
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

The Harlan D. Mills Collection Science Alliance 

6-1988 

Stepwise Refinement and Verification in Box-Structured Systems Stepwise Refinement and Verification in Box-Structured Systems 

Harlan D. Mills 

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 

Mills, Harlan D., "Stepwise Refinement and Verification in Box-Structured Systems" (1988). The Harlan D. 

Mills Collection. 

https://trace.tennessee.edu/utk_harlan/16 

This Article is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


Stepwise Refinement and 
Verification in Box-Structured 

Systems 
Harlan D. Mills 

University of Florida zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ystem design begins in problem 
domains, usually with considera- 
ble informality, and ends in com- 

puter domains in completely formal 
languages for programmers and users. 
Ideally, the system specification should be 
defined formally first, and the system 
designed accordingly. However, there are 
few systems of any size where this is prac- 
tical. Even i f  a designer could do it, the 
sponsors and users would be hard pressed 
to understand the formal specification. 

I propose that the formality of specifi- 
cations and designs be developed together 
in box structures with many sponsor and 
user interfaces. Box structures allow the 
stepwise refinement and verification of 
hierarchical system designs from their 
specifications at formal and informal 
levels. 

Long division in place notation is an 
example of a stepwise refinement and 
verification process that produces a quo- 
tient and remainder from a dividend and 
divisor. Each major step produces the next 
digit of the quotient by a creative estimate 
of its value followed by an immediate 
verification of its correctness. If the verifi- 
cation fails, a new estimate is provided and 
verified. The minor steps are digit-by-digit 
arithmetic operations with no further 
invention beyond estimating the next digit 
of the quotient. Using the fundamental zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L 
Box structures of data 

abstractions allow the 

stepwise refinement 

and verification of 

hierarchical system 

designs from their 

specifications at 

formal and informal 

levels. 

mathematical discoveries that made long 
division possible, a skilled school child can 
solve problems beyond the capability of 
Euclid and Archimedes. 

Box-structured system design’ is a step- 
wise refinement and verification process 
that produces a system design from a spec- 
ification. Such a system design is defined 
by a hierarchy of small design steps that 

permit the immediate verification of their 
correctness, just as the next digit can be 
verified immediately in long division. 
Three basic principles underlie the box- 
structured design process: 

(1) All data to be defined and stored in 
the design is hidden in data abstractions.2 
Even program variables define simple data 
abstractions with entries for, say, set and 
query; the set entry with a value ensures 
that any query entry preceding another set 
returns that value. 

(2) All processing is defined by sequen- 
tial and concurrent uses of data abstrac- 
tions. For example, the simple assignment 
statement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx : = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  where x and y name 
program-variable data abstractions, can 
be considered as the sequence of a query 
of y followed by a set of x using the value 
returned by y .  

(3) Each use of a data abstraction in the 
system occupies a distinct place in the 
usage h i e r a r ~ h y . ~  For example, a data 
abstraction for the assignment x : = x + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y would use the data abstraction for x in 
two distinct ways and show the uses in its 
usage hierarchy. 

These three principles unify the distinc- 
tions between system design and program 
design. In particular, Parnas’ usage hier- 
a r c h ~ ~  provides a powerful place notation 
for creating, documenting, and inspecting 
software designs. 
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Figure 1.  Black box. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Program variables and assignment 

statements are especially simple data 
abstractions. Stacks and queues are more 
elaborate, requiring tens or hundreds of 
program declarations and statements. 
Entire systems, such as information or 
database systems containing thousands or 
millions of lines of program source code, 
are also data abstractions, whether cons- 
ciously developed as such or not. 

Defining a data abstraction in three 
forms reduces the size of steps required to 
define its structure and use in system 
design. These forms are called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAblack zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
box, state box, and clear box. The black 
box gives an external description of data 
abstraction behavior in terms of usage. 
The state box gives an intermediate 
description in terms of an internal state 
and the use of an internal data abstraction. 
The clear box gives an internal description 
by replacing the state box’s internal data 
abstraction with the sequential or concur- 
rent usage of other data abstractions. 

Each major step in box-structure design 
expands a black-box description into a 
state box and then into a clear box. An 
immediate verification of correctness fol- 
lows each substep. I f  a verification fails, 
a new expansion is required. Two points 
of creative invention are required in each 
major step: (1) the encapsulation of usage 
histories into a state box and ( 2 )  the 
decomposition of state-box transitions 
into a clear-box process. The verification 
steps are analytic and repeatable without 
invention. 

Usage hierarchies and 
block diagrams 

Block diagrams, such as those found in 
data-flow diagrams, coalesce the uses of 
each data abstraction in the usage hierar- 
chy into a single node and coalesce the 
usage relations among data abstractions 
into arcs between nodes. Such diagrams 

irreversibly summarize hierarchical in for- 
mation. Mappings from usage hierarchies 
to block diagrams are from many to one 
and mappings from block diagrams to 
usage hierarchies are from one to many. 

Block diagrams used in descriptions 
summarize system structure to aid general 
understanding of a system’s parts and data 
flow among the parts. The parts can be 
decomposed into block diagrams and 
parts hierarchies for a general perspective 
of system structure. 

Block diagrams used in design are con- 
ceptions about data flow among modules 
to be designed. Since the mapping from 
block diagram to complete design is from 
one to many, only one or a few designs that 
satisfy a block diagram will be correct. 
Consequently, if the sequential or concur- 
rent use of modules shown in block dia- 
grams is left as programming details for 
later expansions, then the design process 
is inherently error-prone because the cor- 
rectness of use among modules cannot be 
immediately verified. Correct detailed 
program design is even more difficult 
when block diagrams are expanded into 
hierarchies of more-detailed block dia- 
grams without defining sequential and 
concurrent uses at each level. 

Box structures of data 
abstractions 

There is a direct relationship between 
object-oriented development and box- 
structured design in the implementation of 
data abstractions as  object^."^ In fact, 
box-structured design represents a sys- 
tematic process for creating object- 
oriented designs. 

Object-oriented development also uses 
inheritance to describe objects or data 
abstractions. As data abstractions become 
more complex and usage hierarchies 
become deeper, inherited properties can 
dramatically improve the precision of 
descriptions. Such property hierarchies, 
combined with formal methods of axio- 
matic and algebraic description,2 are 
needed to deal with substantial systems in 
an orderly way. 

