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Abstract
Background—The promise of Alzheimer’s disease (AD) biomarkers has led to their
incorporation in new diagnostic criteria and in therapeutic trials; however, significant barriers exist
to widespread use. Chief among these is the lack of internationally accepted standards for
quantitative metrics. Hippocampal volumetry is the most widely studied quantitative magnetic
resonance imaging (MRI) measure in AD and thus represents the most rational target for an initial
effort at standardization.

Methods and Results—The authors of this position paper propose a path toward this goal. The
steps include: 1) Establish and empower an oversight board to manage and assess the effort, 2)
Adopt the standardized definition of anatomic hippocampal boundaries on MRI arising from the
EADC-ADNI hippocampal harmonization effort as a Reference Standard, 3) Establish a
scientifically appropriate, publicly available Reference Standard Dataset based on manual
delineation of the hippocampus in an appropriate sample of subjects (ADNI), and 4) Define
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minimum technical and prognostic performance metrics for validation of new measurement
techniques using the Reference Standard Dataset as a benchmark.

Conclusions—Although manual delineation of the hippocampus is the best available reference
standard, practical application of hippocampal volumetry will require automated methods. Our
intent is to establish a mechanism for credentialing automated software applications to achieve
internationally recognized accuracy and prognostic performance standards that lead to the
systematic evaluation and then widespread acceptance and use of hippocampal volumetry. The
standardization and assay validation process outlined for hippocampal volumetry is envisioned as
a template that could be applied to other imaging biomarkers.

Keywords
Alzheimer’s disease; biomarkers; Magnetic resonance imaging; hippocampus; biomarker
standards

1. Introduction
A biomarker is a physiological, biochemical, or anatomic parameter that can be objectively
measured as an indicator of normal biologic processes, pathological processes, or responses
to a therapeutic intervention (1). Biomarkers used in the Alzheimer’s disease (AD) field
include both imaging measures and biofluid analytes. Biofluid analytes in this context can
refer to proteins in any biofluid, however cerebrospinal fluid (CSF) biomarkers are presently
the most well developed (2). The five most widely studied biomarkers in AD can be divided
into two major categories: 1) Biomarkers of cerebral Aβ amyloid accumulation - these are
increased radiotracer retention on amyloid-tracer based positron emission tomography (PET)
imaging and low CSF Aβ 1-42, and 2) Biomarkers of neuronal degeneration or injury - these
are elevated CSF tau (both total and phosphorylated tau); decreased fluorodeoxyglucose
(FDG) uptake on PET in the temporo-parietal cortex; and brain atrophy in the medial, basal
and lateral temporal lobes and the medial and lateral parietal cortices determined from
structural magnetic resonance imaging (MRI) or computed tomography (CT) (3). Three of
these five major AD biomarkers are imaging measures and imaging is the primary focus of
this position paper. Biomarkers are increasingly important in AD in two contexts: clinical
diagnosis/prognosis and therapeutic trials.

Criteria for the clinical diagnosis of AD were established in 1984 (4). These criteria have
been widely adopted, validated against neuropathological examination in many studies, and
are still used today. A consensus now exists, however, that diagnostic criteria for AD should
be updated to reflect the scientific advances of the past quarter of a century. One of most
important of these advances is the development of biomarkers for AD. This recognition has
inspired recent efforts on several fronts to revise diagnostic criteria for AD. The two most
well-known such efforts are those of Dubois et al (5, 6) and the National Institute on Aging
(NIA)-Alzheimer’s Association (AA) (7-10). The NIA-AA commissioned three work
groups to revise diagnostic criteria. Each was assigned the task of defining or revising
criteria for one of three recognized phases of the disease: pre-clinical or asymptomatic AD,
symptomatic pre-dementia or mild cognitive impairment (MCI), and the AD dementia phase
(7-10). Biomarkers providing evidence of in situ AD pathophysiology are employed in the
revised definitions of AD in all three phases of the disease by the NIA-AA and are also
included in the criteria of Dubois et al (5, 6).

