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Abstract

Background: Transcription is the first step of gene expression and is characterized by a high fidelity of RNA synthesis. 

During transcription, the RNA polymerase active centre discriminates against not just non-complementary ribo NTP 

substrates but also against complementary 2'- and 3'-deoxy NTPs. A flexible domain of the RNA polymerase active 

centre, the Trigger Loop, was shown to play an important role in this process, but the mechanisms of this participation 

remained elusive.

Results: Here we show that transcription fidelity is achieved through a multi-step process. The initial binding in the 

active centre is the major discrimination step for some non-complementary substrates, although for the rest of 

misincorporation events discrimination at this step is very poor. During the second step, non-complementary and 2'-

deoxy NTPs are discriminated against based on differences in reaction transition state stabilization and partly in general 

base catalysis, for correct versus non-correct substrates. This step is determined by two residues of the Trigger Loop 

that participate in catalysis. In the following step, non-complementary and 2'-deoxy NTPs are actively removed from 

the active centre through a rearrangement of the Trigger Loop. The only step of discrimination against 3'-deoxy 

substrates, distinct from the ones above, is based on failure to orient the Trigger Loop catalytic residues in the absence 

of 3'OH.

Conclusions: We demonstrate that fidelity of transcription by multi-subunit RNA polymerases is achieved through a 

stepwise process. We show that individual steps contribute differently to discrimination against various erroneous 

substrates. We define the mechanisms and contributions of each of these steps to the overall fidelity of transcription.

Background
All reactions performed by RNA polymerase (RNAP;

phosphodiester bond synthesis, pyrophosphorolysis,

phosphodiester bond hydrolysis) are catalysed by a single

active centre and are proposed to proceed through a gen-

eral two Mg2+ ion mechanism [1-4]. Structural studies

revealed that conformational changes in the active centre

might be required for efficient catalysis and biochemical

studies are consistent with such a model [5-11]. The

major conformational change involves folding of the Trig-

ger Loop (TL) that brings the RNAP active centre from

'open' to 'closed' conformation (Figure 1). Though crystal

structures of RNAPs with folded TL were obtained only

in the presence of cognate NTP (cNTP) bound in the i+1

site of the active centre, TL folding is also thought to be

required for efficient catalysis of pyrophosphorolysis and

phosphodiester bond hydrolysis [7]. Although, in the

absence of TL, the rate of phosphodiester bond formation

is decreased by four orders of magnitude, the actual

mechanism by which TL participates in RNAP activity

remains unknown. Crystallographic studies revealed that

folded TL tightly interacts with cNTP base and triphos-

phate moieties [9,11] (Figure 1). This observation was

used to build three distinct models explaining the role of

TL folding in phosphodiester bond formation. In the first

model, based on a crystal structure of yeast RNAP II,

folded TL was proposed to directly participate in catalysis

through an invariant histidine residue (β' H1242, here

and throughout the text Thermus aquaticus RNAP num-

bering is used) that withdraws electron density from the

β-phosphate of the incoming NTP thus activating

nucleophilic attack on the α-phosphorus [11]. According

to the second model H1242 participates in acid catalysis

as a proton donor for the leaving pyrophosphate [12].

This model is based on studies of single-subunit RNAPs

that are evolutionary unrelated to multi-subunit RNAPs
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and may, therefore, use a different mechanism for cataly-

sis. In the third model, based on a crystal structure of T.

thermophilus RNAP, folding of TL was proposed in order

to stabilize, via R1239 and H1242 residues, the triphos-

phate moiety of the i+1 site-bound NTP in the active

(insertion) conformation (transition state stabilisation or

orientation catalysis) [7,9]. A recent study of Escherichia

coli RNAP revealed that mutation of H1242 had only

minor effect on catalysis, indicating that acid/base cataly-

sis is not its primary role [13]. However, the relatively

mild effects of substitutions of amino acids that, accord-

ing to crystallographic data, interact with the triphos-

phate moiety of incoming NTP observed in this work

(R1239A, H1242A, R1239A/H1242A) are also inconsis-

tent with the transition state stabilisation hypothesis [9].

The small effects of single substitutions, compared to

dramatic catalytic defect caused by deletion of the entire

TL, suggest that TL may have an allosteric effect on other

amino acids that are also required for catalysis (see Dis-

cussion).

Mutations in TL and surrounding amino acids were

found to alter discrimination against non-complementary

NTP (ncNTP) and complementary 2'- and 3'-deoxy NTPs

(c2'dNTPs and c3'dNTPs) [6,10,11,13,14]. These observa-

tions led to suggestions that TL could participate in sub-

strate discrimination by either: (i) selectively facilitating

incorporation of correct substrates; or (ii) by providing

sufficient time for accurate NTP selection prior to the act

of catalysis. By analogy with DNAPs and ssRNAPs, the

existence of a conformational change in the active centre

of multi-subunit RNAPs (TL folding) that brings the

active centre to a catalytically active conformation sug-

gests that substrate discrimination may take place via dif-

ferential efficiency of conformational change occurrence

upon the binding of cNTPs versus ncNTPs. In support of

this idea, inhibition of TL folding of yeast RNAP II by α-

amanitin resulted in a substantial decrease in the accu-

racy of NTP addition [10]. In contrast, the recent study

on E. coli RNAP suggested that the open state of the

active centre (with unfolded TL) may be a major check-

point for discrimination against ncNTPs and c2'dNTPs

[13].

Here, by using structure-based mutagenesis and fast

kinetic analysis of phosphodiester bond formation by

wild-type (WT) and mutant T. aquaticus RNAPs we

uncover a stepwise mechanism of transcription fidelity,

and dissect the role of TL in this process. Our results also

reveal the role played by TL in the catalysis of phosphodi-

ester bond formation.

Results
Experimental set up and kinetic analysis

In order to establish the roles of the open and closed

states of the active centre in catalysis and fidelity, we have

constructed RNAP lacking TL (ΔTL RNAP) [7] and sev-

eral RNAPs bearing substitutions of TL amino acids that

directly face/contact the cNTP bound in the i+1 site

when TL is folded [9]. These amino acids included:

Q1235, M1238, R1239, F1241, H1242 and T1243 (Figure

1). Compared to WT, F1241A and T1243A substitutions

caused only minor, three- to fourfold defects in all reac-

tions catalysed by the RNAP active centre (cNTP addi-

tion, pyrophosphorolysis, hydrolysis; see Additional File

1: Figure S1A, B, C, respectively). We considered these

effects non-specific and did not investigate them further.