Black-box descriptions. Stepwise refine- 
ment and verification of system design 
describes system behavior entirely in data 
abstractions. Parnas’ principle of infor- 
mation hiding distinguishes between con- 
crete, visible data storage in a system with 
persistent information and the system’s 
external b e h a ~ i o r . ~  Parnas describes sys- 

tem behavior by its traces with no refer- 
ence to stored data.’ Hoare also uses 
traces to define system behavior for net- 
works of communicating processes.6 
These ideas lead to a direct, mathematical 
description of system behavior. 

Any realized data abstraction exists in 
real time, whether it performs a so-called 
real-time function or not. Various uses are 
initiated at various entries, possibly con- 
currently. It is useful to classify each initi- 
ation (defined by the entries and any data 
required) as a stimulus to the abstraction 
and each return (defined by the exits and 
any data produced) as a response by the 
abstraction. Each response is determined 
uniquely by the stimuli it has previously 
received and accepted. That is, for each 
realized data abstraction, there is a mathe- 
matical function from its stimulus histo- 
ries to its next response. 

Many abstractions do not require spe- 
cific real-time behavior, even though each 
realization exists in real time. In such 
cases, the function is defined for sequen- 
tially ordered stimuli. For example, a 
finite-stack data abstraction is usually 
described as a sequential process rather 
than a real-time process. 

Figure 1 shows a black box, with a 
stimulus (possibly through multiple con- 
current entries) producing a response (pos- 
sibly through multiple concurrent exits). 
Let S be the set of possible stimuli and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 
be the set of possible responses. The black- 
box description is a mathematical function 
ffrom the set of sequences on S (call it S*) 
to R of type 

f : S * - R  

For especially simple data abstractions,f 
can be given in closed mathematical nota- 
tion. For large abstractions, it may be 
necessary to givefin the natural language 
of a problem domain, often a mixture of 
formal and informal language. Whatever 
the notation, the black-box description is 
a function. 

A specification for a data abstraction 
can be given as a set of traces6 consisting 
of every acceptable sequence of inter- 
leaved stimuli and responses. I f  two sub- 
sequences are identical until a stimulus 
produces different responses in each, then 
the specification defines a mathematical 
relation rather than a function. Mathemat- 
ical relations can also be used as black 
boxes to describe data abstractions with 
nondeterministic behavior. 

In programming languages that permit 
program variables to be declared but not 
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initialized, data abstractions of the vari- 
ables have nondeterministic behavior up to 
the first set stimulus, but deterministic 
behavior after. In programming languages 
that require variable initialization, these 
data abstractions are deterministic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAState d i i  

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I 

I 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S- g:S*X T-Rx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 

State-box descriptions. The term “data 
abstraction” implies the possibility of stor- 
ing data between stimuli to respond to the 
effects of previous stimuli. For example, 
in a finite-stack abstraction, a push pro- 
vides a data item that may be required as 
a response for some later copy-top opera- 
tion. The principle of information hiding 
requires that any such data be regarded as 
part of an abstract state of the data 
abstraction, which may be implemented in 
various ways but always provides a correct 
description of behavior. 

There is a simple mathematical way to 
guarantee the existence of such a state and 
the correct behavior of an abstraction with 
it. Regard the stimulus history itself as the 
state. Then, for each stimulus, use the 
black-box function to compute the 
response from the stimulus history, includ- 
ing the stimulus just received. Finally, 
compute the new state by appending that 
stimulus to the previous state. This con- 
struction defines a state machine, but not 
a finite-state machine because stimulus 
histories are not bounded. Of course, most 
interesting data abstractions have a func- 
tion mapping the unbounded set of stimu- 
lus histories to a finite set of new state 
representations that let a finite-state 
machine provide the black-box behavior. 

However, the classical-state machine, in 
which the state machine transition is a 
mathematical function from stimuli and 
old states to responses and new states, has 
one serious deficiency in elaborating sys- 
tem behavior in a hierarchical structure. 
Such a transition function forces all state 
data into the state machine’s state, ter- 
minating the hierarchy of state data stor- 
age. In fact, the implementations of 
complex data abstractions typically con- 
tain several levels, with information hid- 
den at each level. 

A state box-a simple generalization of 
the idea of a state machine-allows such 
implementations. A state box uses a data 
abstraction to determine the next state and 
response for each stimulus. The abstract 
state can then be distributed in any way 
desired between the state and the transition 
behavior of the state box. A state box is 
pictured in Figure 2, which shows an inter- 
nal black box whose stimulus arrives con- 
currently from the external stimulus and 

)R 

Figure 2. State box. 

the internal state, and whose response 
departs concurrently to the external 
response and the new internal state. 

Let Tbe a set of states. The behavior of 
the state box is given by an initial state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt in 
T and function g of the type 

g : S * x T * - R x T  

that is, a black-box function from stimu- 
lus and state histories to the next response 
and state. Each pair ( t ,  g )  uniquely 
defines a black-box functionfthrough the 
elimination of intermediate states by 
repeated substitution. 

For example, given ( t ,  g )  with ith 
stimuluss.i, stimulus history s k i  = (s.1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s.2, . . . , s. i) , ith response r.i, state r.i - 1 ,  
state history th . i -  1 = ( t ,  t.1, . . ., 
f . i -  I ) ,  and g = (g r ,  g t )  then 

r . i  = gr(sh.i, th.i- 1 )  

and 

t.i = gt(sh.i, th. i -  1) 

Define the state history function gth such 
that 

gth(sh.i, rh.i- 1) = ( t ,  gt(sh. l , ( r ) ) ,  
. . . , gt(sh.1, th.i- 1)) 

By substitution, i f  i >  1 ,  

r. i = gr(sh. i, gth(sh. I - 1, fh. i - 2 ) )  

I f  i > 2 ,  

r . i  = gr(sh.i, gth(sh.i- 1, gth(sh.i- 2 ,  
th. i - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3))) 

and, continuing i substitutions, 

r .  i = gr(sh. i, gth(sh. i - 1, 
gth(sh.1, (0). . .)) 

which is a value of a function of typefwith 
parameter t .  That is, for each state box 
there is a unique black box. Given black- 
box functions of type F,  state-box func- 
tions of type G, and states of type T,  there 
exists a mathematical function d of type 

d:  T x G - F  

The values of function d are called the 
black-box derivatives of state boxes. To 
verify that a state box has been designed 
correctly to provide black-box behavior, 
the derived black box need only be com- 
pared to the intended black box. 