The second major use for biomarkers of AD is in clinical trials, where biomarkers can be
employed for several distinct purposes. As an indicator of AD pathophysiological processes,
AD biomarkers may be used for subject inclusion/exclusion – to ensure study subjects are
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appropriate for targeting of the therapeutic mechanism of action or as an enrichment strategy
to improve efficiency of therapeutic trials (2, 11). Biomarkers also provide a biologically-
based measure of disease severity. They can be used as a covariate in outcome analyses and
as safety measures. Finally, an important application of AD biomarkers in clinical trials is as
outcome measures, in which an effect on the biomarker is sought as evidence of
modification of the underlying pathological AD process (12-21). However, since AD
pathophysiology is increasingly being recognized to be very complex and multifaceted,
effects of candidate drugs on some individual pathophysiological aspects of AD may not
necessarily be of functional or cognitive relevance. Therefore, increasing efforts are being
spent on developing biomarkers which could serve as surrogate endpoints in clinical trials,
accurately predicting and reflecting clinically significant outcomes (2, 22) Biomarkers are
more objective and reliable quantitative measures of AD pathophysiological processes than
traditional cognitive and functional outcomes that are affected by subject motivation and
extrinsic factors such as alertness, environmental stresses, and informant mood and distress.

The evaluation of the value of biomarkers is different for therapeutic trials than for clinical
diagnosis, but the rationale and methods to standardize and validate the reliability of the
measures are very similar. Moreover, if an imaging biomarker is used as an inclusion
criterion for subjects participating in a clinical trial of a compound that subsequently
achieves regulatory approval, then it is possible, some would say likely, that regulators will
require the same biomarker must be approved as a diagnostic to identify patients that are
suitable for treatment. This would then require that the biomarker, in our case imaging, be
easily implementable in clinical imaging facilities world-wide. Therefore, although
requirements in terms of precision and sensitivity to pathology may vary, issues pertaining
to standardization of an imaging biomarker for use in clinical trials and for clinical
diagnostics are inextricably interwoven.

The potential value of quantitative imaging biomarkers for both clinical diagnosis and
clinical trials is clear, but major barriers exist to widespread acceptance and implementation.
The most substantive barriers have been the lack of standardized methods for 1) image
acquisition, 2) extraction of quantitative information from images, and 3) linking
quantitative metrics to internationally recognized performance criteria. These in turn have
impeded the establishment of cut points in the continuous range of quantitative values that
can be used in diagnosis and evaluating change in clinical trials. Standardization of image
acquisition for structural MRI and PET scans has been a major focus of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) project (23, 24) and ADNI acquisition protocols
have become the de facto standard for clinical trials and could be applied clinically. On the
other hand, little progress has been made in the standardization of techniques for
quantitative image analysis, either in ADNI or in the field in general. This is particularly true
for MRI where the lack of standardization has led to publication of values that are highly
disparate across the literature. For example, greater than two-fold differences in
hippocampal volume of cognitively normal elderly subjects have been reported from
different centers (25). This is unlikely to have a basis in biology and is almost certainly due
to inter-center differences in the measurement tools and the anatomical protocols for
delineating the hippocampus. Likewise, a strong methodological dependence is evident in
published rates of hippocampal atrophy. Three-fold differences in rates of hippocampal
atrophy have been reported in elderly controls as well as wide variations in apparently
similar cohorts of AD patients (26). For example, Du et al (27) reported annualized rates of
hippocampal atrophy in healthy elderly controls mean age 77 of 0.8%/yr; Jack et al (28) in
controls age 78 of 1.4%/yr and Wang et al (29) mean age 73 of 2.3%/yr. This strong
dependence upon the method used and its specific implementation undermines the
credibility of the results. Both newly proposed diagnostic criteria explicitly point out that
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extensive work on imaging biomarker standardization is needed prior to widespread
adoption for diagnostic purposes.