For the remaining mutants, we determined kpol (cata-

lytic rate at saturating substrate concentration) and Kd

(substrate dissociation constant) of single nucleotide

incorporation and misincorporation reactions using arti-

ficially assembled elongation complexes [7,15,16] (Figure

2, Additional File 1: Figure S2). The kinetic analysis of the

data was performed as described in Materials and Meth-

ods and Additional File 1: Supplementary Methods.

Given that the rates of the reactions catalysed by RNAP

can be influenced by the translocation state of the elonga-

tion complex (pre- versus post-translocated), we used

elongation complexes in which the translocation state

equilibriums were not significantly affected by RNAP

mutations (Additional File 1: Figure S3).

Figure 1 Folding of the Trigger loop (TL) restructures an amino 

acid content of the active centre. The active centre of the Thermus 

thermophilus RNAP elongation complex with bound substrate is 

shown (there is complete conservation of sequence in TL and active 

site residues between T. thermophilus and T. aquaticus (used in this 

study) RNAPs). Unfolded TL (magenta) and folded TL (green; PDB 2PPB 

and 2O5J, respectively [9]) in the active centre are shown as ribbons. 

The amino acids of the TL that face the nucleotide triphosphate (NTP; 

orange) bound in the i+1 site upon TL folding, and that were analysed 

in our study, are shown as coloured sticks (Q1235 grey, M1238 yellow, 

R1239 blue, F1241 green, H1242 cyan, T1243 red) in both folded and 

unfolded states of TL. The NTP in i+1 site is orange, RNA is red and tem-

plate DNA in grey. Mg2+ ions of the active centre are shown as spheres.
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Figure 2 Incorporation and misincorporation by wild-type (WT) and mutant RNA polymerase (RNAPs). (a) Cartoon schematically describes the 

reaction of cNTP (cGTP) incorporation in ECG1 (Additional File1: Figure S2) with 32P 5'-labelled RNA (asterisk). Elongation complexes are shown with 

non-template DNA strand below the template strand to reflect their full complementarity (as in Additional File 1: Figure S2). Representative gels of 

100 μM cGTP incorporation by WT and 500 μM cGTP incorporation by ΔTL in ECG1 are shown. The lack of complete extension of transcripts was due 

to the procedure by which elongation complexes were assembled (see Methods). (b) The intrinsic proofreading reaction accompanies misincorpora-

tion. The cartoon above the gel schematically describes the processes going on during ncGTP misincorporation in ECA (Additional File 1: Figure S2). 

Elongation complexes are shown with non-template DNA strand below the template strand to reflect their full complementarity (as in Additional File 

1: Figure S2). Note that RNAs in elongation complexes were labelled at the 3' end (by incorporation of [α32P]GTP; asterisk), thus allowing monitoring 

both misincorporation event and removal of the wrong nucleotide via transcript assisted proofreading. Misincorporation of 1 mM ncGTP and proof-

reading by WT, H1242A and R1239A RNAPs are shown as an example. The cleavage products larger than dinucleotide originate from 2 bp and 3 bp 

backtracked complexes that undergone further extension after misincorporation. The colours of the RNA products of the reactions are the same as in 

the scheme of the reaction above the gels. Black vertical line separates lanes originating from the same gel that were brought together.
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We have previously shown that misincorporated ncN-

MPs are efficiently removed from nascent RNA through

transcript-assisted hydrolysis of the second (with respect

to the 3' end of the RNA) phosphodiester bond of the

transcript [15]. Therefore, in order to measure the rate of

misincorporation we needed to monitor both the exten-

sion of the nascent RNA with ncNMP and the subsequent

transcript cleavage. In order to achieve this goal, initial

transcripts were labelled at the 3' end allowing us to

simultaneously observe single-nucleotide addition upon

misincorporation and the generation of dinucleotide

through transcript-assisted proofreading (Figure 2b).

Note, for example, that, as seen from Figure 2b, it would

have been virtually impossible to compare misincorpora-

tion by R1239A and H1242A RNAPs if only the RNA

extension is monitored. Although they have similar rates

of misincorporation, these RNAPs have very different

rates of proofreading: the R1239A substitution does not

influence intrinsic cleavage, while H1242A strongly

diminishes it. This result also suggests that TL plays an

important role in intrinsic RNA hydrolysis, and this is

being investigated in a separate study.

Active centre of ΔTL RNAP is stabilized in the open 

conformation

In order to investigate the role of TL in the active centre

function, we constructed an RNAP mutant that lacked

the entire TL (β' amino acids 1238-1254), ΔTL RNAP [7].

In accordance with previous results [7,9,13,17], ΔTL

RNAP incorporated cNTP four orders of magnitude

slower than WT RNAP (Figure 2a and Table 1), while the

values of Kd for cNTP remained largely unchanged (Table

1). The same defect in cNTP incorporation was observed

for WT RNAP inhibited by the antibiotic streptolydigin

(WT/Stl RNAP, see Table 2) [7], which locks the active

centre in an open state by blocking the folding of TL [7,9].

Stl binds to but does not inhibit ΔTL RNAP, indicating

that blocking of TL folding is the main pathway of Stl

action [7]. Taken together, these data indicate that the

active centre of ΔTL RNAP permanently remains in an

open state, where the enzyme can accept incoming NTPs

but cannot efficiently incorporate them into RNA. Com-

parison of the properties of WT and ΔTL RNAPs gave us

an opportunity to distinguish between TL-dependent and

TL-independent functions and to reveal the role played

by TL in catalysis and fidelity.

Fidelity of RNAP active centre in the open state

In order to establish the role played by TL in discrimina-

tion against non-complementary substrates we analysed

kinetic discrimination for all possible misincorporation

events by ΔTL and WT RNAPs (Table 3). Most misincor-

poration reactions by ΔTL RNAP proceeded extremely

slowly even in the presence of 10 mM ncNTP substrates,

indicating that high (~500-5000-fold, see Table 3; low

extension efficiency disallowed accurate quantification)

levels of discrimination are achieved against these misin-

corporation events in the open active centre. Although

further improved by TL, discrimination against these

events predominantly takes place in the open active cen-

tre (Table 3). For simplicity we refer to these misincorpo-

ration events as unNTPs (for unusable). Some

misincorporation events, however, were poorly discrimi-

nated against by ΔTL RNAP (~4-40-fold, bold in Table 3).