Clear-box descriptions. The theorems 
and experiences of structured program- 
ming lead to a direct definition of four 
kinds of clear boxes: three sequential 
forms for sequence, alternation, and iter- 
ation, and one concurrent form. In each 
case, a particular form of sequential or 
concurrent usage of data abstractions is 
defined to replace the internal data 
abstraction of the state box. Alternation 
and iteration use special data abstractions 
called conditions in which the stimulus is 
directed out through one of multiple exits. 
In each use, a regular data abstraction (not 
a condition) accesses and updates the state. 

The definitions in sequential usage are 
familiar. In concurrent usage, the defini- 
tions are novel to ensure referential trans- 
parency in concurrent and sequential 
usage. The definitions in concurrent usage 
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S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
h: S* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx T*-U x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 

! U f,, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k: U' x TW? x T 

+R 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 
I 
I 1 

b 

Figure 3. Sequence Clear Box. The response from B1 becomes the stimulus to B2. 

I 
I 
I 
I 
I 
I 

B1 

h: S' x 7 L R  x T 

I I 

2 
b 

t 

82 

k : S * X T L R X T  

Figure 4. Alternation Clear Box. The condition black box C directs its stimulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto B l  or B2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
provide an ordered set of new states and 
responses from each concurrent data 
abstraction, with the requirement that a 
new data abstraction, called Resolve, be 
defined to resolve discrepancies among the 
responses into a single response. 

The four kinds of clear boxes are pic- 
tured in Figures 3-6. Their function seman- 
tics can be derived directly from the 
semantics of their states and black boxes. 

As in the case of mapping a state box into 
a black box, there is a derivative function 
mapping any clear box into a unique state 
box. To verify that a clear box has been 
designed correctly to provide state-box 
behavior, the derived state box need only 
be compared with the intended state box. 
These verifications can be carried out by 
substitution and case analyses to elimina 
sequential and concurrent process. 

Realism and rigor in 
software design 

When jointly developing formality in 
specifications and designs, a basic princi- 
ple is that the final, formal system will 
have the behavior of a black box function. 
So the behavioral specification should be 
a function or relation at every level of for- 
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mality. The box structures allow any level 
of formality. As formality increases, fal- 
libilities and ambiguities can be discovered 
and corrected. 

Sponsors and implementers urgently 
need a coherent account of design activi- 
ties. However, the unfolding of a design 
from specifications to computer resources 
requires considerable learning with much 
trial and error. In particular, two formi- 
dable problems complicate the design trail. 
Intelligent decision-making at the top level 
requires that various low-level problems be 
assessed and solved in detail. Also, any 
reasonable method must recognize that the 
specification is almost certain to change 
during development. To deal with such 
problems, Parnas advocates a usage hier- 
archy of modules, each hiding certain 
secrets, by a joint study of the specification 
in the problem domain and the available 
computing resources, with the probability 
of change explicitly re~ogn ized.~  

Box-structured design leads to the same 
goal as Parnas' usage hierarchy. Let's 
assume that the top of a mountain is a for- 
mal description and that farther down its 
slopes the descriptions are more and more 
informal (with more and more fallibility). 
I propose a spiral approach to the top 
through several levels of formality. In fact, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

I 
I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s- 

I 
I B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h:S'x-IY_LSxT + 

State 
r -- - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- 
I 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

Figure 5. Iteration Clear Box. The condition black box C directs its stimulus to B 

or the external response of the clear box. The response from B becomes the stimu- 

lus to c .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S- 

I 
I 
I 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1 

H k:S'x T-Rx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 

82 I 
I I  I 

I- k:S'x T-Rx T 4 

I 
I 
I 
I 

Resolve 

a: R x R x T x T-R x T +R 

Figure 6. Concurrent Clear Box. The external stimulus is directed to both B1 and B2. The responses from B1 and B2 together 

become the stimulus to Resolve. 
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the climb begins in the language of the 
problem domain-often a lot of 
English-and ends up in the computer 
domain of entirely formal code. Box struc- 
tures, whether formally or informally 
described, are used on the way up with 
stepwise refinement and verification. 
Also, advance scouts must move ahead to 
assess and solve problems in low-level 
details with more formality. So, for exam- 
ple, Parnas’ ideas about looking for 
appropriate secrets in upcoming data 
abstractions are useful. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
System design by 
box-structure 
expansion 

A box-structure expansion begins with 
a black-box specification of a data abstrac- 
tion. It identifies the black box, a state box 
with the same behavior as that of the black 
box, and a clear box with the same 
behavior as that of the state machine, 
using data abstractions at the next level 
with their own black-box behavior. 
Although the theory can be given entirely 
in function theoretical terms with abstract 
states and functions, a practical design 
process must use concrete design and pro- 
gramming languages to describe data 
abstractions and their uses. This shift from 
theory to practice involves only a change 
in syntax, not in semantics. A design or 
program is a rule for a function, and data 
descriptions and program structures are 
means for facilitating expression of such 
rules. 

Each expansion of a box structure is a 
step in designing internal state data and 
internal sequential or concurrent process. 
These steps can require considerable 
invention. It helps to break each expansion 
into smaller steps, leaving design trails that 
permit more objective engineering inspec- 
tions. For this purpose, I define the follow- 
ing 1 1-step box-structure expansion 
process: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Define the black box 

(1) Define black-box stimuli 
Determine all possible stimuli 
for the black box. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 2 )  Define black-box behavior 
For each possible stimulus, 
determine its complete response 
in terms of its stimulus history. 

Design the state box 
(3) Discover state data requirements 

For each response to be calcu- 

lated, encapsulate its stimulus 
history into a state data 
requirement. 

(4) Define the state 
Select a subset of the required 
state data items to encapsulate 
stimulus histories. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 5 )  Design the state box 
For the selected state, deter- 
mine the internal black box 
required for the state box. 

Verify the correctness of the 
state box with respect to the 
required black-box behavior. 

(6) Verify the state box 

Design the clear box 
(7) Discover state data accesses 

For each item of state data and 
each possible stimulus, deter- 
mine all possible accesses of the 
item. 

Organize state data into data 
abstractions for  effective 
access. 

Define sequential or concurrent 
uses of the data abstractions 
defined to replace the internal 
black box of the state box. 

Verify the correctness of the 
clear box with respect to the 
state-box behavior. 

(8) Define data abstractions 

(9) Design the clear box 

(10) Verify the clear box 

Continue the process 
(1 1) Repeat stepwise expansion until 

For each new data abstraction, 
repeat steps 1-10 until suitable 
data and program specifica- 
tions are reached. 

design completion 

The inventions required in this process 
are strictly contained in steps 4, 5 ,  8, and 
9 and labeled there. The other steps are 
analytic and repeatable. This process iso- 
lates and embeds the creative design steps, 
allowing design reviews in canonical cases 
and automatically developing relevant 
information while leading up to each step. 
For example, step 3 provides enough back- 
ground to carry out step 4 and review it 
objectively. 