2. Why hippocampal volume?
Qualification or general acceptance of the validity of a biomarker in clinical trials must rest
on a well-established body of evidence beginning with widespread agreement that there is
clinical significance to the result of the biomarker and that it can be measured with
appropriate accuracy and reproducibility. Quantitative measurement of hippocampal volume
fulfills these basic criteria. The advantages of hippocampal volume as a target for an initial
standardization and assay validation exercise are: 1) The hippocampus is an anatomically
defined structure with boundaries that are visually definable in a properly acquired MRI
scan. 2) The hippocampus is involved early and progressively with neuronal loss and
neurofibrillary tangles, which is one of the primary hallmarks of AD pathology (30). 3) A
large imaging and pathology literature provides evidence that loss of hippocampal volume is
significant in AD. Numerous studies have shown the association of hippocampal atrophy
with neurodegenerative pathology at autopsy (31-36), with clinical diagnoses of AD or MCI
(37-43), and with the severity of cognitive disorders and episodic memory deficits due to
AD pathophysiology (44, 45). In addition, longitudinal measures of change in hippocampal
volume both predict the future cognitive decline and correlate with contemporary indices of
clinical decline (46, 47), and quantitative measures of the hippocampus predict progression
from MCI to AD (48-63).. 4) Fully automated software tools are now available that can
measure hippocampal volume efficiently and reproducibly (21, 37, 58, 64-71). Visual rating
(72-74), while convenient and currently used in some diagnostic settings, does not lend itself
to detecting subtle size differences, lacks precision relative to quantitative methods, and
does not take advantage of the power of current technology. Formal computer-aided manual
tracing of the entire hippocampus was introduced over two decades ago to aid in seizure
lateralization (75). Although manual hippocampal tracing has been effective for research
studies in different diseases, and still serves as the best available Reference Standard
measure of the hippocampus on MRI (76), it is time consuming and requires highly trained
operators. Thus it is not feasible in routine clinical practice and due to its expense it is
impractical in clinical trials. Fully-automated hippocampal volumetry using standardized
methods would be a practical alternative to manual methods. Automated hippocampal
volumetry has successfully enabled the discovery of novel genes associated with
hippocampal volume in over 7000 subjects scanned at multiple internationally distributed
sites. This result supports the assertion that such methods can be efficiently and reproducibly
applied on a worldwide scale (77). Furthermore, software methods that employ within-
subject registration permit sensitive measures of volume change over time (51, 78). 5) While
more complex MRI measures of disease-related atrophy consisting of combinations of
multiple regions of interest (ROI) might have superior diagnostic properties compared to
hippocampal volume (79-84), the analysis of hippocampal volume is less complex than
multi-ROI approaches so a reference standard is easier to generate. Specifically, the
hippocampus can be delineated by hand, but the disease signatures of more complex analytic
methods are a result of training and machine learning methods that would present a further
challenge to validate, and are likely to evolve over time.

Further supporting hippocampal volumetry as a target for initial AD imaging biomarker
standardization and assay validation is the fact that clinical guidelines in many countries (85,
86) dictate that all patients investigated for cognitive impairment should undergo structural
brain imaging to exclude treatable causes such as tumors and hematoma. An MRI
acquisition sequence that would permit quantitative analysis of hippocampal volume is easy
to include in a routine clinical MRI examination, only lengthens the exam by a few minutes,
and is currently considered to be an essential part of a clinically diagnostic imaging protocol
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at some centers. Moreover, a significant effort has already been expended to standardize
acquisition parameters for the high resolution 3D anatomical MR imaging sequence needed
for quantitative volume measures across MRI vendors in the ADNI study (23). The ADNI
3D T1 anatomical sequence used for volumetric measurements can be performed in a
standardized manner in an overwhelming majority of imaging centers worldwide. Finally,
there is an ongoing international initiative led by one of the co-authors (GBF) to establish a
Reference Standard in hand-drawn hippocampal volumes, which is the European
Alzheimer’s Disease Centers (EADC) – ADNI Hippocampal Harmonization Effort (87, 88).

The issue of validating imaging biomarkers for AD has recently drawn the attention of non-
profit organizations, including the Radiological Society of North America (RSNA) and the
Coalition Against Major Disease (CAMD). CAMD is part of Critical Path Institute a
nonprofit public private partnership dedicated to more efficient drug development.
Qualification of hippocampal atrophy for use in clinical trial enrichment is being pursued by
CAMD with the US Food and Drug Administration (FDA) and European Medicines Agency
(EMA). At a meeting of The Radiological Society of North America Quantitative Imaging
Biomarkers consortium in September, 2010 a work group was convened to address the issue
of standardizing quantitative imaging of AD. Among the candidate imaging modalities
discussed, measures of hippocampal volume on structural MRI were identified as the most
widely used in the context of multicenter clinical trials, and therefore were the most obvious
candidates for an initial (exemplar) effort to standardize quantitative imaging biomarkers.
This position paper follows from the recommendations of this RSNA work group.

