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Abstract

Face recognition is a great challenge in practice. Sub-
space learning method is one of the dominant methods and
has achieved great success in face recognition area. In sub-
space learning, many researches have found that correla-
tion similarity (e.g. cosine distance) usually achieves better
classification results than L2 distance with nearest neighbor
(NN) classifier in Euclidean space. However, in traditional
methods, most of them are devoted to optimize the objective
function based on L2 distance, which is not coincident with
the classification rule. It is reasonable to obtain better re-
sults by optimizing the objective function with correlation
metric directly. In this paper, following traditional linear
discriminant analysis (LDA), we redefine the between and
with-in class scatter with correlation metric and propose
an efficient Stepwise Correlation metric based Discriminant
Analysis (SCDA) method to derive the sub-optimal discrim-
inant subspace to be classified with correlation similarity.
Moreover, we propose a novel weighted fusion mechanism
to learn the optimal combination of multi-probe images to
be classified. Extensive experiments on PIE and extended
Yale-B databases validate the effectiveness of SCDA and the
learning based weighted image fusion method.

1. Introduction

Face recognition is a great challenge in practice, espe-
cially in surveillance scenarios due to low resolution im-
ages and variant illuminations. Among various methods,
subspace learning is one of the dominant methods and has
achieved great success in face recognition. The objective of
subspace learning is to find the low embedding data struc-
ture from the original high dimension space by preserving
the neighborhood relationship or exploiting the discrimi-
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nant properties.
Principle component analysis (PCA) [16] and linear dis-

criminant analysis (LDA) [1] are two representative ones in
subspace learning. PCA uses the Karhunen-Loeve trans-
form to produce the most expressive subspace for object
representation and recognition by minimizing the residua
of the reconstruction. However, for classification task, it
does not consider any class information, so it may drop
some important clues for classification. LDA is then pro-
posed to seek optimum discriminant subspace of features
best separating different object classes by maximizing the
ratio of the between-class scatter to the within-class scat-
ter. There are also a lot of other work for subspace learning,
such as ICA [3], ISOMAP [15], LLE [13], LPP [8], NPE [7]
etc. Recently, Wang and Tang [17] unify PCA, LDA and
Bayesian methods into the same framework and present
the method to find the optimal configuration for LDA. Yan
et al. [18] summary the existing various subspace learning
methods and re-interpret them from the view of graph em-
bedding.

Among these subspace learning methods, most of them
adopt L2-norm metric (Eq. 1) in Euclidean space to measure
the dissimilarity of samples in training phase.

dL2(x1,x2) = (x1 − x2)T(x1 − x2) (1)

dcos(x1,x2) =
xT
1 x2√

xT
1 x1xT

2 x2

(2)

However, in test phase, many researches have reported
that the correlation (cosine) based similarity (Eq. 2) could
achieve better results than L2-norm metric with nearest
neighbor (NN) classifier (see e.g. [10]). In this case, the
similarity metric used in test phase is not accordant with that
in training phase. It is reasonable that learning the discrim-
inant subspace using correlation similarity metric in train-
ing phase may be helpful for improving the face recogni-
tion performance. This is the main motivation of this work.
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Recently, there are some work to optimize correlation met-
ric based criterion. Ma et al. [12] propose a discriminant
analysis method with correlation similarity measure. How-
ever, their method does not take into account the reduction
problem and actually only re-scales the samples in origi-
nal space. Fu et al. [5] propose a dimensionality reduction
method based on correlation metric. It utilizes the tradi-
tional LDA result as an initialization and adopts gradient
descend optimization method to derive the most discrimi-
nant projective directions. However, it needs to restart the
whole optimization process if the reduced dimension is ad-
justed. Nonetheless, the computational cost for the opti-
mization process is very high and limits its application.

In this paper, we present an effective and efficient step-
wise way to solve the discriminant feature dimensionality
reduction problem with correlation (cosine) similarity mea-
sure. That is, at each step, the derived subspace is only
one dimension lower than the former one. Comparing with
existing methods, our method is much more efficient dur-
ing training phase and can retain arbitrary dimension of
feature conveniently like traditional ones do. In addition,
in recognition phase, we propose a novel learning based
weighted multi-probe images fusion method to enhance the
face recognition performance.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the traditional discriminant method and for-
mulates the correlation similarity based problem. Section
3 details the stepwise correlation metric based discrimi-
nant analysis solution in training and test phase. Sec-
tion 4 describes the weight optimization process for fusing
multi-probe images. Experiments compared with prevail-
ing methods are presented in Section 5 and in Section 6, we
conclude the paper.