In contrast, heuristic approaches often 
skip these analytic steps and leap to net- 
works of sources, processes, stores, and 
sinks. However, in large problems, it is dif- 
ficult and sometimes painful to determine 
i f  a leap was inspired or flawed. The com- 
plexity and the number of design alterna- 

tives make it risky to  leap that 
discontinuity without a lot of engineering 
analysis. 

A navigation and 
weather buoy case 
study 

Booch uses the problem of a navigation 
and weather buoy to illustrate a data-flow 
approach to object-oriented architecture 
and d e ~ i g n . ~  The problem was redone in 
box structures as shown below. (I subse- 
quently learned that this problem was 
originally suggested by Chmura et al.’ 
with a solution in terms of a set of 
information-hiding modules. The solution 
below was developed without knowledge 
of Chmura’s solution.) Booch gives the 
following statement of the problem. 

The Host at Sea system is a group of 
free-floating buoys that provide naviga- 
tion and weather data to air and ship traf- 
fic. The buoys collect data on air and water 
temperature, wind speed, and location 
through sensors. Each buoy can have a 
different number of sensors and can be 
modified to support other types of sensors. 

Each buoy is also equipped with a radio 
transmitter (to broadcast weather and 
location information as well as an SOS 
message) and a radio receiver (to receive 
requests from passing vessels). A sailor can 
flip a switch on the buoy to initiate an SOS 
broadcast and some buoys are equipped 
with a red light that can be activated by a 
passing vessel during search operations. 
Software for each buoy must: 

Maintain current average wind, tem- 
perature, and location information. Wind 
speed readings are taken every 30 seconds, 
and temperature and location readings are 
taken every 10 seconds. Wind and temper- 
ature values are kept as a running average. 

Broadcast wind, temperature, and 
location information every 60 seconds. 

Broadcast wind, temperature, and 
location information from the past 24 
hours in response to requests from passing 
vessels. This takes priority over the peri- 
odic broadcast. 

Activate or deactivate the red light 
based on a request from a passing vessel. 

Continuously broadcast an SOS sig- 
nal after a sailor engages the emergency 
switch. This signal takes priority over all 
other broadcasts and continues until reset 
by a passing vessel. 

On the basis of this problem statement, 
Booch invented a data-flow diagram and 
identified objects, attributes, and opera- 
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tions for an object-oriented architecture 
for such a However, the 11-step 
expansion process outlined above yields a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Preliminary black-box analysis. The 
data-flow approach jumps right in with 
various internal flows and processes to 

approach focuses first on defining the 
problem as a real-time transformation of 
stimuli to responses. The problem state- 
ment identifies the following general types 
of stimuli: 

different architecture. A black box is a 
formal specification 

that is complete, 
unambiguous, and 

consistent. 
solve the problem. The box-structure 

clock data (various references to time) 
winddata 
temperature data 
location data 
request to broadcast 24 hours of 
weather data 
request to activate or deactivate a red 
light 
request to start or stop continuous 
SOS broadcast 

Members of these stimulus types may 
arrive concurrently in various combina- 
tions to make up a stimulus. 

The problem statement further identi- 
fies possible responses to these stimuli as 

start or stop continuous SOS 

activate or deactivate the red light 
start a broadcast of 24 hours of 

start a broadcast of current weather 

Since there is only one transmitter, start- 
ing a broadcast means stopping any other 
broadcast currently under way. 

The rest of the problem statement gener- 
ally indicates which response should fol- 
low any possible stimulus. The response 
depends on the stimuli accumulated to the 
moment, through references to running 
averages. So the buoy’s black box will 
require histories of certain stimuli cover- 
ing more than 24 hours (for example, a 
24-hour-old running average will require 
data more than 24 hours old). 

Data must be encapsulated in any state 
box for this black box. References to run- 
ning averages of wind and temperature 
data suggest that new data abstractions 
can greatly simplify the necessary compu- 
tations and data management. However, 
before rushing into architecture and design 
decisions on internal data flows and pro- 
cesses, it is worthwhile to focus more 
attention on the problem. 

broadcast 

weather data 

data 

Questions about the problem statement. 

This preliminary black-box analysis shows 

that the problem statement is far from a 
specification. Many additional decisions 
are needed to remove ambiguities, ensure 
completeness and consistency, and pro- 
vide a solution without unpleasant sur- 
prises for the buoy’s sponsors and users. 
Such problems should be tackled at the 
black-box level before plunging into state- 
box and clear-box expansions. 

Obviously absent from the problem 
statement is how the buoy is to be oper- 
ated. While the buoy could be developed 
as an expendable device that is deployed 
and left alone, whoever is responsible for 
its operation might want more control (for 
example, to monitor system integrity, 
security, or correctness through testing or 
diagnostics). I f  so, additional types of 
stimuli and responses must be defined. 

This example assumes the buoy is 
expendable. However, note that a focus on 
immediate users, to the exclusion of secon- 
dary users such as operators and main- 
tainers, usually leads to faulty designs that 
can only be patched up enough to become 
poor designs. 

Also absent from the problem statement 
are questions involving initialization: 

Is the periodic weather broadcast 
(every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 seconds) tied to Greenwich Mean 
Time (GMT) or to an internal clock that 
will appear random in real time to its 
users? 

What is expected if a 24-hour-weather 
broadcast is requested before enough data 
have been collected since the start (or 
restart) of the buoy’s operation? 

Can the operators restart the buoy 
(for example, after moving it to another 
location in an emergency situation)? 

How are the running averages to be 
initialized? 

The problem statement mentions that 
SOS broadcasts and 24-hour-weather 
broadcasts have priority, but that raises 
more questions: 

Does a lower-priority broadcast abort 

when a higher-priority one is requested, or 
does it finish first? 

Can a 24-hour request abort another 
24-hour request? 

Other questions to be addressed at this 
stage include 

What is the exact content of a current- 
weather broadcast? Of a 24-hour-weather 
broadcast? 

How many samples are needed for 
running averages, and can that parameter 
be controlled by the operators? 

Is the running average of wind a vec- 
tor average? 

Completing the problem statement. A 
black-box analysis forces the identification 
of every possible stimulus of the buoy and 
every acceptable response in terms of the 
stimulus history. The principle of transac- 
tion closure’ requires that any informa- 
tion needed to produce a response be 
provided by some previous stimulus. For 
example, a weather broadcast requires 
previous wind and temperature data. 