3. Biomarker development
In general terms, three separate steps are required for biomarker development: 1) Assay
validation (also called technical or analytical performance validity) to show that, when
following defined standardized procedures, the biomarker can be measured precisely and
accurately compared to a reference standard (89), 2) Clinical Validation to establish that the
biomarker has value for a specific intended task and context of use, and 3) Qualification of
the biomarker with the appropriate regulatory agencies based upon wide-spread consensus
that the biomarker is “fit for purpose” for a particular use. Each proposed task (e.g.,
diagnostic, prognostic, outcome) needs to be considered separately. Qualification of a
biomarker for clinical trials may be a stepping stone to a qualification for its use as a clinical
diagnostic. However, the use of a biomarker in clinical diagnosis is distinct from its use in
therapeutic trials, and development may focus on one or the other first. The use of a
biomarker in clinical trials is at the discretion of the trial sponsor, but mechanisms have been
introduced by which regulatory bodies (e.g., the US Food and Drug Administration Center
for Drug Evaluation and Research, FDA CDER; or the European Medicines Agency EMA)
qualify biomarkers for use in clinical trials. The use of a biomarker for clinical diagnosis
requires regulatory approval in the relevant jurisdiction (e.g., approval by FDA Center for
Devices and Radiological Health, CDRH, in the USA; or CE marking in Europe), and may
separately also require approval from healthcare funders for reimbursement.

4. Steps to standardization and validation of hippocampal volumetry as a
biomarker of AD

Below we outline the steps of a proposed work plan that would lead to standardization of
quantitative (automated or manual) hippocampal volumetry as a biomarker for AD in
evaluative studies in the context of clinical trials and for diagnosis.

1. Establish an Oversight Board to manage the effort and empower this body with
authority to make decisions necessary to assess the results as outlined below. The
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Oversight Board should have the following attributes: a) include all necessary areas
of expertise, b) be unbiased, c) represent both academia as well as industry, and d)
be international. All potential conflicts of interest must be fully disclosed. Our
recommendation is that this oversight board be linked to the Alzheimer’s
Association.

2. Identify a standardized definition of anatomic hippocampal boundaries on MRI
with the assistance of expert neuroanatomists for use as a Reference Standard.
Anatomic boundary criteria should be acceptable to the international scientific
community and consistent with use in all neuroscience disciplines. We recognize
that for hippocampal volume measures to be widely used diagnostically in clinical
practice and in clinical trials, automated techniques are essential. However, manual
tracing of the hippocampus using a consensus-from-experts approach in accordance
with a standardized definition provides the most effective Reference Standard to
evaluate automated methods. Expert opinion is an accepted method to create a
reference standard. This is preferable to the alternative, arbitrarily picking one
automated method and anointing it as the Reference Standard, which would be
problematic. Because most, if not all, automated techniques rely on some a priori
anatomical notion of hippocampal boundaries, such an arbitrary approach would
not reflect a consensus from the scientific community as a whole and would not
result in a Reference Standard with broad-based support from all stakeholders.
Since an international effort is currently in place with precisely this aim, leveraging
the work of the EADC-ADNI Hippocampal Harmonization effort (87, 88) is the
most logical and practical approach. The Reference Standard recommended by the
authors of this position paper is therefore the manual hippocampal tracing of ADNI
subjects who will be developed by the EADC-ADNI effort.