For simplicity, we refer to these misincorporation events

as ncNTPs (for non-complementary). The presence of TL

significantly (in some cases dramatically) improved dis-

crimination against ncNTPs. The most pronounced TL-

dependency was observed for discrimination against

ncGTP misincorporation in position coding for cATP

(Table 3). We therefore focused on the examination of

Table 1: Kd and kpol for incorporation and misincorporation by wild-type (WT) and ΔTL RNA polymerase (RNAP)

RNAP WT ΔTL

kpol (s-1) Kd (μM) kpol (s-1) Kd (μM)

cGTP 100 20 1.6 ± 0.1 × 10-3 36 ± 6

ncGTP 2.7 ± 0.3 × 10-2 2800 ± 600 4.2 ± 0.5 × 10-4 840 ± 190

c2'dATP 5.5 ± 0.2 × 10-2 400 ± 30 1.3 ± 0.1 × 10-3 50 ± 9

c3'dATP 1.4 ± 0.1× 10-1 55 ± 8 2.7 ± 0.2 × 10-3 57 ± 11

Incorporation of cGTP was studied in ECG1, misincorporation of ncGTP, c2'dATP and c3'dATP - in ECA. Kd and kpol (reaction rate at saturating 

nucleotide triphosphate concentration) for incorporation by WT RNAP were obtained by fitting the kinetics data into a simple kinetic model 

as described in Additional File 1:Supplementary Methods. The rest of the data were fitted into the Michaelis-Menten equation as described 

in Materials and Methods. Errors are the standard error of data fitting. The values were rounded to two significant digits.
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this misincorporation event as an example of TL-depen-

dent discrimination, and refer to it as ncNTP throughout

the text.

WT RNAP incorporated ncNTP three orders of magni-

tude slower than cNTP. The rate of misincorporation of

ncNTP by ΔTL RNAP was only slightly slower than

incorporation of the cNTP (Table 1). WT/Stl RNAP mis-

incorporated ncNTP at a rate similar to that of ΔTL

RNAP (Table 2). Given that the active centres of ΔTL and

WT/Stl RNAPs are stabilized in the open state, we con-

clude that the open state does not allow efficient discrim-

ination based on the kinetics of incorporation of cNTP

versus ncNTP misincorporation. This important result

was not influenced by the differences in the elongation

complexes we used for incorporation and misincorpora-

tion analysis (Additional File 1: Supplementary Text).

Induced fit discrimination and active expulsion of ncNTP 

from the active centre

As mentioned above, TL does not influence the affinity of

the RNAP active centre for cNTP. We measured Kd

[ncNTP] for WT and ΔTL RNAPs. The affinity of ΔTL

Table 2: Kd and kpol for incorporation and misincorporation by mutant RNA polymerase (RNAP)

cGTP incorporation ncGTP misincorporation

RNAP kpol (s-1) Kd (μM) kpol (s-1) Kd (μM)

WT/Stl 3.6 ± 0.2 × 10-3 24 ± 6 1.1 ± 0.4 × 10-4 710 ± 70

H1242A 9.8 × 10-1 20 1.7 ± 0.2 × 10-3 2300 ± 500

R1239A 2.1 20 2.7 ± 0.3 × 10-3 2700 ± 500

H1242A/R1239A 6.9 ± 0.5 × 10-2 37 ± 11 4.0 ± 0.4 × 10-4 2900 ± 500

M1238A 5.6 ± 0.5 × 10-2 47 ± 17 3.6 ± 0.3 × 10-4 990 ± 230

Incorporation of cGTP was studied in ECG1, misincorporation of ncGTP - in ECA. Kd and kpol (reaction rate at saturating nucleotide triphosphate 

concentration) for incorporation by R1239A and H1242A RNAPs were obtained by fitting the kinetics data into a simple kinetic model as 

described in Additional File 1: Supplementary Methods. Kd and kpol for incorporation by other RNAPs and misincorporation by all RNAPs was 

obtained by fitting into the Michaelis-Menten equation as described in Materials and Methods. Errors are the standard error of data fitting. 

The values were rounded to two significant digits.

Table 3: Discrimination against various misincorporation events by ΔTL and wild-type RNA polymerase (WT RNAP).

ΔTL

WT

ATP CTP GTP UTP

ECA(cATP) - ~1500

20000

~4

~1200

~20

~3000

ECC(cCTP) ~1000

~100000

- ~400

~30000

~20

~350

ECG2(cGTP) ~40

~450

~5000

~60000

- ~20

~750

ECU(cUTP) ~2000

~100000

~500

~1000

~900

~65000

-

Kinetic discrimination (folds) was quantified as a ratio of the rate of incorporation of 1 mM cATP, cCTP, cGTP and cUTP (measured in 

elongation complexes ECA, ECC, ECG1 and ECU, respectively (Additional File 1: Figure S2)) to the rate of misincorporation of these 10 mM 

nucleotide triphosphates (top row) in elongation complexes identified in the left column (Additional File 1: Figure S2). The data for ΔTL RNAP 

(plain) are approximate due to very low efficiency of some of the misincorporation events by ΔTL RNAP. The data for WT RNAP (Italic) are 

approximate because incorporation was fitted using single exponent equation.
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(and WT/Stl) RNAP for ncNTP was ~20 times lower

than that for cNTP (Table 1). The difference in Kd [cNTP]

and Kd [ncNTP] is probably due to improper hydrogen

bonding with the template base in the case of ncNTP and

is in agreement with theoretical calculations of base pair

formation between non-cognate nucleotide bases [18].

Unexpectedly, Kd [ncNTP] for WT RNAP was signifi-

cantly higher than that for ΔTL (Table 1) or WT/Stl

(Table 2) RNAPs, indicating that ncNTP bound in the i+1

site and the folded TL compete with each other. Accord-

ing to the structural data on T. thermophilus RNAP and

yeast RNAP II, cNTP and folded TL are structurally com-

plementary (Figure 1) [9,11]. The competition between

folded TL and ncNTP can, therefore, be explained by the

absence of such complementarity, probably caused by an

altered geometry of a non Watson-Crick (G-T) base pair

and, as a result, by a steric collision between them. Given

that the folded TL participates in phosphodiester bond

formation (see below), steric competition of ncNTP

bound in the i+1 site with the folded TL leads to a dimin-

ished rate of phosphodiester bond synthesis - to a slow

misincorporation. No such competition takes place in the

case of cNTP bound in the active centre (Table 1), which

allows efficient TL folding and catalysis. Therefore, TL-

dependent cNTP incorporation proceeds much faster

than TL-dependent ncNTP misincorporation, leading to

kinetic discrimination against ncNTP.