A black box is a formal specification 
that is complete, unambiguous, and con- 
sistent because it is a mathematical func- 
tion or relation from all possible stimulus 
histories to responses, whether it is repre- 
sented in mathematical notation, English, 
or a mixture of the two in the problem 
domain. Completion of a black-box anal- 
ysis and description usually requires many 
interactions with sponsors and users. 
However, getting a good specification is 
far less expensive over the life cycle than 
launching into design and implementation 
without knowing what the sponsors had in 
mind or the users needed. 

In this case study, let us assume the fol- 
lowing resolutions to the previous 
questions: 

The buoy clock and sensors are 
restarted at the next GMT minute mark 
after the moment of restart. 

The phrase “24-hour-weather broad- 
cast” means “weather-since-restart broad- 
cast” i f  restart was less than 24 hours ago. 

A buoy can be restarted or shut down 
at any time by the use of a password, with 
restart conditions for its location and 
running-average parameters. The pass- 
word can be changed by use of the current 
password; the initial password is “buoy.” 
The password is unchanged by a restart or 
shutdown. 

A request for  SOS broadcast 
preempts and aborts any other broadcast. 

A periodic weather broadcast is can- 
celled if any other broadcast is under way. 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequest for 24-hour-weather broad- 
cast is ignored if an SOS broadcast is under 
way. It is queued to follow a periodic 
current-weather broadcast or 24-hour- 
weather broadcast if one of these is already 
under way. Otherwise, it is granted 
immediately. 

The exact content of a current- 
weather broadcast is the current location, 
running average of wind, and running 
average of air and water temperatures. A 

24-hour-weather broadcast contains the 
current-weather broadcasts for each of the 
previous 24 GMT hour marks (or all GMT 
hour marks if restart was less than 24 hours 

The number of samples in running 
averages for wind and temperature is 
defined by integer parameters set at restart 
or by default. The term ‘‘running aver- 
age” means “average since restart.” 

The running average of wind is the 
running average of the wind vector. 

In practice, these resolutions should be 
further scrutinized by sponsors, users, and 
analysts, and the entire problem state- 
ment/black box should be cast into a more 
systematic problem-domain statement for 
formal review and concurrence by spon- 
sors and users. 

The result is a mathematical function or 
relation from all possible stimulus histo- 
ries to responses, in which transaction clo- 
sure is obtained. This function or relation 
must deal specifically with the response to 
the first stimulus, the second, the third, 
and so on, even though it is tempting to 
focus on steady-state operations far 
removed from initial conditions. 

ago). 

Stepwise box-structure 
expansion of the buoy 
problem 

Step 1. Define black-box stimuli. The 
second round of the problem statement 
analysis gave the buoy a restart capability 
that obviates all history except the current 
password. Such a restart capability is 
usually needed for operational control, no 
matter how well the device was thought 
out. 

The physical media for stimulus types 
include clock and sensor connections, 
radio receptions, and mechanical switches. 
Let us suppose the buoy has a basic inter- 
nal clock that polls the digitized informa- 
tion and is accurate enough to deal with the 
sensors and the radio transmitter and 
receiver. Let us also assume that a “start 

tories of stimuli with one to 14 members of 
these stimulus types. That is an infinite 
domain, but with a simple structure. For- 
tunately, the interactions between these Sponsors, users, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* 
stimulus types are also simple. 

The function mapping from these 
stimulus histories to responses is simple 
enough to decompose the effects of stimu- 
lus types to a few cases, many quite 
autonomous for the stimulus type 

analysts must 
determine the 

response from every 

possible stimulus - 
involved. This is shown in Figure 7 ,  where 
the response required is denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. The 

history. 

broadcast” command is available and that 
the transmitter returns a “broadcast ter- 
minated” signal. 

Because of the need to maintain GMT, 
let us suppose the clock is synchronized to 
GMT by means outside the scope of this 
study and that the basic periodic clock 
pulse generated is present in every stimu- 
lus. The possible stimulus types are 

clock pulse, 
restart command and data, 
shutdown command, 
change password command and data, 
wind data, 
air temperature data, 
water temperature data, 
location data, 
request to broadcast 24 hours of 
weather data, 
request to activate a red light, 
request to deactivate a red light, 
request to start continuous SOS 

request to stop continuous SOS 

broadcast terminated. 
Thus, there are 14 possible stimulus 

types present in every stimulus. The clock 
pulse is always present and the others are 
present independently of each other. Seven 
of these types contain data, but seven do 
not. 

Some types conflict in their effects. For 
example, a vessel may send a request to 
stop continuous SOS broadcast due to its 
handling of one emergency at the same 
time a sailor pushes the switch to start an 
SOS broadcast for another emergency. 
The black box must describe the response 
to this presumably unusual case. In fact, 
the information developed in the interac- 
tion between sponsors, users, and analysts 
must determine the response from every 
possible stimulus history, whether 
expected frequently or infrequently. 

broadcast, 

broadcast, and 

Step 2. Define black-box behavior. As 

derived above, the domain for the black 
box (function) is the set of all possible his- 

response required for each stimulus type 
is given in Box Description Language’ for 
readability by sponsors, users, and 
analysts. The outer syntax is formal 
(denoted in Figure 7 in uppercase charac- 
ters), but the inner syntax is informal for 
now.8 The informal expressions in inner 
syntax should be replaced by more formal 
expressions as the design progresses. 

Note that the responses in Figure 7 are 
described entirely in terms of stimulus his- 
tories. The phrase “broadcast is under 
way” looks suspiciously like a status, but 
is used as shorthand for “broadcast previ- 
ously started with no subsequent broad- 
cast termination stimulus.” “Broadcast 
has been requested” is shorthand for 
“broadcast previously requested with no 
subsequent broadcast started.” It is some- 
times convenient to use response history 
(such as broadcast started) as proper short- 
hand in a black-box description because 
any such response can be determined from 
previous stimulus history. 

The actions in Figure 7 are limited to 
responses without presuming internal 
activity. For example, statement 9, in 
response to a request to broadcast 24 hours 
of weather data, responds only if no 
broadcast is under way. If a broadcast is 
under way, one might expect some inter- 
nal action to note the request for later 
response, but statement 9 takes no such 
action. However, statement 1 deals with 
this situation by checking stimulus histo- 
ries for requests that can be responded to 
at each clock pulse. The principle is to deal 
only with responses specified by stimulus 
histories, not to begin inadvertently 
inventing internals. 