3. Establish a Reference Standard Dataset based on manual delineation of the
hippocampus in accordance with the standardized definition. The Reference
Standard Dataset should have the following attributes:

a. All subjects in the reference database must have given informed consent
for public access under an ethics board-approved protocol. Compliance
with relevant privacy legislation to the jurisdiction where the data were
collected, and permission of a research ethics committee for use of the
data should be obtained. In the US, the relevant guidelines are those of the
Health Insurance Portability and Accountability Act (HIPAA); however,
other jurisdictions will have different regulations.

b. Access to the database must be straightforward, open, and readily
available.

c. Appropriate subjects, in clinical characteristics and number, must be
included in the reference database – in this case, elderly cognitively
normal control, MCI and AD subjects diagnosed according to
internationally recognized diagnostic criteria.

d. MRI scans must have been acquired with a standardized protocol that is
amenable to widespread use.

e. Appropriate clinical meta-data must be linked to the MRI scans and
readily available to users – i.e., demographics, clinical diagnosis, basic
neuropsychology, and longitudinal clinical course. The subjects, 3D
volume T1-weighted images, and clinical data of ADNI represent a data
set that meets these criteria. The authors recommend that the EADC-
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ADNI harmonization traces or masks of the 1.5T ADNI MPRAGE data
serve as the hippocampal volume Reference Standard Dataset.

4. Extend the Reference Standard Dataset to enable a thorough evaluation of technical
aspects of MR acquisition on measurement performance. This includes the effects
of MR vendor, receiver coil type, accelerated acquisition methods, and field
strength. Although the EADC-ADNI harmonization plan focuses are on 1.5T data,
a significant portion of neuroimaging in the future will be performed at 3T, with
acquisition acceleration, and with increasingly complex coil arrays. The potential
effects of these technical advances on measurement standardization should be
investigated (90).

5. Split the complete sample of traced hippocampi into balanced training and test data
sets for assessing the technical performance characteristics of new analysis
methods. This would enable automated methods to be trained on a portion of the
reference data and then test performance against an independent subset of the
reference data. Careful attention to the composition of these subsets is important so
that age, gender or clinical variables are not inadvertently unbalanced.

6. Develop standards for reporting measurement units including a standardized
approach for normalization of raw hippocampal volume measures. This will
include defining correct measures of head size through standardization of
intracranial volume measures. In addition to disease severity, hippocampal volume
is affected by other variables that are easily ascertained such as age, sex, and head
size (taller people tend to have larger brains and thus larger intracranial volume)
(91). Experience indicates that normalization of raw hippocampal volumes for
these descriptive or confounds variables improves the performance of hippocampal
volumetry in evaluation studies, and thus recommendations for standardized
normalization procedures for adjusting raw hippocampal volumes (e.g., by head
size, age, sex) in the reference data set will be necessary.

7. Define minimum technical performance metrics as benchmarks to judge new
analysis methods (89). At a minimum these metrics should include:

a. Accuracy with respect to the manually traced Reference Standard Dataset.
We note that automated techniques will likely not precisely match a
manually traced Reference Standard. However, a straightforward
mathematical transformation of the output an accurate automated
algorithm to match the reference standard should be possible. Criteria
would need to be set as to how close the automated method would have to
match the manual tracing in order for it to be credentialed by the oversight
board.

b. Test/re-test precision. This would include not just numeric precision at the
volume level, but also more exacting indices of area/pixel overlap such as
Dice coefficients.

c. Compliance with regulatory requirements (Good Clinical Practice (GCP),
FDA 21 CFR part 11, EU GMP Annex 11 on Computerized Systems) for
any computer systems running these algorithms.

8. Define minimum prognostic performance metrics for new analysis methods based
upon benchmarks established from Reference Standard Dataset: We recommend
metrics that predict conversion from MCI to AD within 24 months, progression of
dementia severity at 24 months in patients with AD, and maintenance of normal
cognition at 24 months in cognitively normal subjects (sensitivity, specificity,
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positive and negative predictive value, ROC analysis). This will serve as further
assay validation for new analysis methods.

9. Empower the oversight board to oversee credentialing of applications for analysis
methods. While the Reference Standard Dataset can be used to credential new
manual tracers, its primary use is envisioned as a means of validating and
credentialing automated hippocampal quantification methods for use in therapeutic
trials and for new clinical diagnostic criteria. The board could also make context of
use recommendations based on limitations identified during the evaluation of a
particular method. In order for a potential hippocampal volume measurement
application to be credentialed by the oversight board it would have to meet
established technical and prognostic performance benchmarks using the reference
data set described above.