The mainly kinetic (rather than affinity) based selection

of ncNTPs by RNAP suggests that discrimination takes

place via an induced fit mechanism [10]. From our results

it follows that: (i) TL is required for catalysis (and partici-

pates in it, see below); and (ii) TL is sterically conflicting

with the ncNTP bound in the active centre (as follows

from their competition in the active centre). This sug-

gests that the conformational change (TL closing) in the

active centre required for incorporation of cNTPs is

obstructed in the presence of ncNTPs, thus supporting

the induced fit discrimination hypothesis. TL-dependent

induced-fit kinetic discrimination, therefore, is another

step assuring fidelity of transcription.

M1238 governs TL folding and expulsion of ncNTP from the 

active centre

In order to further investigate the competition between

folded TL and ncNTP bound in the active centre, we

analysed Kd [ncNTP] for RNAPs bearing single substitu-

tions in TL. From the mutant enzymes tested (Table 2)

only M1238A RNAP had Kd [ncNTP] that was signifi-

cantly lower than the WT RNAP value and close to that

of ΔTL RNAP (Table 1). This suggests that M1238 is

required for ncNTP expulsion from the active centre. In

the folded TL, M1238 stacks on the base of cNTP in the

i+1 site (Figure 1, 3a). We hypothesized that M1238 is

required for stabilization of the TL in the folded confor-

mation via interaction with the incoming substrate base

and, thus, is responsible for the observed competition

between folded TL and ncNTP. To test this notion, we

analysed RNAPs with substitutions of M1238 to hydro-

phobic amino acids with larger than alanine side chains,

M1238V and M1238L (Figure 3a). In support of our

hypothesis, M1238V RNAP had Kd [ncNTP] = 1700 ± 500

μM (that is, intermediate between those of M1238A and

WT RNAPs) while M1238L RNAP had the same Kd

[ncNTP] = 2800 ± 150 μM as WT RNAP (Figure 3a).

Importantly, the ability to expel ncNTP from the active

centre by M1238A, M1238V, and M1238L RNAPs corre-

lated with catalytic activities of these enzymes: in cNTP

addition reaction, M1238V RNAP was slightly faster than

M1238A, while M1238L was as fast as WT RNAP (Figure

3a). The correlation between catalytic activity and effi-

ciency of competition of folded TL with ncNTP bound in

the active centre suggests that 'TL folding required for

catalysis' and 'TL folding required for ncNTP expulsion

from the active centre' are one and the same process.

Interestingly, in eukaryotic RNAPs II and III, the residue

equivalent to M1238 of bacterial RNAP is leucine. Taken

together, our data suggest that M1238 is required for sta-

bilization of the folded state of the TL in the presence of

correct substrate in the i+1 site. In the case of ncNTP, we

propose that this stabilization leads to a steric competi-

tion between bound ncNTP and the folded TL and, as a

result, to the removal of incorrect substrate from the

active centre. The removal of erroneous NTP from the

active centre upon TL folding contributes substantially to

overall transcription fidelity (around an order of magni-

tude; Table 4), thus being another step assuring accurate

transcription.

Role of TL in catalysis

We further investigated the basis for the TL-dependent

kinetic step of transcription fidelity. In the crystal struc-

ture, R1239 and H1242 of the folded TL contact phos-

phates of the triphosphate moiety of cNTP bound in the

i+1 site [9] (Figure 1). Alanine substitutions of either

R1239 or H1242 reduce the rate of cNTP incorporation

50-100-fold (Tables 1 and 2). The effects of these substi-

tutions were cumulative: the double alanine substitution

(R1239A/H1242A) led to a further decrease in the rate of

cNTP incorporation (Table 2), which was approximately

the multiplicative product of individual defects observed

for R1239A and H1242A mutants. This indicates that

R1239 and H1242 act at the same kinetic step of catalysis.

Furthermore, the rate of pyrophosphorolysis was also

affected similarly by R1239A and H1242A substitutions

(Figure 3b, Additional File 1: Table S3), suggesting that

R1239 and H1242 play functionally analogous roles dur-
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Figure 3 Roles of TL amino acids in catalysis. (a). Reaction rates in saturating (1 mM) cGTP in ECG1 and Kd [ncGTP] by wild-type (WT), M1238A, 

M1238V and M1238L are shown below the cartoons of the active centres of the corresponding enzymes, drawn in PyMol using PDB 2O5J and 'muta-

genesis' function (colour code as in Figure 1). (b) Kinetics of pyrophosphorolysis by WT, R1239A and H1242A in the presence of 0.5 mM PPi in ECG1 

(Additional File 1: Figure S2) with 32P 5'-labelled RNA that was walked by two positions (G and A). (c) Kinetics of intrinsic transcript hydrolysis by WT 

(red squares), Q1235A (violet circles) and R1239A (green circles) RNA polymerase (RNAP) in EChydr (Additional File 1: Figure S2) with 32P 5'-labelled RNA. 

The lines in the plot are the non-linear regression fits of the data. (d) pH dependences of the rates of 1 mM cGTP incorporation in ECG1 at 20°C by WT, 

R1239A, H1242A and R1239A/H1239A RNAPs. Solid lines show fits of the data to a sigmoidal function, and pKa values retrieved from these fits are 

shown above the plots. (e) Kinetics of 1 μM cGTP incorporation in ECG1 by WT (red squares), R1239A (green circles) and R1239N (blue triangles). Solid 

lines show fits of the data to an exponential function.
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ing catalysis of phosphotransfer reactions. In order to test

if the decreased rate of cNTP incorporation by mutant

RNAPs is caused by distortion of TL folding, we analysed

the ability of R1239A/H1242A TL to displace ncNTP

from the active centre. As can be seen from Table 1,

R1239A/H1242A RNAP has Kd [ncNTP] similar to that of

WT (and significantly higher than those of ΔTL or WT/

Stl). Furthermore, R1239A substitution had no effect on

intrinsic RNA hydrolytic activity (Figure 3c), which also

requires TL folding [7]. These data indicate that TL with

R1239A/H1242A double substitution has retained its

ability to fold and that the defect caused by this mutation

is caused by deficiency in catalysis per se. The magnitude

of R1239A/H1242A substitution effect on phosphodi-

ester bond formation indicates that these two amino

acids are the main determinants of TL function in cataly-

sis.

The similarity of the effects caused by individual

R1239A and H1242A substitutions on phosphotransfer

reactions disfavours the exclusive role of H1242 in cataly-

sis as a Brønsted-Lowry or Lewis acid [11,12]. Neverthe-

less, we measured pH dependences of catalytic rates of

WT, R1239A, H1242A and R1239A/H1242A RNAPs. We

used 1 mM cNTP to avoid effects of pH on Kd [cNTP].