Note that several stimulus types are 
accepted during shutdown, namely restart 
command and data, request to activate or 
deactivate red light, request to start or stop 
SOS broadcast, all sensor stimuli, and 
broadcast termination. These are decisions 
about specifications as well as design i f  
they have not been explicitly defined. In 
fact, the black box will define a specifica- 
tion that the sponsors and users should 

30 COMPUTER 



1. clock pulse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: IF no shutdown command since last restart 

command 
THEN 

IF no broadcast is under way AND a 
24-hour-weather broadcast has been 
requested 

THEN form and start 24-hour- 
weather broadcast 

ELSE 
IF GMT is at the minute mark 

THEN form and start current- 
weather broadcast. 

2. restart command and data 
R: IF password correct 

THEN confirm restart. 

3. shutdown command 
R: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIF no shutdown command since last restart 

command 
THEN 

IF password correct and no restart 
command 

THEN confirm shutdown. 

4. change password command and data 
R: IF no shutdown command since last restart 

command 
THEN 

IF password correct and no restart or 
shutdown command 

THEN confirm password change. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  winddata 

R: acknowledge data. 

6. air temperature data 
R: acknowledge data. 

7 .  water temperature data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: acknowledge data. 

8. location data 
R: acknowledge data. 

9. request to broadcast 24 hours of weather data 
R: IF no shutdown command since last restart 

command 
THEN 

IF no broadcast is under way 

weather broadcast. 
THEN form and start 24-hour- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10. request to activate red light 
R: activate red light. 

11. request to deactivate red light 
R: IF no request to activate red light 

THEN deactivate red light. 

12. request to start continuous SOS broadcast 
R: start continuous SOS broadcast. 

13. request to stop continuous SOS broadcast 
R: IF no request to start SOS broadcast 

THEN stop continuous SOS broadcast. 

14. broadcast termination 
R: acknowledge termination. 

Figure 7. Black-box responses for buoy. 

understand in confirming previous agree- 
ments on what is required of the system. 

Step 3. Discover state data requlre- 

ments. The next step is to determine the 
information needed to encapsulate stimu- 
lus histories to be maintained from one 
stimulus to the next, so no previous stimu- 
lus is required to determine the response. 
There is a simple necessary and sufficient 
condition for this encapsulation: 

The responses define the necessary 
information to be maintained in the state 
box. 

The history of stimuli contains suffi- 
cient information for the state box. 

That is, a satisfactory encapsulation of his- 
tory into the state and internal black box 
of the state box can be derived directly 
from the black box. 

To provide a convenient design trail for 
engineering inspections of the buoy, I 
expand the listing of stimulus types and 
responses in Figure 7 into state data that 
encapsulates the necessary histories, as 
shown in Figure 8. The encapsulation fol- 
lows directly from an examination of the 
responses and their dependency on stimu- 

lus histories. 
For example, in the clock pulse stimu- 

lus type, the condition “no shutdown 
command since the last restart command” 
must be encapsulated because it depends 
on stimulus history. Let us encapsulate it 
in “buoy status,” an invented term for a 
derived requirement, and suppose that 
buoy status is on only if there has been no 
shutdown command since the last restart 
command. Similarly, the condition “no 
broadcast is under way” can be encapsu- 
lated in “broadcast status,” and 
“24-hour-weather broadcast has been 
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1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2. 

3. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  

clock pulse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: IF no shutdown command since last restart 

command 
THEN 

IF no broadcast is under way AND a 
24-hour-weather broadcast has been 
requested 

THEN form and start 24-hour- 
weather broadcast 

ELSE 
IF GMT is at the minute mark 

THEN form and start current- 
weather broadcast. 

E: buoy status, broadcast status, broadcast- 
request status, 24-hour weather history, clock 
time, location, wind history, air temperature 
history, water temperature history 

restart command and data 
R: IF password correct 

E: password, restart state. 
THEN confirm restart. 

shutdown command 
R: IF no shutdown command since last restart 

command 
THEN 

IF password correct and no restart 
command 

THEN confirm shutdown. 
E: password, shutdown state 

change password command and data 
R: IF no shutdown command since last restart 

command 
THEN 

IF password correct and no restart or 
shutdown command 

THEN confirm password change. 
E: password 

wind data 
R: acknowledge data. 
E: none 

6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8.  

9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10. 

11. 

12. 

13. 

14. 

air temperature data 
R: acknowledge data. 
E: none 

water temperature data 
R: acknowledge data. 
E: none 

location data 
R: acknowledge data. 
E: none 

request to broadcast 24 hours of weather data 
R: IF no shutdown command since last restart 

command 
THEN 

IF no broadcast is under way 

weather broadcast. 
broadcast status, 24-hour weather history 

THEN form and start 24-hour- 

E: 

request to activate red light 
R: activate red light. 
E: none 

request to deactivate red light 
R: 

E: none 

IF no request to activate red light 
THEN deactivate red light. 

request to start continuous SOS broadcast 
R: start continuous SOS broadcast. 
E: none 

request to stop continuous SOS broadcast 
R: IF no request to start SOS broadcast 

E: none 
THEN stop continuous SOS broadcast. 

broadcast termination 
R: acknowledge termination. 
E: none 

Figure 8. Derivation of encapsulated data for buoy. 

requested” can be encapsulated in data require only acknowledgment of such buoy status, 
“broadcast-request status.” In Figure 8,  

encapsulated data is denoted by E. 
Note that these state data requirements 

are derived from the responses of the black 
box, not the stimuli. For example, the 
stimulus types for wind and temperature are wind history, 

data, not retention. The need to encapsu- 
late wind and temperature data in the state 
box comes from the response “form and 
start current-weather broadcast.” In sum- 
mary, the encapsulated data requirements 

broadcast status, 
broadcast-request Status, 
24-hour weather history, 
clock time, 
location, 
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air temperature history, 
water temperature history, 
password, 
restart state, and 
shutdown state. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Step 4. Define the state. The identifica- 
tion of state data requirements is a first 
design step. However, all such data are 
candidates for migration into lower-level 
box structures. For example, the four his- 
tory types in the above list appear to be log- 
ical candidates for migration, since they 
will each require considerable storage and 
processing to meet the buoy’s needs. Also, 
restart state and shutdown state are can- 
didates for migration because each 
appears in only one statement. The 
remaining data items are scalar and can 
make up the state for the buoy state box. 
Decisions on the migration of encapsu- 
lated data are reversible if  further analy- 
sis uncovers a better strategy. 