2. Formulation of LDA based on L2-norm and
Correlation Metric

Linear discriminant analysis (LDA), as a representa-
tive method in supervised learning, has been widely used
in computer vision and image classification. The essen-
tial idea of LDA is to disperse the samples from different
classes and meanwhile gather the samples from the same
class in subspace. In traditional way, given the sample set
X = {x1, x2, ..., xn}, the between class scatter matrix Sb

and with-in class scatter matrix Sw based on L2-norm are
defined as

Sb =
1
n

L∑
i=1

ni(mi −m)(mi −m)T

Sw =
1
n

L∑
i=1

∑
xj∈Ci

(xj −mi)(xj −mi)T

(3)

where mi = 1
ni

∑
xj∈Ci

xj is the mean vector of data in

class Ci, and m = 1
n

∑L
i=1

∑
Xj∈Ci

xj is the global mean
vector. LDA aims to learn the projective directions W
which maximize the ratio of between class scatter matrix
to with-in class scatter one as

J =
tr(

∑L
i=1 niWT (mi −m)(mi −m)T W)

tr(
∑L

i=1

∑
xj∈Ci

WT (xj −mi)(xj −mi)T W)

=
tr(WT SbW)
tr(WT SwW)

(4)

The optimal projection matrix Wopt can be obtained by
solving the following eigen-value problem

S−1
w SbW = WΛ (5)

where Λ is the diagonal matrix whose diagonal elements
are eigenvalues of S−1

w Sb.
Similarly, we can define the between and with-in class

scatter based on correlation metric by summing up the cor-
relation values of sample pairs from different classes and
the same class respectively as

Sb =
L∑

k=1

L∑
m=k+1

∑
xi∈Ck

xj∈Cm

xT
i xj√

xT
i xixT

j xj

Sw =
L∑

k=1

∑
xi,xj∈Ck

xi �=xj

xT
i xj√

xT
i xixT

j xj

(6)

The purpose of correlation metric based LDA is to find
the projective directions W that maximize the correlation of
samples from the same class and meanwhile minimize the
correlation of samples from different classes which equals
to minimize the ratio of between class correlation scatter to
with-in one.

W = arg min
W

J(W)

J(W) =

∑L
k=1

∑L
m=k+1

∑
xi∈Ck

xj∈Cm

xT
i WWT xj√

xT
i WWT xixT

j WWT xj

∑L
k=1

∑
xi,xj∈Ck

xi �=xj

xT
i WWT xj√

xT
i WWT xixT

j WWT xj

(7)

Unfortunately, the above optimization problem is usu-
ally non-convex and lacks close solution. Fu et al. [5] tries
to adopt gradient descend method to solve this problem.
However, the optimization process is really inefficient and
is easy to converge to local extremum.



3. Stepwise Correlation Metric based Discrim-
inant Analysis

As we know, if the L2-norm length of sample vector is
unit, the cosine distance is equivalent with the L2 distance
regardless of a constant value. In this way, we can transform
the correlation related problem to the formulation that max-
imizes the ratio of between class scatter to the with-in class
scatter computed based on L2 distance and meanwhile pre-
serves the unit L2-norm property of samples. Consequently,
the problem in Eq. 7 can be reformulated as

W = arg max
W

J(W)

J(W) =

∑L
k=1

∑L
m=k+1

∑
xi∈Ck

xj∈Cm

(xi − xj)T WWT (xi − xj)

∑L
k=1

∑
xi,xj∈Ck

xi �=xj

(xi − xj)T WWT (xi − xj)

=

∑L
k=1

∑L
m=k+1

∑
xi∈Ck

xj∈Cm

tr(WT (xi − xj)(xi − xj)T W)

∑L
k=1

∑
xi,xj∈Ck

xi �=xj

tr(WT (xi − xj)(xi − xj)T W)

s.t.

xT
i WWT xi = 1 i = 1, 2, · · · , n

(8)

The problem stated above is still difficult to solve di-
rectly. In following, we adopt a sub-optimal way to relax the
constraints a bit. It is known that PCA aims to find the sub-
space that minimizes the reconstruction error. Therefore, in
this work, given the unit L2-norm samples in original space,
we incorporate the PCA goal into the objective function to
preserve the constraints in Eq. 8 as much as possible.