The shapes of curves for all four RNAPs were the same

(Figure 4d). The descending limb that corresponds to

protonation of the leaving group was not observed in

either of the plots. Inflection at pH = ~8.5-9.2 can be

assigned to pKa of deprotonation of RNA 3' hydroxyl -

that is, of a general base. Note that the substitution of

either R1239 or H1242 shifts this pKa towards a more

basic value, though by less than one pH unit (Figure 4d).

Therefore, H1242 and R1239 participate in general base

catalysis (in contrast to earlier proposed role in general

acid catalysis [12]), but are likely do so as a part of a net-

work of other groups of the active centre. This view is

supported by the fact that the slopes of log-log curves

were less than 1 indicating that the inflection point does

not reflect a single pKa that is being titrated. Furthermore,

substitution of R1239 to asparagine (naturally present in

this position in eukaryotic RNAP II) only slightly affected

catalysis (Figure 4e), although the side chains of these

amino acids are of different chemical nature.

Therefore, in agreement with crystallographic studies

of T. thermophilus RNAP elongation complex [9], our

results suggest that R1239 and H1242 coordinate the

triphosphate moiety of cNTP in the i+1 site to allow effi-

cient transition state formation (transition state stabiliza-

tion and/or orientation catalysis), although they are also

indirectly participating in general base catalysis. We

therefore propose that the kinetic induced-fit discrimina-

tion against ncNTP is based on different efficiencies of

transition state stabilization and/or reactants orientation

and, in part, of base catalysis during cNTP incorporation

versus ncNTP misincorporation.

Discrimination against 2'-deoxyNTP

Incorporation of 2'-deoxyNTPs in RNA may be detri-

mental to cells as 2' hydroxyls are frequently involved in

RNA ternary structure and function and may influence

mRNA translation. We therefore investigated the mecha-

nisms assuring discrimination against complementary 2'-

deoxyNTPs (c2'dNTPs) during transcription. As can be

seen from Table 1, ΔTL RNAP only poorly distinguished

between c2'dNTP and cNTP, while discrimination by

WT RNAP was strong (~2000 fold, see Tables 1, 4 and 5).

The observed poor kinetic discrimination by ΔTL RNAP

was not due to differences in the elongation complexes

used for cNTP and c2'dNTP incorporation (Additional

File 1: Supplementary Text). Low kinetic discrimination

by ΔTL RNAP was observed for all c2'dNTPs (Table 4).

The highest discrimination was achieved against cTTP,

which was incorporated only 17 times slower than cUTP

(Table 4). The result indicates that in the open state of the

active centre, discrimination against c2'dNTP is ineffec-

tive; in other words, discrimination against c2'dNTP

mainly depends on the presence of TL.

The kinetic discrimination against c2'dNTPs implies

that the induced fit mechanism is involved [10]. We

tested if TL folding, that apparently determines induced

fit discrimination, would result in expulsion of c2'dNTP

from the active centre - that is, if Kd [c2'dNTP] of WT

RNAP would be higher than that of ΔTL RNAP. As can

be seen from Table 1, WT RNAP indeed had ~10-fold

higher Kd [c2'dNTP] than ΔTL RNAP, indicating that TL

competes with c2'dNTP in the i+1 site. The competition

between c2'dNTP and TL leads to the inhibition of TL

Table 4: Discrimination against 2' and 3'-deoxy substrates by ΔTL RNA polymerase.

cATP(ECA)/

c2'dATP(ECA)

cCTP(ECC)/

c2'dCTP(ECC)

cGTP(ECG3)/

c2'dGTP(ECG2)

cUTP(ECU)/

TTP(ECU)

cATP(ECA)/

c3'dATP(ECA)

cGTP(ECG3)/

c3'dGTP(ECG2)

Discrimination, folds ~6 ~11 ~3 ~17 ~3 ~0.4

Kinetic discrimination was quantified as a ratio of the rate of incorporation of 1 mM cNTP to the rate of misincorporation of 1 mM of a 

corresponding c2'dNTP or c3'dNTP in elongation complexes identified.
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folding and, thus, of productive catalysis compared to

cNTP which does not compete with TL. The result sup-

ports the idea that discrimination against c2'dNTP pro-

ceeds via induced fit mechanism. The result also suggests

that, as in the case of ncNTPs, TL participates in the

active removal of c2'dNTP from the active centre.

It is likely that the absence of an interaction of the 2'OH

with some determinant in the active centre makes

c2'dNTP adopt a conformation that results in competi-

tion with the folded TL and the expulsion of c2'dNTP. We

tested two amino acids, β' N737 and Q1235, that were

earlier suggested to participate in the discrimination

against c2'dNTP based on crystallographic and biochem-

ical data with bacterial RNAPs and yeast RNAP II

[9,11,19]. The substitution N737A had a small effect on

c2'dNTP discrimination (Additional File 1: Table S1). In

contrast, the substitution Q1235A led to a ~25-fold

decrease in discrimination against c2'dNTP (Figure 4a).

The result suggests that Q1235 participates in recogni-

tion of the 2'OH of cNTPs, but does it along with some

other determinants. Q1235 may be partnered by β'R704

which, in the crystal structures of T. thermophilus RNAP

and yeast RNAP II elongation complexes, is close to the

2'OH of the substrate [9,11]. The contributions of differ-

ent steps in discrimination against c2'dNTP are summa-

rized in Table 5 and are schematically shown in Figure 5.

Discrimination against 3'-deoxyNTP

Incorporation of NTPs bearing modifications of the 3'

hydroxyl or lacking this group abolishes further tran-

scription. We therefore analysed the mechanism(s) used

by RNAP to discriminate against complementary 3'-

deoxyNTPs (c3'dNTPs). WT RNAP incorporated

c3'dNTP ~700 times slower than cNTP (Table 1). In con-

trast, ΔTL RNAP practically failed to discriminate against

c3'dNTP (Tables 1, 4 and 5), suggesting that discrimina-

tion strictly depends on the presence of TL. The phenom-

enon was not due to the differences in elongation

complexes or the identity of c3'dNTP (Additional File 1:

Supplementary Text). Next, we measured Kd [c3'dNTP]

for WT and ΔTL RNAPs. Surprisingly, WT RNAP had

the same Kd [c3'dNTP] as ΔTL RNAP (Table 1), indicat-

Figure 4 Role of Q1235 in discrimination against c2'dNTPs and c3'dNTPs and in catalysis. (a) Kinetics of incorporation of saturating cGTP (1 mM) 

in ECG1, c2'dATP (4 mM) and c3'dATP (1 mM) in ECA by wild-type (WT; red squares) and Q1235A (violet circles) RNAPs. Kinetic discrimination against 

c2'dATP and c3'dATP was quantified as a ratio of the rate of cGTP incorporation to the rate of incorporation of corresponding erroneous substrate. (b) 

Q1235 does not participate in catalysis directly. Kinetics of saturating (1 mM) cGTP incorporation in ECG1 by R1239A/H1242A (orange circles) and 

Q1235A/R1239A/H1242A (cyan triangles) RNA polymerase. Compare to panel A (left plot) and to Figure 3e.

