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Complex mechanisms involving genomic aberrations in numerous proteins and pathways are believed to be 

a key cause of many diseases such as cancer.  With recent advances in genomics, elucidating the molecular 

basis of cancer at a patient level is now feasible, and has led to personalized treatment strategies whereby a 

patient is treated according to his or her genomic profile. However, there is growing recognition that 

existing treatment modalities are overly simplistic, and do not fully account for the deep genomic 

complexity associated with sensitivity or resistance to cancer therapies. To overcome these limitations, 

large-scale pharmacogenomic screens of cancer cell lines – in conjunction with modern statistical learning 

approaches - have been used to explore the genetic underpinnings of drug response. While these analyses 

have demonstrated the ability to infer genetic predictors of compound sensitivity, to date most modeling 

approaches have been data-driven, i.e. they do not explicitly incorporate domain-specific knowledge 

(priors) in the process of learning a model. While a purely data-driven approach offers an unbiased 

perspective of the data – and may yield unexpected or novel insights - this strategy introduces challenges 

for both model interpretability and accuracy. In this study, we propose a novel prior-incorporated sparse 

regression model in which the choice of informative predictor sets is carried out by knowledge-driven 

priors (gene sets) in a stepwise fashion. Under regularization in a linear regression model, our algorithm is 

able to incorporate prior biological knowledge across the predictive variables thereby improving the 

interpretability of the final model with no loss – and often an improvement - in predictive performance. We 

evaluate the performance of our algorithm compared to well-known regularization methods such as 

LASSO, Ridge and Elastic net regression in the Cancer Cell Line Encyclopedia (CCLE) and Genomics of 

Drug Sensitivity in Cancer (Sanger) pharmacogenomics datasets, demonstrating that incorporation of the 

biological priors selected by our model confers improved predictability and interpretability, despite much 

fewer predictors, over existing state-of-the-art methods.  

 
 

                                                             
*
 This work is supported by grant U54CA149237 from the Integrative Cancer Biology Program and by 

grant U01CA176303 from the Cancer Target Discovery and Development of the National Cancer 

Institute 

 
†
 Corresponding authors. 



 

 

 

1. Introduction 

High-throughput technologies such as microarray and deep sequencing have been 

extensively used to reveal that cancer subtypes can be molecularly defined based on their 

corresponding genomic alterations [1-4]. Moreover, two large-scale pharmacogenomics 

cell line screens have become available with genomic profiles and drug response of 

hundreds of clinical and preclinical anti-cancer compounds: the Cancer Cell Line 

Encyclopedia (CCLE) [5, 6] and the Genomics of Drug Sensitivity (Sanger) projects [7-

9]. Both studies demonstrated that genomic features identified by modern machine 

learning algorithm could be a viable preclinical tool for identifying potential drug 

sensitivity or resistance markers, with the potential for guiding precision medicine 

applications and clinical trial design.  

In contrast to data-driven pharmacogenomic modeling, decades of experimental 

molecular biology has produced a detailed (albeit incomplete) knowledge of gene-gene 

regulatory networks and pathways. The Kyoto Encyclopedia for Genes and Genomes 

(KEGG), for example, is a collection of comprehensive pathway information derived 

from experimental analyses and literature curation [10]. Pathway Commons is another 

rich resource that integrates biological pathway and molecular interaction information 

from many publicly available databases [11]. Importantly, pathway databases represent 

only the static regulatory relationships between genes or gene products and are typically 

context independent [12]. In addition, it is well known that pathways are not functionally 

independent but are highly coupled processes, with constitutive pathway genes playing 

multiple roles within different biological processes. 

As computational approaches for modeling therapeutic response are being 

increasingly used in research and translational applications, systematic analyses and best 

practices recommendations have been recently published [13, 14]. However, these studies 

have primarily focused on computational or algorithmic improvements. Integrating prior 

knowledge in predictive algorithms may increase the biological interpretability of these 

models, and potentially mitigate issues of data over-fitting. Several analytical studies 

have already incorporated pathways or network information in the variable selection 

framework [15-21] or used network knowledge to identify differentially expressed genes 

[22, 23]. However, most of these studies considered only pre-selected pathways as “prior 

knowledge”, impeding an unbiased assessment of how each pathway is individually 

associated with model performance. In addition, group lasso algorithms [24-26] were 

proposed for solving the group sparsity problem. However, biological priors such as 

pathways are highly coupled and overlapping, and therefore do not optimally match the 

conditions required for group lasso. 