Step 5. Design the state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbox. Steps 3 and 
4 derive state data from the black box by 
rewriting the responses in Figure 7 in terms 
of state data and appending the state tran- 
sitions required for the state box. These 
responses and transitions are shown in Fig- 
ure 9. For each stimulus type, the response 
and transition is denoted by RT. In Box 
Description Language, CON/NOC 
brackets concurrent statements separated 
by commas. 

Note the internal action in statement 9 
that turns broadcast-request status on if 
the response is to be handled later, in con- 
trast with statement 9 of the black box. 

Step 6. Verify the state box. To verify 
the state box, the state data must be elimi- 
nated to obtain a derived black box, which 
then must be compared with the intended 
black box. The derivation for this state box 
is quite direct at the level of description 
given. 

For example, the clock pulse RTstate- 
ment in Figure 9 begins 

IF buoy status on 

while the clock pulse R statement in Fig- 
ure 7 begins 

IF no shutdown command since last 
restart command 

which must be verified as equivalent. In 
this case, Figure 9 shows that buoy status 
is set only by the restart command and 
shutdown command. Since the restart 

The outline of the 
verification can be a 
reminder and guide 

for the formal design 
and verification. 

command only sets buoy status on and the 
shutdown command only sets buoy status 
off, eliminating the state data in the con- 
dition “buoy status on” reduces to any 
stimulus history in which “no shutdown 
command since last restart command” 
holds. Therefore, the two IF statements 
from the black box and state box begin 
with equivalent conditions. 

Broadcast status and broadcast-request 
status can be treated similarly to buoy sta- 
tus. The systematic elimination of state 
data in Figure 9 to derive a black box to 
compare with Figure 7 may seem like a 
rather detailed effort at this point, but it 
builds a solid foundation for continuing 
the design, even on an informal basis such 
as this. 

The alternative to this detailed analysis 
is to leave the high-level control properties 
defined by these three state items to later 
programming details, which cannot be 
verified as design decisions, and leave the 
actual design to people who may not com- 
prehensively understand the system 
requirements. However, in system design, 
every level of decomposition must be con- 
trolled by a few details that should be iden- 
tified and verified immediately. 

Figure 9 should contain enough infor- 
mation to verify the correct use of state 
data to meet the requirements of black-box 
behavior in Figure 7. I f  this verification 
cannot be carried out, even informally, the 
state box is not completely defined. 

In a completed design in a formal lan- 
guage, the derivation will take on the 
character of a formal engineering analysis 
of the designed state box to determine the 
derivative black box for comparison with 
a formal black-box specification. This 
engineering analysis is defined in the func- 
tion theoretical proof that a state box has 
a unique black-box derivative. But even at 
the informal level described here, the out- 
line of the verification can be a reminder 
and guide for the formal design and verifi- 
cation. 

Step 7. Discover state data accesses. The 
previous lists and Figures 7, 8, and 9 can 
be used to cross reference all possible 
accesses to this data in various stimulus 
types. For example, buoy status data will 
be captured in certain stimuli and the anal- 
ysis shows the necessity of their retention 
in state data. These cross references are 
given in Figure 10. For each state data 
requirement item, every stimulus type that 
could or should access it is listed. For each 
such type, every type of action related to 
the items is also listed. For convenience, I 
identify each access as an update or use. 
Data must be updated before being used, 
so further study is indicated if analysis 
shows no update. 

Step 8. Define data abstractions. Access 
and storage of the 12 data items listed in 
Step 3 have been represented explicitly in 
the state or in data abstractions at lower 
levels. Figure 8 shows every access by every 
stimulus type, providing a basis to derive 
the black boxes required for a clear-box 
design at this level. Six of these objects rep- 
resent scalar variables in the state: 

buoy status 
broadcast status 
broadcast-request status 
clock time 
location 
password 

while four represent histories to be 
migrated as common services to new data 
abstractions: 

24-hour weather history 
wind history 
air temperature history 
water temperature history 

and two are complete buoy states to be 
migrated down in the clear box to be 
designed: 

restart state 
shutdown state 

The response requirements on these 
common data abstractions determine their 
forms. For example, “24-hour weather 
history response” is a sequence of current- 
weather records, each consisting of a GMT 
hour mark, location, wind average, air 
temperature average, and water tempera- 
ture average, with a maximum of 24 ele- 
ments in the list. However, the only use of 
wind average and air and water tempera- 
tures (in current-weather broadcast) calls 
for a running average, so these histories 
can be migrated and encapsulated into 
abstractions whose only data responses are 
running averages. 
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1. clock pulse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RT: IF buoy status on 

THEN 
CON 

update clock, 
IF broadcast status off AND 

broadcast-request status on 
THEN 

CON 
form and start 24-hour- 

weather broadcast, 
set broadcast status on, 
set broadcast-request status 

off 
NOC 

ELSE 
IF clock time is at the minute mark 

THEN 
CON 

form and start current- 

set broadcast status on 
weather broadcast, 

NOC 
NOC 

2. restart command and data 
RT: IF password in stimulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= password 

THEN confirm restart 

3. shutdown command 
RT: IF buoy status on 

THEN 
IF password in stimulus = password 

AND no restart command 
THEN confirm shutdown 

4. change password command and data 
RT: IF buoy status on 

THEN 
IF password in stimulus = password 

AND no restart or shutdown 
command 

THEN 
CON 

confirm password change, 
update password 

NOC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  wind data 

RT: acknowledge data 

6. air temperature data 
RT: acknowledge data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9. State-box responses and transitions for buoy. 

I .  

8. 

9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10. 

11. 

12. 

13. 

14. 

water temperature data 
RT: acknowledge data 

location data 
RT: CON 

acknowledge data, 
update location 

NOC 

request to broadcast 24 hours of weather data 
RT: IF buoy status on 

THEN 
IF broadcast status off 

THEN 
CON 

form and start broadcast, 
set broadcast status on 

NOC 

set broadcast-request status on 
ELSE 

request to activate red light 
RT: activate red light 

request to deactivate red light 
RT: IF no request to activate red light 

THEN deactivate red light 

request to start continuous SOS broadcast 
RT: IF broadcast status not SOS 

THEN 
CON 

start continuous broadcast, 
set broadcast status on 

NOC 

request to stop continuous SOS broadcast 
RT: IF no request to start SOS broadcast 

THEN 
CON 

stop SOS broadcast, 
set broadcast status off 

NOC 

broadcast termination 
RT: CON 

acknowledge termination, 
set broadcast status off 

NOC 

COMPUTER 34 



2 .  

