by the BWA parameter (-q 15). Duplicated reads were

marked by Picard. Base quality recalibration and local

realignment were carried out using Genome Analysis

Toolkit (GATK) [17,27]. SNPs were called simulta-

neously on five samples by GATK Unified Genotyper,

SAMtools Mpileup and GlfMultiples using bases with

base quality≥20 and reads with mapping quality ≥20.

Definition of performance metrics

dbSNP rate

The percentage of variants found in dbSNP database [28]

(dbSNP rate) is used to measure an approximate false-

positive rate of SNP calling. Here dbSNP 129 was used,

which contains approximately 11 million SNP entries

[29-31]. It excludes the impact of the 1000 Genomes pro-

ject and is useful for evaluation. Multi-sample SNP call-

ing is able to find more rare variants than single sample

calling, thus the aggregate dbSNP rate is lower. Of ~640

k variants discovered from these five samples, about 77%

were already catalogued in dbSNP 129 (Table 2). It

should be noted that dbSNP rate is not an absolute mea-

surement of which variant calls are better, but the same

number of variants with higher dbSNP rate may reason-

ably suggest lower false-positive rates.

Transition/transversion ratio

The variants are observed either as transitions (between

purines, or between pyrimidines) or transversions

(between purines and pyrimidines). The ratio of the

number of transitions to the number of transversions is

particularly helpful for assessing the quality of SNP calls

[17]. Ti/Tv ratios are often calculated for known and

novel SNPs separately. The expected Ti/Tv ratios in
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whole-genome sequencing are 2.10 and 2.07 for known

and novel variants, respectively, and in the exome target

regions are 3.5 and 3.0, respectively [17]. The higher

Ti/Tv ratio generally indicates higher accuracy. When

detected variants demonstrate a ratio closer to the

expected ratio for random substitutions (e.g. ~0.5), low-

quality variant calling or data is implied.

Genotype concordance

All five samples have been genotyped using the Affyme-

trix SNP 6.0 array in a previous genome-wide associa-

tion study [25]. Detailed genotyping methods and

stringent quality control criteria were described in

Zheng et al., [25]. The original scan included three qual-

ity control samples in each 96-well plate, and the SNP

calls showed a very high concordance rate (mean 99.9%;

median 100%) for the quality control samples.

Genotypes obtained from the sequencing data were

compared with those from the SNP array. The non-refer-

ence discrepancy (NRD) rate was used to measure the

accuracy of genotype calls, which reported the percent of

discordant genotype calls at commonly called on-reference

sites on the SNP array and exome-sequencing. The mathe-

matical definition of NRD can be found in Depristo et al.,

[17]. The lower NRD generally indicates higher accuracy

of genotype calls.

Results
Effects of data preprocessing

Using high-quality reads is expected to identify true var-

iants. Generally, there are two ways to extract high-quality

reads from Illumina sequencing data: removing reads that

fail the Illumina chastity filter (filterY) and trimming off

low-quality ends from reads (trim). The trim step obtained

the largest number of mapped reads, while the filterY pro-

duced the fewest number of mapped reads resulting from

lots of low-quality reads being discarded (Figure 1A).

Although the trim step helped align more reads and iden-

tify slightly more variants (1.6%, ~651 k vs. ~641 k), it

obtained a lower dbSNP rate (77.21%) and a lower novel

transition/transversion ratio (Ti/Tv ratio) (1.58) compared

with those using raw sequencing data (dbSNP: 77.91%,

novel Ti/Tv ratio: 1.65) (Table 2). Trimming low-quality

tails added 11,748 novel variants, representing about 8% of

all novel calls, with a Ti/Tv ratio of 0.98, while it elimi-

nated 4,877 novel variants with a Ti/Tv ratio of 1.49 from

the raw call set (Figure 1B). The novel variants unique to

the trim call set had a much lower Ti/Tv ratio (0.98) com-

pared with the Ti/Tv ratio (1.49) of those unique to the

Table 1 Summary of bases distribution for five samples whole-exome sequencing data

Coverage Sample Total mapped bases (Gb) (%) Mean mapped
depth (×)

Bases accessed(Gb)
(% of genome regions)

High
(Inside target)

1 3.71 (43.7%) 60.53 0.61(98.8%)

2 3.75 (43.7%) 61.11

3 3.88 (43.5%) 63.27

4 3.90 (42.7%) 63.57

5 3.85 (43.4%) 62.71

Medium
(outside≤200 bp)

1 1.84 (21.7%) 30.05 0.74(92.1%)

2 1.85 (21.5%) 30.15

3 1.91 (21.4%) 31.14

4 1.93 (21.1%) 31.40

5 1.89 (21.3%) 30.82

Low
(outside > 200 bp)

1 2.94 (34.6%) 3.99 1.66 (58.3%)