In this study, we present the Stepwise Group Sparse Regression (SGSR) model, 

developed to leverage prior knowledge in order to improve predictive power and 

interpretability in the context of modeling drug response with genomic data. Specifically, 

we embedded a prior selection procedure into sparse regression, such that it could specify 

preferences for particular combination of priors in the model. The rationale is derived 

from forward stepwise selection, in which selection of gene-set-coherent features are 

encouraged through regularization, while the best combination of feature sets is 

determined by forward stepwise method. We first explored the effectiveness of the SGSR 

as compared to LASSO, Ridge and Elastic Net regression on the CCLE and Sanger cell 

line studies [5-7, 9, 13, 14], and then analyzed whether informative pathway priors 



 

 

 

improved the selection of previously validated drug-targets in our model, e.g. MAPK 

pathway genes for MEK inhibitors. We also demonstrated and compared the 

effectiveness and power of SGSR using different genomic features as input variables, e.g. 

gene-expression (EXP) vs. copy-number alterations  (COPY). For the public 

accessibility, we provide an R package at https://github.com/Sage-Bionetworks/SGSR, 

and share all results through https://www.synapse.org/#!Synapse:syn2600070. 

 

2. Material and Methods 

2.1. Materials: Datasets and Prior knowledge databases 

Datasets: The CCLE and Sanger datasets contain anti-cancer compound screening data 

performed on large panels of molecularly characterized cancer cell lines. Both datasets 

contain high-throughput gene expression and copy number alterations, as well as 

mutation status on a subset of genes, summarized to gene-level features. Here, we utilize 

either EXP or COPY dataset to predict drug responses.   

In Sanger we have 664 cell lines with EXP measurements on 12,024 genes (643 

cell lines with COPY data on 12,082 genes), whereas CCLE has 491 cell lines with EXP 

measurements on 18,897 genes (488 cell lines with COPY data on 21,217 genes). All 

data was normalized as described in the original papers [5, 7]. Both studies provided 

multiple drug dose statistics such as IC50 and ActArea (or AUC) to summarize dose-

response curves to compound sensitivity values for each cell line. We chose ActArea 

with CCLE and IC50 with Sanger, respectively, based on our previous analyses showing 

their predictive benefit [13]. In addition, we chose 28 out of 138 compounds in Sanger 

and all 24 compounds in CCLE: 14 overlapping drugs in both cell line studies, selected 

for cross-comparison. One of the main objectives of the proposed model is to improve 

interpretability by taking advantage of prior knowledge on pathways that may be 

implicated in sensitivity/resistance patterns to anti-cancer compounds. Sanger has drug 

response data to many agents that are not being investigated as anti-neoplastic drugs or 

that have multiple - and overlapping - targets, making interpretation of the results 

difficult. We decided to select for downstream analyses Sanger compounds for which 

there is substantial level of evidence in the literature in terms of preclinical or clinical 

oncological translation, making sure that we had at least one drug that inhibits relevant 

targets (known cancer drivers) included in the final list. 

 

Prior knowledge databases: Curated pathway databases represent a valuable resource for 

scientists studying biological processes in cancer. We take advantage of this information 

accumulated over years of biomedical research and define a knowledge-driven prior as a 

set of genes that are mapped to a curated pathway. We anticipate that our model selects a 

set of pathways – and corresponding genes – that are most likely functionally important 

for drug sensitivity patterns, therefore increasing biological interpretability of the final set 

of features. Thus, our prior incorporated predictive model goes beyond traditional 

analyses by learning the complex structure of input variables and their functional 

relationships with response. As input to the SGSR model we used the GRAPH Interaction 

from pathway Topological Environment (graphite: R package built in Bioconductor 

[27]), providing access to publicly available canonical pathway databases such as KEGG 

(n=232), Biocarta (n=254), NCI/Nature (n=177) and gene ontology (GO) Biological 

Processes (n=825) and Molecular Functions (n=396) in MSigDB 3.0 [28]).  