buoy status 
in clock pulse 

use to test if buoy on 

update as part of restart state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 in shutdown command 

me to test if buoy on 
update as part of shutdown state 

use to test if buoy on 

use to test if buoy on 

use to test if buoy on 

in restart command and data 

0 

0 

0 in broadcast termination 

in change password command and data 

in request to broadcast 24 hours of weather data 

broadcast status 
in clock pulse 

use to test if no broadcast under way 
update at start 24-hour-weather broadcast 
update at start current-weather broadcast 

in restart command and data 
update as part of restart state 

in request to broadcast zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24 hours of weather data 
update at start 24-hour-weather broadcast 

in request to start continuous SOS broadcast 
update at start continuous broadcast 

in request to stop continuous SOS broadcast 
update at stop continuous broadcast 

update at broadcast termination 

0 

0 

in broadcast termination 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. broadcast-request status 
0 in clock pulse 

use to test if 24-hour broadcast has been 

update at start 24-hour-weather broadcast 
requested 

0 

in restart command and data 
update as part of restart state 

in request to broadcast 24 hours of weather data 
use to test if broadcast is under way 
update at start 24-hour-weather broadcast 

4 .  clock time 
0 in clock pulse 

update every clock pulse 
use to test i f  GMT is at the minute mark 
use to test if GMT is at the hour mark 

update as part of restart state 
0 in restart command and data 

5 .  location 
0 in clock pulse 

0 

0 in location data 

use in current-weather broadcast 

update as part of restart state 

update with location data 

in restart command and data 

6 .  password 
0 

0 in shutdown command 

0 

in start command and data 
use to test i f  password correct 

use to test if password correct 

use to test if password correct 
update with new password 

in change password command and data 

Figure 10. Encapsulated data analysis table for buoy. 

Step 9. Design the clear box. The clear- 
box expansion of the state machine is quite 
direct at this point. The responses and 
transitions in Figure 9 lead directly to a 
clear box of 14 concurrent black boxes- 
one for each stimulus type-in which each 
black box recogniies its own stimulus type 
in the current complex stimulus and 
responds accordingly. Certain black boxes 
must also recognize other stimulus types. 
For example, the shutdown-command 
black box must check for the absence of a 
restart command before shutting down the 
system. Also, the clock-pulse black box 
must identify the stimulus type “request to 
broadcast 24 hours of weather data.” 

These 14 concurrent black boxes are 
shown as part of Figure 9. 

The Resolve black box required for this 
concurrent clear box must resolve possible 
conflicts in the broadcast responses and 
the values set for buoy status, broadcast 
status, and broadcast-request status. In 
this case, the conflicts can be resolved as 
follows: 

R: accept any response of change in 
state data except for response 
broadcasts, buoy status, 
broadcast status, and 
broadcast-request status, 
which are to be resolved as 
follows: 

response broadcast: 

SOS broadcast, 
24-hour-weather broad- 
cast, current-weather 
broadcast, no broadcast 

select in priority order- 

buoy status: on 
broadcast status: based on 

broadcast-request status: on 
response broadcast 

Step 10. Verify the clear box. To verify 
the clear box, the sequential and concur- 
rent process must be eliminated to obtain 
the derived state box, which then must be 
compared with the intended state box. The 
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derivation is quite direct for this clear box 
because its concurrent black boxes 
respond to different stimulus type values. 
The Resolve black box defines the priori- 
ties and conflict resolutions among the 
concurrent black boxes as already identi- 
fied. Immediate verification again pro- 
vides direct control over the eventual 
behavior of the system. 

One possible issue here is the responses 
to other stimulus types at restart or shut- 
down. The derived state box will provide 
responses to sensors and various requests 
for service that may be counter to the spirit 
of the problem. For example, if a shut- 
down command and a request to broad- 
cast 24 hours of weather data arrive 
concurrently, the derived state box may 
both confirm a shutdown and form and 
start the broadcast, possibly a questiona- 
ble response. A review of the intended 
state box shows that this clear-box 
behavior meets the state-box require- 
ments. So, the state box itself should be 
questioned, which leads back to the black 
box from which the expansion began. In 
fact, this may be a desirable way to shut 
down, but it should be resolved and 
documented in black-box behavior. The 
stepwise refinement and verification pro- 
cess leaves a design trail for such recon- 
siderations, with enough documentation 
to maintain consistency between specifica- 
tions and design. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Step 11. Repeat stepwise expansion until 

design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  complete. The new common 
services-24-Hour Weather History, 
Wind History, Water Temperature His- 
tory, and Air Temperature History-are 
also subject to systematic design with the 
stepwise box-structure expansion process. 

For example, in order to relocate 
weather data into a new abstraction called 
24-Hour Weather History, its black-box 
stimuli and responses must be determined. 
The abstraction’s main purpose is to 
return a 24-hour weather history on 
demand for the 24-hour-weather broad- 
cast. Consequently, a query stimulus is 
needed. Also, weather data including 
GMT, location, wind average, and air and 
water temperature averages must be 
acquired hourly. Call this a data stimulus. 
And, because the buoy can be restarted, a 
restart stimulus is also needed. This infor- 
mation is captured formally as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Black-box stimulus types. 
(1) restart 
(2) data (GMT, location, wind aver- 

age, air temperature average, 

water temperature average) 
(3) query 

Black-box responses. 
(1) restart 

R: acknowledge restart. 
(2) data (GMT, location, wind aver- 

age, air temperature average, 
water temperature average) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: acknowledge data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: last 24 or fewer records of 
weather data received since last 
restart stimulus. 

If this expansion were continued, the 
state data required for the state box would 
be derived using the necessary and suffi- 
cient condition for the encapsulation of 
history into state. As before, the listing of 
stimulus types and responses would be 
expanded one more step. The expansion is 
simple in this case, but it provides a design 
trail for engineering inspections as part of 
the overall design of the buoy. 

(3) query 

tepwise refinement and verifica- 
tion in the box structures of data 
abstractions provides a systematic 

discipline for complex system design at any 
level of formality. Once the black box is 
understood as a mathematical function 
from stimulus histories to responses, the 
derivation of state data requirements 
becomes a very direct analysis process sub- 
ject to rigorous engineering inspections. 
The identification of state boxes to encap- 
sulate state data and processes at the next 
level is also a very direct process. Since 
data abstractions are used at the next level, 
their restatement as black boxes defines 
their behavior, from which state dataand 
even lower-level box structures can be der- 
ived and inspected systematically. Unlike 
heuristic invention, this derivation is 
repeatable, allowing engineering inspec- 
tions because the products and the steps in 
deriving them are familiar to  the 
inspectors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
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