2 2.99 (34.8%) 4.03

3 3.12 (35.1%) 4.18

4 3.30 (36.2%) 4.31

5 3.13 (35.3%) 4.16

Table 2 Effects of data preprocessing on SNP calling

accuracy

Call set
(QUAL > = 50)

Site discovery

No. SNPs Ti/Tv ratio

All Known Novel dbSNP% Known Novel

raw 640946 499377 141569 77.91% 2.19 1.65

filterY 630641 490722 139919 77.81% 2.19 1.65

trim 651391 502951 148440 77.21% 2.18 1.58

filterY&trim 640487 493741 146746 77.08% 2.18 1.58

raw: without any preprocessing steps; filterY: removing those reads that fail

the Illumina chastity filter; trim: trimming off low-quality tails from reads with

the BWA parameter (-q 15); filterY&trim: removing those reads that fail the

Illumina chastity filter and trimming off low quality tails. SNPs were called for

five samples together by GATK using bases with base quality≥20 and reads

with mapping quality ≥20. Only sites with QUAL > = 50 were considered as

potentially variable sites.
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raw call set, which suggested that more false positive var-

iants were introduced by the trim step. Results from apply-

ing both filterY and trim steps (filterY&trim) compared

with those from performing filterY step alone also revealed

that trim step would increase the number of false positives

(Table 2 and Figure 1C).

The filterY step identified fewer variants (~630 k); how-

ever, those variants showed the similar dbSNP rate

(~77.8%) and Ti/Tv ratio (2.19 and 1.65, respectively)

compared with the raw call set. Removing poor-quality

reads from raw data (filterY) added 887 known variants

with a Ti/Tv ratio of 1.72, while it eliminated 9542

known variants with a Ti/Tv ratio of 2.16 from the raw

call set (Figure 1D). That is, filterY step dropped more

than 8,000 known variants, representing about 2% of all

known calls. These results suggested that throwing out

those poor quality reads which failed the chastity filter

might not be necessary for further SNP calling. Compari-

son results from applying both filterY and trim steps (fil-

terY&trim) with those from performing trim step alone

also revealed the useless of filterY step on improving

SNP calling performance (Table 2 and Figure 1E).

A comprehensive comparison using variable quality

thresholds for high-coverage data (inside target regions,

~60× coverage per sample on average, Table 1), medium-

coverage data (outside regions with ≤ 200 bp distance,

~30× coverage per sample on average, Table 1) and low-

coverage data (outside regions with > 200 bp distance,

~4× coverage per sample on average, Table 1) came to the

same conclusion, that these two preprocessing step, filterY

and trim, could not improve the performance of SNP call-

ing, a conclusion contrary to the usual expectation. Appli-

cation of the trim step might even introduce false

positives, especially for high-coverage data. Compared

with low coverage data, the problem of introducing false

positives caused by the trim step is more serious for high

coverage data (Additional file 1).

Effects of duplicate marking, realignment and

recalibration

Among the three optional steps, local realignment, mark-

ing duplication and base quality recalibration, local rea-

lignment obtained the highest dbSNP rate (75.45%) and

novel Ti/Tv ratio (1.84) for high-coverage data (inside

target regions, ~60× coverage per sample on average)

(Table 3). Local realignment eliminated 1759 novel var-

iants from the initial call set, representing more than 7%

of all novel calls, with a Ti/Tv ratio of 0.77, which indi-

cated that about 90% of these novel calls were false-posi-

tives (Figure 2A). In contrast, base quality recalibration

eliminated only 446 novel variants with a Ti/Tv ratio of

0.56 but added 306 novel variants with a Ti/Tv ratio of

0.86 from the initial call set (Figure 2B). Marking duplica-

tion removed 244 novel variants with a Ti/Tv ratio of

0.97 but it added 107 novel variants with a Ti/Tv ratio of

0.78 from the initial call set (Figure 2C). These results

suggested that local realignment was efficient in reducing

the false-positive rate, while the effect of recalibration

Figure 1 Effects of read preprocessing steps on SNP calling. Number of mapped reads using different preprocessing steps for five samples

(A). Venn diagrams comparing identified novel variants between the raw call set and the call set with the trim step. Number of unique novel

SNPs, the Ti/Tv ratio and number of common novel SNPs were listed(B). Venn diagrams comparing identified novel variants between the call set

with the filterY step and the call set with both filterY and trim steps. Number of unique novel SNPs, the Ti/Tv ratio and number of common

novel SNPs were listed (C). Venn diagrams comparing identified known variants between the raw call set and the call set with the filterY step.

Number of unique known SNPs, the Ti/Tv ratio and number of common known SNPs were listed (D). Venn diagrams comparing identified

known variants between the call set with the trim step and the call set with both filterY and trim steps. Number of unique known SNPs, the Ti/

Tv ratio and number of common known SNPs were listed (E).
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and marking duplications was limited for deep-sequen-

cing data.

