
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

6-1988

Stepwise Refinement and Verification in Box-Structured Systems Stepwise Refinement and Verification in Box-Structured Systems

Harlan D. Mills

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation

Mills, Harlan D., "Stepwise Refinement and Verification in Box-Structured Systems" (1988). The Harlan D.

Mills Collection.

https://trace.tennessee.edu/utk_harlan/16

This Article is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Stepwise Refinement and
Verification in Box-Structured

Systems
Harlan D. Mills

University of Florida zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ystem design begins in problem
domains, usually with considera-
ble informality, and ends in com-

puter domains in completely formal
languages for programmers and users.
Ideally, the system specification should be
defined formally first, and the system
designed accordingly. However, there are
few systems of any size where this is prac-
tical. Even i f a designer could do it, the
sponsors and users would be hard pressed
to understand the formal specification.

I propose that the formality of specifi-
cations and designs be developed together
in box structures with many sponsor and
user interfaces. Box structures allow the
stepwise refinement and verification of
hierarchical system designs from their
specifications at formal and informal
levels.

Long division in place notation is an
example of a stepwise refinement and
verification process that produces a quo-
tient and remainder from a dividend and
divisor. Each major step produces the next
digit of the quotient by a creative estimate
of its value followed by an immediate
verification of its correctness. If the verifi-
cation fails, a new estimate is provided and
verified. The minor steps are digit-by-digit
arithmetic operations with no further
invention beyond estimating the next digit
of the quotient. Using the fundamental zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L
Box structures of data

abstractions allow the

stepwise refinement

and verification of

hierarchical system

designs from their

specifications at

formal and informal

levels.

mathematical discoveries that made long
division possible, a skilled school child can
solve problems beyond the capability of
Euclid and Archimedes.

Box-structured system design’ is a step-
wise refinement and verification process
that produces a system design from a spec-
ification. Such a system design is defined
by a hierarchy of small design steps that

permit the immediate verification of their
correctness, just as the next digit can be
verified immediately in long division.
Three basic principles underlie the box-
structured design process:

(1) All data to be defined and stored in
the design is hidden in data abstractions.2
Even program variables define simple data
abstractions with entries for, say, set and
query; the set entry with a value ensures
that any query entry preceding another set
returns that value.

(2) All processing is defined by sequen-
tial and concurrent uses of data abstrac-
tions. For example, the simple assignment
statement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx : = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy , where x and y name
program-variable data abstractions, can
be considered as the sequence of a query
of y followed by a set of x using the value
returned by y .

(3) Each use of a data abstraction in the
system occupies a distinct place in the
usage h i e r a r ~ h y . ~ For example, a data
abstraction for the assignment x : = x + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y would use the data abstraction for x in
two distinct ways and show the uses in its
usage hierarchy.

These three principles unify the distinc-
tions between system design and program
design. In particular, Parnas’ usage hier-
a r c h ~ ~ provides a powerful place notation
for creating, documenting, and inspecting
software designs.

June 1988 0018 9162/88/0600-0023$01 00 1988 IEEE 23

Figure 1. Black box. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Program variables and assignment

statements are especially simple data
abstractions. Stacks and queues are more
elaborate, requiring tens or hundreds of
program declarations and statements.
Entire systems, such as information or
database systems containing thousands or
millions of lines of program source code,
are also data abstractions, whether cons-
ciously developed as such or not.

Defining a data abstraction in three
forms reduces the size of steps required to
define its structure and use in system
design. These forms are called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAblack zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
box, state box, and clear box. The black
box gives an external description of data
abstraction behavior in terms of usage.
The state box gives an intermediate
description in terms of an internal state
and the use of an internal data abstraction.
The clear box gives an internal description
by replacing the state box’s internal data
abstraction with the sequential or concur-
rent usage of other data abstractions.

Each major step in box-structure design
expands a black-box description into a
state box and then into a clear box. An
immediate verification of correctness fol-
lows each substep. I f a verification fails,
a new expansion is required. Two points
of creative invention are required in each
major step: (1) the encapsulation of usage
histories into a state box and (2) the
decomposition of state-box transitions
into a clear-box process. The verification
steps are analytic and repeatable without
invention.

Usage hierarchies and
block diagrams

Block diagrams, such as those found in
data-flow diagrams, coalesce the uses of
each data abstraction in the usage hierar-
chy into a single node and coalesce the
usage relations among data abstractions
into arcs between nodes. Such diagrams

irreversibly summarize hierarchical in for-
mation. Mappings from usage hierarchies
to block diagrams are from many to one
and mappings from block diagrams to
usage hierarchies are from one to many.