W = arg max
W

J(W)

J(W) =
tr(WT (S̃b + ηS̃t)W)

tr(WT S̃wW)

S̃b =
L∑

k=1

L∑
m=k+1

∑
xi∈Ck

xj∈Cm

(xi − xj)(xi − xj)T

S̃w =
L∑

k=1

∑
xi,xj∈Ck

xi �=xj

(xi − xj)(xi − xj)T

S̃t =
1
n

n∑
i=1

(xi −m)(xi −m)T

(9)

where the second term in numerator of J(W) is the PCA op-
timization objective item which tries to preserve the unit L2-
norm property of sample vector in the reduced subspace and
η is the coefficient that controls the trade-off between the
unit L2-norm property preservation and discrimination of

Training Phase:
Input: Let d-dimensional sample set be X =
{x1, x2, · · · , xn} from L classes {C1, C2, . . . , CL}.
We expect to find t-dimensional discriminant subspace.
Initialization: W = Id×d

for s = 1 : d− t

1. normalize the sample set X to be of unit L2-norm.

2. compute S̃b, S̃w, S̃t according to Eq. 9 and derive the
d− s projective directions Wd−s

d−s+1 by solving the gen-
eralized eigen-value problem (Eq. 10).

3. W = W ·Wd−s
d−s+1, X = Wd−s

d−s+1

T
X.

end
Output:The projective matrix from d to t dimension W.

Testing Phase:
1. project the sample into subspace by the learned projec-

tions W: x′ = WT x.

2. using correlation metric in projected subspace to mea-
sure the dissimilarity of samples.

Figure 1. Stepwise correlation metric based discriminant analysis
algorithm.

subspace. In order to preserve the unit L2-norm of sample
vectors as much as possible, we adopt a stepwise way to re-
duce the dimension. At each step, the sample vector in cur-
rent d space is first normalized to be of unit L2-norm length.
Our purpose is to find the d−1 subspace that maximizes the
ratio of between class scatter to the with-in one based on
L2-norm metric and meanwhile preserve the unit L2-norm
property as much as possible. After that, we re-normalize
the sample vector in the projected subspace and find the next
one-lower discriminant subspace. In this way, one can ob-
tain arbitrary dimension of discriminant subspace iteratively
and finally obtain a sub-optimal solution to Eq. 8. The so-
lution in each step can be obtained by solving the following
generalized eigen-value problem corresponding to the d−1
largest eigenvalues efficiently.

(S̃b + ηS̃t)W = S̃wWΛ (10)

The whole process of proposed stepwise correlation metric
based discriminant analysis (SCDA) algorithm is illustrated
in Fig. 1. It is worth noting the proposed SCDA is different
from the Foley-Sammon method [4] that in each iteration,
the feature vectors are needed to be re-normalized and the
derived solutions are not necessarily orthogonal.

In test phase, intuitively, we need to follow the training
procedure to reduce the original sample vector in stepwise
way and re-normalize it at each step which is obviously in-



efficient and increases the burden of computation. Fortu-
nately, from theorem 1, we can see that the lower subspace
projection of SCDA can be computed by one-step directly
as traditional methods do.

Theorem 1 If xt = 1
Nt

WtT
t+1

1
Nt+1

Wt+1T
t+2 · · · 1

Nd−1
Wd−1T

d
1

||xd||xd,

where Nk = ||WkT
k+1

1
Nk+1

Wk+1T
k+2 · · · 1

Nd−1
Wd−1T

d
1

||xd||xd||,
then xt = 1

||WtT
d xd||W

tT
d xd, where Wt

d =

Wd−1
d Wd−2

d−1 · · ·Wt
t+1.

Proof:

xt =
WtT

t+1xt+1

Nt
=

WtT
t+1Wt+1T

t+2 xt+2

NtNt+1
= · · ·

=
WtT

t+1Wt+1T
t+2 · · ·Wd−1T

d xd

||xd||Nd−1 · · ·Nt

=
WtT

d xd

||xd||Nd−1 · · ·Nt

(11)

Nt = ||WtT
t+1

1
Nt+1

Wt+1T
t+2 · · ·

1
Nd−1

Wd−1T
d

1
||xd||xd||

=
1

Nt+1Nt+2 · · ·Nd−1||xd|| ||W
tT
t+1Wt+1T

t+2 · · ·Wd−1T
d xd||

=
1

Nt+1Nt+2 · · ·Nd−1||xd|| ||W
tT
d xd||

=⇒ NtNt+1 · · ·Nd−1||xd|| = ||WtT
d xd||

(12)

Substituting Eq. 12 into Eq. 11, we obtain:

xt =
WtT

d xd

||WtT
d xd||

4. Learning Optimal Weights for Multi-Probe
Images Fusion

In real application such as surveillance scenario or video
based face recognition, it is easy to obtain multiple probe
images for one person. It is well known multiple images fu-
sion could significantly improve the face recognition perfor-
mance. Various fusion rules such as sum, max, min, product
etc. [9] at score level have been researched. In [2], authors
indicate that the simple utilization of mean image of multi-
ple images could achieve better results than single one. It
is obvious that simple mean image may not be the best way
to combine multi-probe images. Thus, in this paper, we
propose to learn the optimal weights for combining probe
images to obtain the best representation.