%
x

el
p

m
o

c 
d

et
a

g
n

ol
e f

o 
)

d
e

sil
a

mr
o

n(

Time, s

Saturating cNTP Saturating c2'dNTP Saturating c3'dNTP

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

0 100 200 300

0

20

40

60

80

100

0 20 40 60

WT Q1235A

WT ~1800 Q1235A ~70 WT ~700 Q1235A ~5

k

k
pol

pol

[cNTP]

[c3'dNTP]

k

k
pol

pol

[cNTP]

[c2'dNTP]

(a)

0

20

40

60

80

100

0 100 200 300

Saturating cNTP

%
x

el
p

m
o

c 
d

et
a

g
n

ol
e f

o 
)

d
e

sil
a

mr
o

n(

Time, s

R1239A/H1242A

Q1234A/R1239A/H1242A

(b)

100 s
-1

1.1 s
-1



Yuzenkova et al. BMC Biology 2010, 8:54

http://www.biomedcentral.com/1741-7007/8/54

Page 10 of 15

ing that c3'dNTP does not compete with, and is therefore

not expelled by, the folded TL. Therefore, only kinetic

TL-dependent discrimination is utilized against

c3'dNTPs.

We investigated the mechanism of TL-dependent

kinetic discrimination against c3'dNTP. Based on crystal-

lographic studies of yeast RNAP II elongation complexes,

it was suggested that Q1235 of TL and β'N737 may act in

concert to check for the presence of the 3' OH [11]. We

tested RNAP bearing Q1235A substitution for its ability

to discriminate against c3'dNTP. As can be seen from Fig-

ure 4a, Q1235A RNAP showed only ~fivefold discrimina-

tion against c3'dNTP, compared to ~700-fold

discrimination exhibited by WT RNAP. Therefore,

Q1235 of TL is the primary determinant of kinetic dis-

crimination against c3'dNTP. In line with this idea,

N737A RNAP had a slight (fivefold) decrease in c3'dNTP

discrimination which was, however, TL-dependent,

because in the absence of TL, N737A substitution had no

effect (ΔTL/N737A RNAP) (Additional File 1: Table S1).

We investigated the mechanism of Q1235-dependent

kinetic discrimination. Q1235A substitution slowed

down cNTP incorporation ~100 fold as compared to WT

(Figure 4a). However, this effect was not due to altered TL

folding as inferred from Kd [ncNTP] (4 ± 1 mM). Further-

more, the Q1235A substitution did not significantly

influence intrinsic transcript hydrolysis (Figure 3c),

which also requires TL folding [7]. In order to test if

Q1235 participates, along with R1239 and H1242, in

catalysis, we analysed Q1235A/R1239A/H1242A triple

mutant RNAP. Curiously, while the single Q1235A substi-

tution had a significant effect on the rate of reaction, the

triple mutant did not have any further defect in catalysis

than the double R1239/H1242 mutant (Figure 4b). The

result suggests that Q1235 does not directly participate in

catalysis along with R1239 and H1242 but is somehow

linked to the function of these amino acids, possibly act-

ing at the step preceding transition state stabilization by

R1239/H1242. Note also that Q1235A and R1239A sub-

stitutions have similar effects on catalysis and, in the

crystal structure of yeast RNAP II elongation complex,

Q1078 (a homologue of Q1235 of T. aquaticus RNAP)

interacts with both N1082 (a homologue of R1239 of T.

aquaticus RNAP) and the 3'OH of the substrate [11].

These data suggest that Q1235 may participate in orien-

tation of R1239 into a catalytically active conformation.

Table 5: Contribution of individual fidelity steps.

Fidelity contribution Open active centre Trigger loop folding Total

(kpol [cGTP]/Kd [cGTP])/(kpol 

[ncGTP]/Kd [ncGTP])

87 5950 518000

Kinetic kpol [cGTP]/kpol [ncGTP] 3.8 970 3700

Affinity Kd [ncGTP]/Kd [cGTP] 23 6.1 140

(kpol [cGTP]/Kd [cGTP])/(kpol 

[c2'dATP]/Kd [c2'dATP])

1.7 21000 36000

Kinetic kpol [cGTP]/kpol 

[c2'dATP]

1.2 1500 1800

Affinity Kd [c2'dATP]/Kd [cGTP] 1.4 14 20

(kpol [cGTP]/Kd [cGTP])/(kpol 

[c3'dATP]/Kd [c3'dATP])

0.96 2030 1990

Kinetic kpol [cGTP]/kpol 

[c3'dATP]

0.6 1180 710

Affinity Kd [c3'dATP]/Kd [cGTP] 1.6 1.8 2.8

Values were quantified using data of Table 1: 'Open active centre' values were generated from the row identifier ratios using the ΔTL data; 

'Total' values were generated from the row identifier ratios using the wild-type (WT) data; 'TL folding' values were generated from the row 

identifier ratios using the ratio of the WT ratio over the ΔTL ratio.
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When the incoming NTP lacks the 3' OH, Q1235 fails to

perform this role, leading to inefficient catalysis and inef-

ficient kinetic discrimination against c3'dNTPs. The con-

tributions of different steps in discrimination against

c3'dNTP are summarized in Table 5 and are also shown

schematically in Figure 5.

Discussion
Taken together, our results suggest that the fidelity of

transcription is achieved via a stepwise process and that

each step contributes differently to discrimination against

non-complementary, 2'-deoxy, and 3'-deoxy erroneous

substrates. The scheme summarizing our findings is pre-

sented in Figure 5. These steps are based on two confor-

mational states of the RNAP active centre (open and

close) and on a structural rearrangement of the active

centre during transition between these two states. The

open active centre can efficiently discriminate only

against unNTPs (which, apparently, cannot base pair with

template DNA) but is error-prone in the case of ncNTPs,

c2'dNTP and c3'dNTPs. Similar conclusions were made

during analysis of yeast RNAP II [10]. That a 'motionless'

active centre (that is, which lacks additional conforma-

tional changes) is error-prone appears to be a general

concept, as illustrated, for example, by primases, which

have error rates similar to that of ΔTL RNAP [20,21].