Ideally, the work plan would follow the timeline above where initial steps would focus on
establishing the reference standard of manual hippocampus traces, generating a standardized
approach to volume normalization and benchmark performance metrics. Once the reference
standard is established, then the focus likely would be on evaluation studies and qualifying
the reference standard with the FDA and EMA for diagnostic, prognostic and outcome use
in clinical trials. Standardized acquisition of MRI scans suitable for hippocampal volumetry
are already widely performed and support from the pharmaceutical industry is likely.
Subsequently, we expect evaluation studies will be conducted to show the diagnostic value
of hippocampal volumetry use outside the context of clinical trials. We wish to emphasize
that the intent of this position paper is not to stifle existing alternative methods or innovative
development of new methods, but rather to facilitate the development of widely available
implementations of automated hippocampal volumetry methods, and to serve as a template
for an initial effort which can then be used for other imaging biomarkers.

5. Illustration
As an example illustrating the approach discussed above we identified 373 ADNI subjects
diagnosed as MCI at baseline who qualified for an analysis of time to progression to AD. Of
the 397 ADNI subjects diagnosed as MCI at baseline, 16 had no follow-up visits, and 8
failed quality control, leaving 373 for this analysis (Table 1). A list of the ADNI subject ID
numbers used in the example MCI analyses is included as a Supplement. All subjects had
hippocampal volume measured in three ways, labeled Methods A, B and C here. In this
exercise, we considered Method A to represent the Reference Standard Dataset, and
assessed Methods B and C in two ways: technical performance accuracy relative to the
Reference Standard Dataset and prognostic performance in predicting conversion from MCI
to AD at 2 years post baseline. While the data presented below are real, and not
hypothetical, the specific methods are left undefined because we do not wish to have this
position paper misconstrued as evidence that the authors endorse a particular method for
credentialing.

Of the 373 patients, 166 progressed from MCI to AD during follow-up and 8 progressed to
non-AD dementia based upon clinical criteria. We also examined a subset of 313 subjects
that either progressed to AD at or prior to the 24 month visit (n=135) or had available
follow-up through the 24 month visit without progressing to AD (n=178) to evaluate
differences in hippocampal volume for those that progressed at 24 months vs. those that
remain stable. Subjects who progressed to non-AD dementia at or before 24 months were
excluded from this analysis.

Method B potentially meets two major criteria for credentialing – it is highly accurate in the
group-wise and individual measurement of hippocampal volume relative to Method A as
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shown in the table and scatter plots, and it also has essentially identical performance in
predicting conversion from MCI to AD (Fig. 1, Table 2). Method C has a similar prognostic
performance in predicting conversion to AD as Method A as shown in the ROC analysis, but
in its current form might not meet technical accuracy criteria relative to the reference
standard dataset. This is how we would envision the credentialing process would proceed for
most automated applications, with the EADC-ADNI harmonization data set of manually
traced hippocampi serving as the Reference Standard Dataset and the oversight committee
setting predetermined minimal benchmark criteria to judge the performance of individual
methods.

One important feature of the process for critically evaluating automated hippocampal
segmentation algorithms is the failure rate. For a variety of reasons, usually related to poor
scan quality, automated algorithms will fail to produce a plausible result in some proportion
of cases in a study. Taken to the extreme, imagine, for example, a method that produced
perfect predictive results in cases that underwent successful hippocampal segmentation, but
the method failed in 99% of the time. The method would score quite well on prognostic
metrics, but would not be practical. A fair and objective approach therefore is needed to
penalize automated segmentation algorithms that fail in an unacceptably high proportion of
cases.

6. Future efforts
1. Although a position paper is a first step, the objective of standardizing hippocampal

volumetry as an AD biomarker will require active participation by stakeholders in
academia and industry. The authors’ objective is to see hippocampal volumetry
evolve from its current state, a measure that is valid only in specific studies or a
single institution, to a universally accepted biomarker with standardized units of
measure. In some cases, this could simply involve having developers of automated
measurement tools directly import the EADC-ADNI anatomic definition of the
hippocampal boundaries into the atlas of the automated application.

2. Standardizing single time point hippocampal volume as an AD biomarker is the
most logical and readily achievable initial goal; however, the authors recognize that
other more complex topographic structural MRI measures might be more specific,
or ultimately more powerful. The major difficulty here is identifying an appropriate
reference standard if an anatomically based classifier does not conform to the
boundaries of a classically defined anatomic structure as the hippocampus does.