 

 

 

 

2.2. Baseline regularized regression methods 

A major challenge in the development of predictive models utilizing high-

dimensional, genomic data is finding the optimal trade-off between predictive 

performance and model sparsity (often associated with model interpretability). In the 

context of drug sensitivity modeling, this trade-off is particularly acute as the selection of 

biomarkers for patient stratification is a primary goal. Simultaneously, model 

performance is used to evaluate the ultimate feasibility of drug prediction, and robustness 

of the biomarkers. Moreover, the incorporation of prior knowledge into data-driven 

models is a non-trivial task. Biological priors are highly coupled and oftentimes 

redundant, thereby complicating the process by which they might be included in model 

building.  

To resolve these problems, we have implemented a predictive modeling 

framework that systematically incorporates prior biological knowledge. Here we present 

the prior incorporated sparse regression model and its internal prior selection procedure 

in terms of forward-stepwise selection. Throughout the text we consider the linear 

regression model , where  represents the (n × 1) vector of responses,  

corresponds to the (n × p) matrix of features,  corresponds to the (p × 1) vector of 

regression coefficients, and  represents a (n×1) noise vector. The original problem is to 

estimate vector of coefficients  with least square criteria. In the 

“large p (features), small n (samples)” paradigm, the solution to the least-squared 

problem is undetermined and requires constraining the model space. Recent studies have 

shown that regularized regression can lead to practical solutions for modeling high-

dimensional genomic data [13, 29-33]. Specifically, the LASSO model imposes an L1 

penalty on ( and typically results in sparse solutions 

where most coefficients are exactly zero. Conversely, the Ridge model imposes an L2 

penalty on its model parameters ( and often produces a 

model where most coefficients are non-zero. However, in practice the use of these 

penalty functions have several limitations: the LASSO selects at most n variables before 

it saturates and if there is a group of highly correlated variables the LASSO tends to 

select one representative from a group and ignore the other components in the group. 

Meanwhile, models based on Ridge regression tend to perform well [13], but are hard to 

interpret due to lack of feature selection. To address these problems, Elastic Net 

regression linearly combines the L1 and L2 penalties of the LASSO and Ridge methods 

and optimizes two hyper-parameters (λ
1
and λ

2
)

. Even though the Elastic Net regression method is able to select features that are not 

identified by LASSO because of high pairwise correlation – while still remaining 

parsimonious – there are intrinsic limitations of data-driven models: biological insights of 

model features can only be extracted after extensive post processing steps, including 

pathway enrichment analyses. 

 

2.3. Stepwise Group Sparse Regression (SGSR) 

The SGSR model is based on a stepwise forward “prior” selection procedure (see 

Figure 1 describing the workflow of the SGSR algorithm). We first define the following 

y =Xβ +ε y X

β

ε

β̂ = argmin(|| y−Xβ ||2 )

β β̂ = argmin(|| y−Xβ ||2 +λ || β ||1)

β̂ = argmin(|| y−Xβ ||2 +λ || β ||2 )

β̂ = argmin y−Xβ
2
+λ1 β 1

+λ2 β 2( )



 

 

 

terms:  correspond to the set of model features, genes in a gene set, 

and Mean Squared Error (MSE), respectively, corresponding to the i-th gene set and k-th 

round of the algorithm. We define L as the total number of pathways (gene sets) in the 

database. In the initialization step, we train a standard LASSO model without utilization 

of gene set priors, optimizing the LASSO’s single hyper-parameter using 5-fold cross-

validation. We define the set of selected features in this model as M
0
 and its MSE 

as . The stepwise forward prior selection process begins by evaluating the addition 

of each gene set to the previous model (e.g. ) and the model that results 

in the largest reduction of MSE is selected as the model input for the next round (see 

Figure 1). Of note, the newly added genes from each gene set are unpenalized in the 

LASSO model, allowing them to enter into the model as a group. If none of the L models 

produces a lower MSE than the previous optimal model, then the iteration terminates and 

the previous  is returned.  