Figure 5 The stepwise mechanism of transcription fidelity. Cartoon schematically shows RNA polymerase active centre and the steps of discrim-

ination against various erroneous substrates. From top to bottom: incorporation of complementary nucleotide triphosphate (cNTP), misincorporation 

of ncNTP, c2'dNTP and c3'dNTP. Discrimination against unNTP (unusable substrates) takes place in the open state of the active centre and is not 

shown. The approximate discrimination contributions, found in our study, are shown for each step.
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The poor fidelity achieved in the open state of the

RNAP active centre does not have a strong influence on

the accuracy of transcription because this state is catalyt-

ically very inefficient. Folding of TL that makes the active

centre catalytically efficient therefore determines the fol-

lowing steps that contribute to transcription fidelity. Our

results indicate that the catalytic role of TL is primarily

determined by R1239 and H1242, which stabilize reaction

transition state (or orient the reactants) and also indi-

rectly contribute to general base catalysis. Thus, folding

of TL, which is governed by M1238, is mainly required in

order to bring R1239 and H1242 to the position from

which they can accomplish this function. The proposed

steric competition between folded TL and ncNTP or

c2'dNTP bound in i+1 site makes catalysis with these

incorrect nucleotides inefficient. There is no such com-

petition between folded TL and cNTP. Therefore, though

the rate of misincorporation is increased during TL fold-

ing (compared to the open state of the active centre), the

increase of cNTP incorporation rate is much higher, lead-

ing to kinetic discrimination against ncNTPs and

c2'dNTPs. Interestingly, in the case of c3'dNTP, TL is

proposed to fold but fails to properly orient its catalytic

residues in the absence of the functional relationship

between Q1235 and the 3'OH.

The TL-controlled fidelity checkpoint is an example of

an induced fit mechanism of enzymatic accuracy. DNAPs

and single-subunit RNAPs also use an induced fit mecha-

nism to ensure fidelity. In these enzymes, the binding of

correct substrate induces a large conformational change

converting the complex to a catalytically active, closed,

conformation [22,23] (see also Introduction).

The principal finding of our study is that the apparent

competition of the folded TL with ncNTP and c2'dNTP

bound in the i+1 site results in the erroneous substrates'

displacement from the active centre, further improving

the fidelity by another order of magnitude (Table 5, Fig-

ure 5). The contribution of this step to transcription fidel-

ity may be more important for c2'dNTPs, because these

nucleotides bind in the active site with the same affinity

as cNTPs and, therefore, should compete with correct

substrates much more efficiently than ncNTPs. However,

it should be noted that this step has no effect on the dis-

crimination against c3'dNTPs.

Misincorporation rates by T. aquaticus WT RNAP

measured in our study (Table 3) were qualitatively similar

to those observed for yeast WT RNAP II [24], with two

exceptions. T. aquaticus WT RNAP misincorporated

ncGTP in place of cATP and ncUTP in place of cCTP

much faster (relative to other misincorporation events)

than did yeast WT RNAP II. This suggests that discrimi-

nation against some non-cognate NTPs may depend on

the sequence of elongation complex or may vary between

bacterial and eukaryotic RNAPs.

Curiously, results from a recent study on E. coli RNAP

contradict some of our conclusions [13]. By studying E.

coli ΔTL RNAP, the authors concluded that the open

state of the active centre is able to efficiently discriminate

against ncNTP. Although our conclusions agree on some

misincorporation events (unNTPs: ncCTP/cATP and

ncUTP/cATP), there is a discrepancy in the case of

ncGTP/cATP misincorporation. Zhang et al. [13] argue

that they failed to observe meaningful misincorporation

at 10 mM ncGTP, while T. aquaticus RNAP misincorpo-

rated only six times slower than cNTP (Table 3, Addi-

tional File 1: Figure S5B). The elongation complexes used

in both studies were of the same sequence. This factor

can, therefore, be excluded when analysing the possible

source of this discrepancy. We have constructed an E. coli

ΔTL RNAP with a TL deletion identical to the one used

by Zhang et al. [13] and tested it for ncGTP misincorpo-

ration (Additional File 1: Figure S5). We observed effi-

cient misincorporation even in 1 mM ncGTP by the

mutant enzyme, which was ~50 times slower than incor-

poration rate in the presence of 1 mM cGTP. Taking into

account the higher Kd [ncNTP] value, ~25-fold kinetic

discrimination is expected in the open active centre,

which is slightly higher than that observed for T. aquati-

cus ΔTL RNAP for the same misincorporation event. We

also observed higher kinetic discrimination against

c2'dNTP and c3'dNTP by E. coli ΔTL RNAP compared to

T. aquaticus ΔTL RNAP in the same elongation com-

plexes (Additional File 1: Figure S5).

Better discrimination by open-state active centre of E.

coli RNAP is achieved due to the relatively faster TL-

independent incorporation of cNTP by E. coli ΔTL

RNAP compared to T. aquaticus ΔTL RNAP (compare

Additional File 1: Figure S5, Table 1 and Figures 4 and 5 in

[13]). This suggests that some amino acids of the E. coli

RNAP active centre that lie outside TL may support

catalysis and, thus, contribute to kinetic discrimination

against erroneous NTPs in the open state of the active

centre. This idea is supported by the fact that alanine sub-

stitutions of E. coli homologues of R1239 and H1242 have

a far less drastic effect on catalysis (a four- to sixfold

decrease) than the corresponding T. aquaticus RNAP

substitutions (50-to 100-fold decrease; Tables 2). There-

fore, E. coli possesses some additional catalytic mecha-

nism that is lacking or diminished in T. aquaticus RNAP.

Our results indicate that, in addition to TL-dependent

transition state stabilization, the active centre performs

general base catalysis which only partly depends on TL. It

is therefore possible that E. coli RNAP relies on TL-inde-

pendent base catalysis more than T. aquaticus RNAP and

that this determines better kinetic discrimination in the

open active centre. The drastic catalytic effect of the TL

deletion in E. coli RNAP, however, indicates that this

additional catalytic mechanism is still dependent on the
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TL, possibly through allosteric action of TL on amino

acids of the active centre. Overall, our results suggest that

the low accuracy of the open state of the active centre

(except for unNTPs) is a general feature of multi-subunit

RNAPs, though some species-specific variations are pos-

sible.

According to our results, the total fidelity of transcrip-

tion that can be achieved through steps dissected in our

study is ~10-6 for ncNTPs, ~10-5 for c2'dNTPs and ~10-3

for c3'dNTPs (Tables 3, 4, 5). At high NTP concentrations

present in cells, accuracy is expected to drop by two

orders of magnitude in the case of ncNTPs and one order

of magnitude for c2'dNTPs, but to remain the same for

c3'dNTPs. However, the fidelity of transcription can be

further improved by a factor of 10-1-10-2 during the

proofreading of transcription via transcript-assisted and

cleavage factor-assisted (Gre in bacteria, TFIIS in eukary-

otes and TFS in archaea) removal of erroneous nucle-

otides [15,25-27].