3. Longitudinal change measures on structural MRI should be standardized using the
approach outlined above as a template. This could include an extension of the
EADC-ADNI effort to include expert manual tracing of serial hippocampi to create
a longitudinal reference standard dataset using the same model as the single time
point dataset proposed in this position paper.

4. FDG PET, amyloid PET imaging, and possibly other MRI modalities (e.g., resting
state functional connectivity, diffusion tensor imaging, and arterial spin labeled
perfusion imaging) are also important imaging biomarkers for AD. Pursuing
standardized quantitative metrics for these imaging modalities is a high priority.
The efforts to standardize, validate and evaluate quantitative measures in these
modalities could roughly follow the same approach outlined above for hippocampal
volume.

5. For all imaging biomarkers, future efforts will need to focus on developing a
quantitative score to allow the assessment of individual imaging biomarker
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measures against well-developed norms that incorporate other appropriate
covariates, such as age, sex and head size are for the hippocampus (91, 92).

6. Ideally, diagnostic biomarkers should be evaluated against post-mortem
histopathological findings. It is well established that hippocampal atrophy while a
feature of AD, is not specific for AD as it occurs in other conditions (32, 93).

7. To optimize the use of biomarkers in new AD diagnostic criteria - future efforts
will need to focus on establishing diagnostic cut points in the continuous range of
quantitative values to identify normal, abnormal, and indeterminate levels in
individual subjects. For use in clinical practice, quantitative metrics will need to be
developed and then tested in clinically typical and representative populations.
Diagnostic biomarkers in AD should function analogously to those in other
diseases where, for example, cut points in the continuous range of blood pressure
and fasting serum glucose are universally recognized as useful in aiding the
diagnosis of hypertension and diabetes and standardized treatment protocols are
based on these biomarker cut points. For the purposes of diagnosis in typical
clinical settings, cut points should be derived from carefully characterized groups
of subjects chosen in such a way that the results can be generalized to the overall
population. For example, ADNI subjects were selected to represent a typical AD
clinical trial, with specific inclusion/exclusion criteria. Thus the results from ADNI
are not generalizable to the overall population and are not optimal to generate
normative data for general diagnostic purposes. Selecting meaningful diagnostic
cut points is complicated by the fact the many cognitively normal elderly subjects
harbor significant AD pathology. Thus the definition of normal is not
straightforward. Consensus guidelines have been established for evaluating and
reporting the clinical utility of diagnostic biomarkers and should be followed in
studies using the results of the assay validation steps described here. In clinical
settings, the sensitivity of detecting AD should exceed 80% and specificity for
distinguishing AD from other similar dementias also should exceed 80% (94).
Standardized reporting of results should follow STARD criteria (95) and for
clinical settings additional reporting criteria to demonstrate pragmatic utility are
needed (96).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Scatterplots of hippocampal volume (cm3) by method. Spearman correlations and p-values
are shown for each pair.
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Table 1

Descriptive Characteristics

Characteristic All Stable MCI AD Converter

N 373 178 135

Age, years 75 (70, 80) 75 (71, 81) 75 (70, 80)

Female gender, no. (%) 136 (36) 63 (35) 51 (38)

Education, years 16 (14, 18) 16 (14, 18) 16 (14, 18)

MMSE 27 (26, 28) 28 (26, 29) 27 (25, 28)

Hippocampal Volume, cm3

 Method A 6.3 (5.6, 7.1) 6.7 (6.0, 7.4) 6.0 (5.2, 6.6)

 Method B 6.3 (5.6, 7.1) 6.6 (5.9, 7.2) 5.9 (5.1, 6.6)

 Method C 6.9 (6.2, 7.5) 7.1 (6.5, 7.6) 6.6 (6.0, 7.2)

All values are reported as median (inter quartile range - IQR) unless otherwise noted Stable/Converter is defined as progression to AD by 24
months

MMSE, Mini Mental State Exam
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Table 2

ROC Curves Comparing Prognostic Performance of Methods A, B, and C for Progression from MCI to AD
within two years

Area under the ROC curve for each
hippocampal volume method predicting
stable vs. converter at 24 months.

AUROC

Method A 0.675

Method B 0.678

Method C 0.625
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