More specifically, we have  and 

 in the k-th round, where ,  are the coefficients trained 

by incorporating i-th prior’s genes in its LASSO model,  are the coefficients for the 

predictors which do not belong to i-th prior’s genes so that they should be penalized,  

are the coefficients that correspond to i-th prior’s genes and should be always 

unpenalized in the model training, and  is the set of all L models in the k-th round of 

the stepwise selection procedure.  When  is satisfied, we select the k-
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Figure 1. Workflow describing the SGSR algorithm. We define  as the set of 

model features, genes in a gene set, and Mean Squared Error (MSE), respectively, corresponding to the 

i-th gene set and k-th round of the algorithm. 

 



 

 

 

th best prior by . Finally, the algorithm’s iteration is terminated 

either when no further MSE gain is achieved or when all pathways of given database are 

selected.  

 

2.4. Assessment of model performance 

For SGSR model running, we randomly split the input dataset into five non-

overlapping sample groups: 4/5
ths

 of the samples are used for training, whereas 1/5
th

 of 

the samples are used for testing. The 5-fold cross validation scheme is once again applied 

within the 4/5
ths

 training samples so that we can tune the parameters and have an 

optimized set of priors. Afterwards, we apply the model in the remaining 1/5
th

 test 

samples and assess the final performance by summarizing the 5 sets of predicted drug 

responses with the Weighted Root Mean Squared Error (WRMSE) metric. The key 

reason for dividing the RMSE by the average of variance from observed and predicted 

values is that we can give proper weights to check whether or not the training procedure 

is successful. In the present analysis we discarded genomic features that have missing 

data in samples or that have a variance smaller than 0.02. At each split we obtained a 

prediction vector , where , and we computed a single WRMSE between 

the concatenated predicted vector, , and the full observed response 

vector, .  

3. Results 
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Figure 2. Comparison of model performance (weighted RMSE) between ElasticNet and the Ridge, 

LASSO, and SGSR algorithms. ElasticNet models are constrained to have a comparable number of 

features to the SGSR model. Each point corresponds to a single drug model. (A) CCLE with EXP  (B) 

CCLE with COPY (C) Sanger with EXP (D) Sanger with COPY are applied for SGSR with 5 

distinctive available pathway databases such as KEGG, BIOCARTA, Nature/NCI, GO_BP and 

GO_MF.  

 



 

 

 

3.1. Model assessment with fixed sparsity 

Using the SGSR framework, we are interested in generating models that are 

simultaneously sparse (i.e. have a minimal set of features in the model) and optimally 

predictive. As the Elastic Net regression framework was developed to optimize this trade-

off, we compare the SGSR method with the Elastic Net model to determine whether 

incorporation of pathway knowledge can improve performance. Specifically, we 

compared overall model performance of SGSR and Elastic Net at comparable levels of 

model sparsity.  Results using the CCLE and Sanger data sets are shown in Figure 2. 

In general, we observed an overall improvement in predictive performance using 

the SGSR model over Elastic Net regression, in which the latter is constrained to have the 

same number of features as SGSR. This pattern is consistent, regardless of the pathway 

database selected, with the exception of the GO_BP pathways applied on the Sanger data 

set. Consistent with our previous work [13], we observed that models utilizing EXP data 

are more accurate. Interestingly, knowledge-driven priors significantly improved model 

performance when using COPY as input data, particularly in CCLE (P<0.0001 for all 

models, Wilcox rank sum test with all 5 corresponding pathway databases) while the 

performance improvement in Sanger with COPY depended on the type of pathway 

database that was utilized (see Table 1 (A)). Due to marginal gains of predictive 

performance with EXP, not all SGSR models were statistically significant. Overall, 

SGSR improved predictive accuracy over Elastic Net in the majority of comparisons (see 

“performance gain ratio” in Table 1(A)).   

 

 
Table 1. Performance assessment with Wilcox rank sum test and performance percentage. Orange are 

depicted for CCLE while light green are for Sanger (A) pairwise assessment table for fixed sparsity in 

Figure 2, (B) Pairwise assessment table for Figure 3 and 4 when LASSO is used for benchmarked 

model (C) Pairwise assessment table for Figure 3 and 4 when Ridge is used for benchmarked model. 

Performance percentage is computed by counting how many drug models of SGSR ourperform the 

benchmark model. Red and green are depicted when SGSR shows better performance (>50%) than the 

benchmark model.  