Conclusions
Transcription is characterized by high fidelity of copying

of genetic information into RNA. Discrimination against

non-cognate and 2'- and 3'-deoxy NTPs entering the

RNAP active centre proceeds via a stepwise mechanism

involving not only discrimination based on Watson-Crick

pairing but also active recognition of substrates by the

catalytic domain of the RNAP active centre, the TL. Each

step contributes differently to the overall fidelity against

various erroneous substrates. A unique property of the

multi-subunit RNAP active centre, compared to single-

subunit RNAPs and DNAPs active centres, is the ability

of the former to actively expel wrong substrates upon TL

folding. This property may be particularly important in

the case of 2'-deoxy NTPs, which are not discriminated

during initial binding and, therefore, compete with the

cognate rNTPs.

Induced fit discrimination based on kinetics of incor-

poration versus misincorporation is determined by the

direct involvement of TL in catalysis along with the two

Mg2+ ions of the RNAP active centre. Interestingly, such

combinatorial way of catalysis (two Mg2+ ion catalysis +

TL dependent transition state stabilization/base catalysis)

indicates that the regulation of the activity of the enzyme

can be accomplished through controlling TL folding,

rather than the orientation of the catalytic Mg2+ ions.

These effects were observed during analysis of RNAPs

with mutations in non-catalytic amino acids surrounding

the active site [5,6,10,14,28]. Regulation of catalysis via

TL may also be accomplished by external factors [29].

'Combinatorial' catalysis also suggests that RNAPs of dif-

ferent organisms can adapt to various conditions by

changing the amino acid composition of TL and sur-

rounding amino acids, while leaving the two Mg2+ bind-

ing sites virtually intact [1]. For example, changes in the

F-loop, a domain close to TL, determine the temperature

optima of catalysis by closely related RNAPs from ther-

mophilic Thermus aquaticus and mesophilic Deinococcus

radiodurans [30].

Methods
Mutant RNAP construction and purification

T. aquaticus RNAP lacking TL (β' residues 1238-1254

replaced with a glycine residue) was constructed as

described [7]. Single alanine substitutions in the TL of T.

aquaticus RNAP (β' M1238A, R1239A, F1241A, H1242A

and T1243A) were obtained by the site directed mutagen-

esis in a co-expression system for recombinant RNAP

[31]. WT and mutant core RNA polymerases were puri-

fied as described [31]. In order to obtain E. coli ΔTL

RNAP (having β' residues 931-1137 replaced with three

alanine residues [13]) the deletion was introduced in the

β' subunit coded under inducible promoter in plasmid

pRL663. Mutant RNAP production was performed as

described [32] and its purification as described [33].

Transcription assays

Elongation complexes (Additional File 1: Figure S2) [3,16]

were assembled and immobilized on Ni-NTA beads (Qia-

gen, Venlo, The Netherlands) as described [15,16]. The

beads were washed with 1 M KCl to remove incorrectly

assembled complexes. For fast kinetics experiments the

immobilization step was omitted (which results in

incomplete incorporation, see Figure 2a). The presence of

non-template strand in all complexes was confirmed by

treatment with Exo III (digests only double stranded

DNA, not shown). When specified, RNAP was walked to

a desired position by the addition of required substrates

with their subsequent removal through beads washing.

RNA was either 32P labelled at the 5'end [15] or labelled at

3'-end after elongation complex assembly by incorpora-

tion of [α-32P]GTP (PerkinElmer, MA, USA) with subse-

quent removal of unincorporated [α-32P]GTP through

beads washing. Transcription buffer contained 40 mM

KCl and 20 mM Tris pH 8.0, unless otherwise specified.

Intrinsic RNA hydrolysis was initiated by the addition of

10 mM MgCl2. Incorporation and pyrophosphorolysis

reactions were initiated by the addition of a mixture 10

mM MgCl2 with NTPs or PPi, respectively. For misincor-

poration, 20 mM MgCl2 was used in order to avoid possi-

ble titrating out of the Mg2+ by high NTP concentrations.

Reactions were incubated at 40°C (20°C for pH depen-

dences), stopped by the addition of 1 M HCl (final con-

centration) or formamide-containing buffer, neutralized

if required and analysed by Urea-PAGE and Phosphorim-

aging (GE Healthcare, Buckinghamshire, UK). Exo III
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footprinting and hydroxyl radical probing of Additional

File 1: Figure S3 was performed as described in the figure

legend.

Fast flow kinetics

Fast kinetic experiments were performed using a Bio-

Logic Quenched-Flow QFM-400 instrument (Bio-logic

SAS, Claix, France) equipped with 3.5 μL ageing line. The

settings and calibration of the QFM-400 were accom-

plished according to the standard procedure suggested by

the manufacturer. Experiments were conducted at 40°C

(20°C for pH dependences) by using a circulating water

bath. Assembled elongation complexes were loaded in the

syringe 1 and a solution containing various concentra-

tions of correct nucleotide and 10 mM MgCl2 were

loaded in syringe 2. 30 μL samples from syringes 1 and 2

were mixed and the incorporation was allowed to pro-

ceed for the indicated times. Reactions were quenched by

addition of HCl to a final concentration of 1 M from

syringe 4. Immediately after the addition of HCl, the solu-

tion was neutralized by the addition of 1 M KOH and 300

mM Tris base (final concentration). Products were analy-

sed as described above.

Data analysis

For kinetics that are described by a single exponent (for

other case see Additional File 1: Supplementary Informa-

tion), we used P = A × (1-ekt), where P is the fraction of

incorporated RNA, A is the fraction of active RNAP com-

plexes, k is the reaction rate and t is the time. The rates

obtained for various concentrations were fitted to the

Michaelis-Menten equation; k = kpol × [NTP]/(KM
obs+

[NTP]), where [NTP] is the substrate concentration, kpol

is the maximum rate of the enzyme and KM
obs is the

Michaelis constant. Prism 5 (GraphPad Software, CA,

USA) was used to perform the single exponential fits to

misincorporation and incorporation data. The kinetic

simulations were performed using the ISRES algorithm

[34,35] implemented in MATLAB (The MathWorks, MA,

USA).). Nonlinear regression with least squares was used

to obtain the best fit of the model to the data. We mini-

mized the sum of squares between the experimental data

and the data predicted by the model for a particular set of

parameters  to obtain the best fit

parameters.
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