Given a gallery image g and a series of probe images
P = [p1, p2, · · · , pn], our purpose is to learn the weights

for different probe images so that the difference between
gallery image and the combination of probe images is the
smallest. The problem can be formulated by minimizing
the following objective function.

J = ||g−
n∑

i=1

wipi||2 = ||g− Pw||2, wi ≥ 0 (13)

where w = [w1, w2, · · · , wn]T . Since the image pixel value
is non-negative, we impose the non-negative constraints on
weights to avoid the meaningless combination result. This
problem can then be solved by the similar way as NMF [11]
does. The gradient of J with respect to w is computed as

∂J

∂wi
= −2[pT

i g− pT
i Pw] (14)

According to gradient descend algorithm, the solution wi

will be updated by wi ← wi+λi[pT
i g−pT

i Pw] at each step.
Like NMF, if λi is selected as λi = wi

pT
i Pw , the updated pro-

cess becomes wi ← wi
pT

i g
pT

i Pw which obviously guarantees

the non-negative of wi and has been proved to make the
objective function descending [11]. Therefore, after some
iterations, the optimal weights can be learned to synthesize
a new probe image which is utilized to be compared with
the gallery image later.

5. Experiments

5.1. Database Preparation

Two databases, PIE [14] and extended Yale-B [6] are
used to evaluate the performance of different methods. For
PIE database, there are 41, 368 images of 68 people under
different poses, illumination conditions and expressions.
Five near frontal poses (C05, C07, C09, C27, C29) and all
the images under different illuminations and expressions are
selected. So there are totally 170 images for each individ-
ual. For extended Yale-B database, there are 2414 images
from 38 persons each of which contains nearly 64 ones. All
the images are rotated, scaled and cropped to 32 × 32 ac-
cording to the provided eye positions. No further prepro-
cessing is adopted. Fig. 2 illustrates some cropped face ex-
amples of PIE and extended Yale-B databases.

The images are partitioned into gallery and probe sets
randomly with different numbers. For ease of representa-
tion, in following experiments, Gm means m images per
person are selected randomly as gallery set for training and
the left images consist the probe set for testing.

5.2. Experiment I: SCDA Performance Evaluation

We evaluate the performance of SCDA with PCA and
LDA using different metric measurements.



(a)

(b)

Figure 2. Cropped face images from PIE (a) and extended Yale-B (b) databases.

Tables 1 and 2 illustrate the performance comparisons
of different methods on PIE and extended Yale-B databases
and Fig. 3 shows the SCDA recognition rate curves with
respect to different dimension of reduced feature. Each re-
sult is reported as the average of 10 different partitions. For
Norm+LDA method, the samples are first normalized to be
of unit L2-norm before LDA. Due to high computational
cost, we don’t compare CEA [5] method in this work. In
tables 1 and 2, we report the best results of each method
by varying the reduced dimension of feature. From the re-
sults, we can observe that for face recognition on PIE and
extended Yale-B databases, the performance of correlation
based similarity is usually better than that of the L2 distance
in Euclidean space. And the normalization preprocessing
step is helpful to improve the recognition performance. In
most cases, the proposed SCDA method, incorporating the
correlation metric in training phase which is consistent with
the similarity measure in test phase, achieves better result
than other methods which conforms to our motivation.

Table 1. Recognition rates on the PIE database (The result for each
method is reported as the best one by varying the retained feature
dimension).

PCA+Cos PCA + L2 LDA + Cos
G5 0.2780± 0.0065 0.2187± 0.0049 0.5031± 0.0629

G10 0.4065± 0.0097 0.3234± 0.0074 0.8358± 0.0087
G20 0.5654± 0.006 0.4716± 0.0055 0.9295± 0.0035
G30 0.6669± 0.0054 0.5730± 0.0051 0.9536± 0.0034

LDA + L2 Norm+LDA+Cos SCDA+Cos
G5 0.4723± 0.0395 0.5448± 0.0483 0.5683± 0.0555

G10 0.7709± 0.0107 0.8537± 0.0077 0.8648± 0.009
G20 0.8942± 0.0047 0.9336± 0.0039 0.9386± 0.0033
G30 0.9341± 0.0031 0.9556± 0.0034 0.9598± 0.0028

Table 2. Recognition rates on the extended Yale-B database (The
result for each method is reported as the best one by varying the
retained feature dimension).