 



 

 

 

3.2 Assessment of data-driven model vs. knowledge-driven model 

We also investigated the performance of the data-driven models and the SGSR 

knowledge-driven model, independent of sparsity constraints. Figures 3 and 4 summarize 

the results of the two data-driven models (Ridge & LASSO) with SGSR using several 

pathway databases. In general, we observed that Ridge outperforms LASSO, consistent 

with previous work [13]. The improvement of SGSR over LASSO was generally higher 

than what we observed with Ridge over LASSO. Using the CCLE data set, SGSR with 

COPY markedly outperformed the data-driven models while SGSR with EXP produced 

marginally better performance results (see Figure 3 and Table 1 (left orange panels of B 

and C)). Similarly, with the Sanger data, differences in favor of the SGSR algorithm 

showed consistent trends for both the COPY and EXP models (see Figure 4 and Table 1 

(right light green panels of B and C)). Of note, the final number of predictors in SGSR 

models was on average only marginally increased as compared with the LASSO models 

(91.7%, 94.2%, 87.9% and 79.3% in CCLE EXP, CCLE COPY, Sanger EXP and Sanger 

COPY, respectively). 

 

 
 

3.3. Assessment of additional features identified by SGSR model  

We next defined 2 tests to assess whether the improved performance by SGSR 

can be explained by factors other than the information contained in the gene-set priors. 

First, in order to check whether SGSR improves performance simply by adding 

additional features, we constructed a null distribution of predictive performance by 

generating 50 random models that had the same number of features added by SGSR. To 

do this, we preserved the original model fit by LASSO (M
0
) and then randomly added 

 
Figure 3. Performance comparison for CCLE pharmacogenomics data. (A) Predictability score with 

WRMSE metric of LASSO, Ridge, SGSR with KEGG, Biocarta, NCI/Nature, GO-BP and GO-MF 

pathways using EXP data across the 24 CCLE drugs, (B) Performance discrepancy between 

benchmarked LASSO, Ridge, and SGSR models with five available pathway databases with EXP; (C) 

Predictability score with WRMSE metric of LASSO, Ridge, SGSR with KEGG, Biocarta, NCI/Nature, 

GO-BP and GO-MF pathways with COPY across the 24 CCLE drugs, (D) Performance discrepancy 

between benchmarked LASSO, Ridge and SGSR models with five available pathway databases using 

COPY data. 



 

 

 

genes until we had a model with the same number of features as the SGSR model to 

which we are comparing. Second, to test whether similar performance could be obtained 

by incorporation of non-informative gene sets, we trained SGSR models using randomly 

permuted gene-set priors. Specifically, we preserved the input pathway database structure 

(i.e. maintained the same number of genes per gene set) but randomly shuffled the genes 

within each gene set. Figure 5 summarizes the predictive performance of SGSR models 

compared to the randomized models. In general, the WRMSE of SGSR models is 

significantly lower than that of both null models.  

 

3.4. Biological Interpretability from identified priors for anticancer compounds 

One attractive characteristic of SGSR is the ability to perform feature selection 

with increased interpretability compared to state-of-the-art methods. To exemplify this, 

we analyzed the results of EXP-based SGSR models (with prior using NCI/Nature 

Cancer pathway database) of sensitivity/resistance to the MEK inhibitors AZD6244 and 

PD0325901, agents tested in both CCLE and Sanger. We then compared with the 

matching bootstrapped Elastic Net regression models. It is known that response to these 

agents correlates with mutation status of KRAS/NRAS/BRAF genes [5, 7]. However, we 

wanted to assess whether models built on gene expression measurements could give 

additional biologically meaningful information. Overall, predictive performance of SGSR 

models for AZD6244 and PD0325901 in both CCLE and Sanger data sets are comparable 

to the gold-standard method. In addition, top features (genes) identified in SGSR models 

for each agent significantly overlap both within and across data sets, underscoring the 

reproducibility and potential biological relevance of the findings. As shown in Table 2, 

overlapping genes of major interest include: (i) MAP2K1 (also known as MEK) and 

 
Figure 4. Performance comparison for Sanger pharmacogenomics data. (A) Predictability score with 

WRMSE metric of LASSO, Ridge, SGSR with KEGG, Biocarta, NCI/Nature, GO-BP and GO-MF 

pathways using EXP data across the preselected 28 Sanger drugs; (B) Performance discrepancy 

between benchmarked LASSO, Ridge and SGSR models with five available pathway databases with 

EXP (C) Predictability score with WRMSE metric of LASSO, Ridge, SGSR with KEGG, Biocarta, 

NCI/Nature, GO-BP and GO-MF pathways using COPY data across the preselected 28 Sanger drugs, 

(D) Performance discrepancy between benchmarked LASSO and Ridge and SGSR models with five 

available pathway databases with COPY. 