For low-coverage sequencing (outside regions with

> 200 bp distance, ~4× coverage per sample on average),

however, the ability of these three steps to eliminate

false-positive variants changed. Marking duplication

obtained the highest performance with 79.09% dbSNP

rate and a novel Ti/Tv ratio of 1.53 (Table 3). Marking

duplication removed 19472 novel variants from the

initial call set, representing more than 10% of all novel

calls, with a Ti/Tv ratio of 0.67 (Figure 2F). In contrast,

local realignment only eliminated 4139 novel variants

with a Ti/Tv ratio of 0.77 (Figure 2D) and recalibration

only removed 3526 novel variants with a Ti/Tv ratio of

0.93 (Figure 2E). These results suggested that marking

duplication was more efficient in reducing false-positive

rates than other two optional steps for low-coverage

sequencing data.

A comprehensive comparison using variable quality

thresholds also suggested that realignment was more

efficient in removing false positives than base call recali-

bration and marking duplication for high-coverage data,

whereas marking duplication was more efficient than

the other two for low-coverage data (Additional file 2).

The effect of orders of the optional steps on SNP call-

ing was also evaluated. We obtained the same accuracy

of SNP and genotype calling using different order

arrangements, suggesting that the order of steps had no

effect on the calling performance (Additional file 3).

Table 3 Effects of duplicate marking, realignment &

recalibration on SNP calling accuracy

Call set Site discovery

No. SNPs Ti/Tv ratio

All Known Novel dbSNP% Known Novel

Deep coverage with QUAL > 50

initial 96472 71534 24938 74.15% 2.50 1.73

realignment 94595 71374 23221 75.45% 2.50 1.84

recalibration 96316 71518 24798 74.25% 2.50 1.75

mark duplicate 96303 71502 24801 74.24% 2.50 1.73

Shallow coverage with QUAL > 20

initial 780490 607178 173312 77.79% 2.13 1.39

realignment 776560 606806 169754 78.14% 2.13 1.41

recalibration 783387 609601 173786 77.81% 2.13 1.40

mark duplicate 738198 583829 154369 79.09% 2.13 1.53

SNPs were called for 5 samples together by GATK using bases with base

quality≥20 and reads with mapping quality ≥20. Only sites with QUAL > 50

for deep-coverage or QUAL > 20 for shallow coverage were considered as

potentially variable sites.

Figure 2 Effects of realignment, recalibration and marking duplication on SNP calling from high and low coverage data. Venn diagrams

comparing identified novel variants between two call sets using different steps. Number of novel SNPs, the Ti/Tv ratio and number of common

novel SNPs were listed in the comparisons between the initial call set and the call set with realignment step for high (A) and low (D) coverage

data, between the initial call set and the call set with recalibration step for high (B) and low (E) coverage data, between the initial call set and

the call set with marking duplication step for high (C) and low (F) coverage data.

Liu et al. BMC Genomics 2012, 13(Suppl 8):S8

http://www.biomedcentral.com/1471-2164/13/S8/S8

Page 5 of 8



Comparing the performance of GATK, SAMtools and

GlfMultiples

SAMtools and GATK obtained higher known and novel

Ti/Tv ratios than GlfMultiples for deep-sequencing data

(inside target regions), while they produced a lower

dbSNP rate and known and novel Ti/Tv ratios than

GlfMultiples for low-sequencing data (outside regions

>200 bp) when the same number of SNPs were identified

(Figure 3). For those data with medium-coverage, these

three multi-sample calling tools produced similar dbSNP

rate, known and novel Ti/Tv ratios (outside regions

≤ 200 bp). All of these three tools produced a similar gen-

otype concordance with SNP chip data for all regions

(Figure 3). These results suggested that SAMtools and

GATK had better performance than GlfMultiples for

high-coverage data, while GlfMultiples were superior to

SAMtools and GATK for low-coverage data.

Discussion
Intriguingly, we found that the read preprocessing steps

before mapping were not necessary. Trimming off low-

quality tails from reads even worsen the power of variant

Figure 3 Comparison of the calling performance of SAMtools, GATK and GlfMultiples in terms of dbSNP rate, Ti/Tv ratio, novel Ti/Tv

ratio and NRD (non-reference discrepancy) from all regions, inside target regions, outside target regions with ≤ 200 bp distance and

outside target regions > 200 bp distances from Illumina whole-exome sequencing data.
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calling, although it helps align more reads with high error

rate in the tail. A possible explanation is that although the

quality of tails is not good enough, they are still helpful for

reads mapping. Thus trimming off low-quality tails would

lead to more alignment artifacts than using raw reads and,

in turn, cause false-positive variants discovery. It should be

noted that trimming reads is somehow a question of trial

and error and a balance between the number of mapped

reads and mapping accuracy. If the decrease of the quality

of the 3’ end is acceptable and the loss of coverage is

affordable, trimming is not necessary. In contrast, if there

is a dramatic quality decrease at the tail and poor quality

was observed at very earlier sequencing cycle, trimming

might be helpful by increasing the number of mapped

reads greatly but without reducing the mapping accuracy

much.