PCA+Cos PCA + L2 LDA + Cos
G5 0.3000± 0.012 0.2580± 0.012 0.5917± 0.0542

G10 0.4216± 0.0094 0.3591± 0.0084 0.8382± 0.0102
G20 0.5336± 0.0095 0.4558± 0.0064 0.9189± 0.01
G30 0.5898± 0.0062 0.5157± 0.0125 0.9458± 0.0086

LDA + L2 Norm+LDA+Cos SCDA+Cos
G5 0.5719± 0.0404 0.6291± 0.0397 0.6193± 0.0438

G10 0.7999± 0.0134 0.8441± 0.0112 0.8522± 0.0151
G20 0.8875± 0.0123 0.9281± 0.0135 0.9317± 0.013
G30 0.9181± 0.0067 0.9553± 0.0071 0.9600± 0.0074

5.3. Experiment II: SCDA with Multi-Probe Im-
ages Fusion

In this experiment, we try to validate the effectiveness of
proposed multi-probe images fusion compared with other
existing fusion methods such as sum-rule, max-rule and the
mean image strategy in [2]. The probe images for every
person are divided into several groups each of which con-
tains five images. In recognition phase, these five images
are considered as a whole to be compared with the images
in gallery set.

Tables 3 and 4 illustrates the recognition rates of differ-
ent fusion methods with SCDA on PIE and extended Yale-B
databases respectively. The dimension of SCDA subspace
remains C − 1, where C is the class number. For sum-
rule and max-rule, the five probe images are first compared
with the gallery image respectively to obtain five similar-
ity scores and then the sum of these scores or the max-
imum value is used for the classification. For mean im-
age and the proposed weighted mean image method, the
five probe images are combined with equal or the learned
weights to form a new image and then the similarity score



Table 3. Recognition rates of SCDA with different fusion methods on the PIE database.
SCDA+Single Image SCDA+Sum-rule SCDA+Max-rule SCDA + Mean SCDA+Weighted Mean

G2 0.4085± 0.0154 0.4543± 0.0152 0.5165± 0.0148 0.4555± 0.0153 0.4964± 0.0144
G4 0.6405± 0.0268 0.7342± 0.0334 0.7595± 0.0384 0.7301± 0.0335 0.7664± 0.0360
G6 0.7314± 0.0104 0.8310± 0.0114 0.8422± 0.0131 0.8234± 0.0120 0.8517± 0.0113
G8 0.7560± 0.0129 0.8559± 0.0140 0.8624± 0.0127 0.8502± 0.0136 0.8721± 0.0134

Table 4. Recognition rates of SCDA with different fusion methods on the extended Yale-B database.
SCDA+Single Image SCDA+Sum-rule SCDA+Max-rule SCDA + Mean SCDA+Weighted Mean

G2 0.4371± 0.0487 0.4709± 0.0437 0.5874± 0.0447 0.4832± 0.0473 0.5810± 0.0429
G4 0.6927± 0.0257 0.7866± 0.0300 0.8452± 0.0323 0.7880± 0.0322 0.8539± 0.0355
G6 0.7916± 0.0222 0.9128± 0.0201 0.9284± 0.0161 0.9111± 0.0185 0.9405± 0.0162
G8 0.8355± 0.0149 0.9396± 0.0110 0.9452± 0.0120 0.9343± 0.0106 0.9548± 0.0089
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Figure 3. Face recognition rate of SCDA with respect to different
feature dimension on PIE (a) and extended Yale-B (b) databases.

is computed between the new probe image and the gallery
one. For the method based on single image, one probe
image is randomly selected from the five ones and com-

pared with the gallery one. Each result is reported as the
average of 10 different partitions. From the results, we
can observe that image fusion can significantly enhance the
face recognition rate and in most cases, the proposed learn-
ing based weighted combination mechanism achieves the
highest recognition rate which indicates the effectiveness of
weighted multi-probe images fusion method.

6. Conclusions

There are two main contributions in this paper. First,
a stepwise correlation metric based discriminant analysis
(SCDA) is proposed in which the similarity measure (i.e.
correlation metric) in training and test phases is consistent.
Experimental results show SCDA usually outperforms the
traditional LDA method. The proposed stepwise reduction
mechanism not only fits to the LDA, but also can be com-
bined with other subspace learning methods such as LPP,
NPE etc. Compared with the existing correlation metric
based methods, SCDA avoids the time-consuming gradient
computation process and thus is much more efficient and
convenient to retain arbitrary dimension feature in training
phase. Second, we propose a novel multi-probe images fu-
sion method. Unlike the traditional score level fusion ones,
the learning based weighted multi-probe images fusion is
conducted on the image data level and exhibits the superi-
ority over the existing fusion methods.
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