 

 

 

MAPK1 (also known as ERK), important downstream effectors of the mitogen-activated 

protein kinase (MAPK) pathway; (ii) RHOA, a small GTPase known to interact with 

MAPK pathway to promote cell invasion [34]; (iii) AURKB, regulated by MAPK 

pathway to promote cell division [35]; (iv) Src family kinases SRC and FYN, which have 

a critical role in cell migration, proliferation and survival via the MAPK pathway [36, 

37]; and (v) EDIL3 (EGF-like repeats and discoidin I-like domains 3), a stromal factor 

that is associated with angiogenic switch and poor prognosis in many cancers [38, 39]. 

By contrast, the genes described above were not inferred within the top 500 features by 

the bootstrapped Elastic Net regression models based on gene expression data. Although 

anecdotal, this analysis suggests that incorporating pathway information during the 

design of predictive models can identify functionally relevant biomarkers that would not 

be detected from a purely data-driven approach.  

 

4. Discussion 

The availability of large-scale pharmacogenomic screens on cancer cell line 

panels has begun to illuminate many of the genomic aberrations underlying compound 

sensitivity/resistance. The application of machine learning approaches optimized for 

feature selection on high-dimensional genomic data has been a critical tool in this 

analysis. Even though the tractability of penalized regression models has been proposed 

in earlier studies [5 ,7, 13], the resultant models fail to incorporate well-known pathway 

characteristics that frequently underlie drug efficacy in vitro and in patients. In this study, 

we propose a novel SGSR algorithm that allows known pathway relationships to 

influence feature selection during model fitting, thereby enhancing interpretability of the 

final model without a concomitant decrease in model performance.  

Our study benchmarks a statistically principled comparison with state-of-the-art 

machine learning algorithms - namely LASSO, ElasticNet and Ridge regression – to 

predict drug sensitivity using input features from gene expression or copy number. In 

general, we find that the SGSR model has better overall accuracy (smaller MSE) at 

comparable levels of model sparsity. Of note, we observed the highest gains in predictive 

performance in the models that originally gave weak predictions, such as those based on 

COPY data [13]. Moreover, we observe that the specific grouping of the pathways (gene 

sets) contributes meaningful information, demonstrated in our comparison of SGSR to 

 
Table 2. For the SGSR model, the top 7 predictive features are displayed for AZD6244 (AZD) and 

PD0325901(PD). Cells higlighted in orange correspond to features with evidence of being functionally 

related to MEK inhibitor compounds, as described in the text. For comparison, the ranks of corresponding 

predictive features inferred by bootstrapped Elastic Net are displayed (18,897 and 12,024 features are 

considered in model building with CCLE and Sanger, respectively). 



 

 

 

randomly constructed pathways. This is important, as we might expect that in aggregate 

the union of all genes from all pathways represent the set of genes/proteins that are more 

frequently studied, and therefore alone might explain the improved SGSR performance. 

However, the relevance of the specific gene set composition underscores the complex and 

pertinent information embedded in these gene sets. Finally, we consider the biological 

insights derived from our model (at the gene level) and interpretability of results (at the 

pathway level) as major advantages for cancer researchers.  

In summary, SGSR provides a knowledge-incorporated sparse regression 

framework with significantly increased model interpretability without a trade-off of 

prediction accuracy. Notably, our modeling approach highlights the value of existing 

knowledge databases and their relevance in modeling disease phenotypes. Future 

directions might consider incorporation of even finer-grained relationships (dependence) 

embedded in these pathway databases, such as the protein interactions encoded in the 

Reactome pathways. We believe that SGSR advances current state-of-the art approaches 

for inferring molecular predictors of compound sensitivity, and may be used to identify 

functionally relevant gene sets used to guide translation of preclinical screens into 

precision medicine trials.  
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