For the steps after read mapping, including marking

duplication, realignment and recalibration, the relative

contribution of each step to the accuracy of variant calling

depends on the sequencing depth. When the sequencing

depth is high, read mapping can benefit from finding con-

sistent alignment among all reads and thus reduce the

number of false-positives effectively. When the sequencing

depth is low, however, the lack of sufficient reads mapping

to the locus limits the power of local multiple sequence

alignment and thus it cannot improve the quality of var-

iant calls much. In such circumstances, marking duplica-

tion plays a more important role in reducing false

positives than realignment and recalibration. Moreover,

the performances of three popular multi-sample calling

tools, SAMtools, GATK and GlfMultiples, also depend

on the sequencing depth. They use the same genotype

likelihood model, but GlfMultiples not only takes into

account the maximized likelihood but also an overall prior

for each type of polymorphism. For example, they favor

sites with transition polymorphisms over those with trans-

version [14]. Thus, incorporating such additional informa-

tion helps reduce the uncertainty associated with shallow-

sequencing data. However, the additional information will

disturb the identification of variants when enough evi-

dence is already involved with deep-sequencing data.

The steps posterior to variant calling, including link-

age-based genotype refining and SNP filtering or variant

quality score recalibration, also contribute a lot to the

accurate SNP and genotype calling. The use of LD (link-

age-disequilibrium) patterns can substantially improve

genotype calling when multiple samples have been

sequenced [16]. Because not all information regarding

errors can be fully incorporated into the statistical frame-

work, the proper SNP filtering strategies are recom-

mended to reduce the error rates [24]. Besides, the

consensus of multiple call sets from different methods

provide higher quality than any of individual call sets

[14]. Even with the best pipelines, however, we are still

far from obtaining a complete and accurate picture of

SNPs and genotypes in the human genome. The most

challenging task is to distinguish rare variants from

sequencing errors. SNP and genotype calling for rare var-

iants, which would not be represented in any reference

panel, may not improve much by the use of LD informa-

tion. To identify rare variants, a direct and more powerful

approach is to sequence a large number of individuals

[23,32]. In addition to using the proper sequencing stra-

tegies, developing more accurate SNP detection methods

is needed. More research is also needed in other areas,

including longer read depths, improved protocols for

generate paired ends, advances in sequencing technology

with lower base calling error rates, and more powerful

alignment methods.

Conclusions
Here, we evaluated the effect of a number of computa-

tional steps on the accuracy of SNP and genotype calling

from Illumina sequencing data with different coverage. To

our knowledge, no other study has made a systematic

assessment of whether each step is valuable and how it

affects the quality of variant detection. Our findings can

serves as the general guideline for choosing SNP calling

strategies.

Additional material

Additional file 1: Comparison of effect of different preprocessing

steps. A detailed comparison of calling results with different

preprocessing steps in terms of dbSNP rate, Ti/Tv ratio, novel Ti/Tv ratio

and NRD for all regions, inside target regions, outside ≤ 200 bp regions,

and outside > 200 bp regions from Illumina whole-exome sequencing

data. Raw (blue), filterY (green), trim (black) and filterY&trim (red).

Additional file 2: Comparison of effect of marking duplication,

realignment and recalibration. A detailed comparison of results using

different steps, marking duplication, realignment and recalibration, in

terms of dbSNP rate, Ti/Tv ratio, novel Ti/Tv ratio and NRD for all regions,

inside target regions, outside ≤ 200 bp regions, and outside > 200 bp

regions from Illumina whole-exome sequencing data. Initial alignment

(black), marking duplication (yellow), realignment (violet), recalibration

(blue), marking duplication followed by realignment (red), marking

duplication followed by realignment and recalibration (brown).

Additional file 3: Comparison of effect of different arrangements of

marking duplication, realignment and recalibration. A detailed

comparison of results by arranging three steps, marking duplication,

realignment and recalibration, in different orders in terms of dbSNP rate,

Ti/Tv ratio, novel Ti/Tv ratio and NRD for all regions, inside target regions,

outside ≤ 200 bp regions, and outside > 200 bp regions from Illumina

whole-exome sequencing data. Marking duplication followed by

realignment and recalibration (red), marking duplication followed by

recalibration and realignment (red), realignment followed by recalibration

and marking duplication (gray).
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