Block diagrams used in descriptions
summarize system structure to aid general
understanding of a system’s parts and data
flow among the parts. The parts can be
decomposed into block diagrams and
parts hierarchies for a general perspective
of system structure.

Block diagrams used in design are con-
ceptions about data flow among modules
to be designed. Since the mapping from
block diagram to complete design is from
one to many, only one or a few designs that
satisfy a block diagram will be correct.
Consequently, if the sequential or concur-
rent use of modules shown in block dia-
grams is left as programming details for
later expansions, then the design process
is inherently error-prone because the cor-
rectness of use among modules cannot be
immediately verified. Correct detailed
program design is even more difficult
when block diagrams are expanded into
hierarchies of more-detailed block dia-
grams without defining sequential and
concurrent uses at each level.

Box structures of data
abstractions

There is a direct relationship between
object-oriented development and box-
structured design in the implementation of
data abstractions as object^."^ In fact,
box-structured design represents a sys-
tematic process for creating object-
oriented designs.

Object-oriented development also uses
inheritance to describe objects or data
abstractions. As data abstractions become
more complex and usage hierarchies
become deeper, inherited properties can
dramatically improve the precision of
descriptions. Such property hierarchies,
combined with formal methods of axio-
matic and algebraic description,2 are
needed to deal with substantial systems in
an orderly way.

Black-box descriptions. Stepwise refine-
ment and verification of system design
describes system behavior entirely in data
abstractions. Parnas’ principle of infor-
mation hiding distinguishes between con-
crete, visible data storage in a system with
persistent information and the system’s
external b e h a ~ i o r . ~ Parnas describes sys-

tem behavior by its traces with no refer-
ence to stored data.’ Hoare also uses
traces to define system behavior for net-
works of communicating processes.6
These ideas lead to a direct, mathematical
description of system behavior.

Any realized data abstraction exists in
real time, whether it performs a so-called
real-time function or not. Various uses are
initiated at various entries, possibly con-
currently. It is useful to classify each initi-
ation (defined by the entries and any data
required) as a stimulus to the abstraction
and each return (defined by the exits and
any data produced) as a response by the
abstraction. Each response is determined
uniquely by the stimuli it has previously
received and accepted. That is, for each
realized data abstraction, there is a mathe-
matical function from its stimulus histo-
ries to its next response.

Many abstractions do not require spe-
cific real-time behavior, even though each
realization exists in real time. In such
cases, the function is defined for sequen-
tially ordered stimuli. For example, a
finite-stack data abstraction is usually
described as a sequential process rather
than a real-time process.

Figure 1 shows a black box, with a
stimulus (possibly through multiple con-
current entries) producing a response (pos-
sibly through multiple concurrent exits).
Let S be the set of possible stimuli and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR
be the set of possible responses. The black-
box description is a mathematical function
ffrom the set of sequences on S (call it S*)
to R of type

f : S * - R

For especially simple data abstractions,f
can be given in closed mathematical nota-
tion. For large abstractions, it may be
necessary to givefin the natural language
of a problem domain, often a mixture of
formal and informal language. Whatever
the notation, the black-box description is
a function.

A specification for a data abstraction
can be given as a set of traces6 consisting
of every acceptable sequence of inter-
leaved stimuli and responses. I f two sub-
sequences are identical until a stimulus
produces different responses in each, then
the specification defines a mathematical
relation rather than a function. Mathemat-
ical relations can also be used as black
boxes to describe data abstractions with
nondeterministic behavior.

In programming languages that permit
program variables to be declared but not

24 COMPUTER

initialized, data abstractions of the vari-
ables have nondeterministic behavior up to
the first set stimulus, but deterministic
behavior after. In programming languages
that require variable initialization, these
data abstractions are deterministic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAState d i i

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I

I
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S- g:S*X T-Rx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT

State-box descriptions. The term “data
abstraction” implies the possibility of stor-
ing data between stimuli to respond to the
effects of previous stimuli. For example,
in a finite-stack abstraction, a push pro-
vides a data item that may be required as
a response for some later copy-top opera-
tion. The principle of information hiding
requires that any such data be regarded as
part of an abstract state of the data
abstraction, which may be implemented in
various ways but always provides a correct
description of behavior.

There is a simple mathematical way to
guarantee the existence of such a state and
the correct behavior of an abstraction with
it. Regard the stimulus history itself as the
state. Then, for each stimulus, use the
black-box function to compute the
response from the stimulus history, includ-
ing the stimulus just received. Finally,
compute the new state by appending that
stimulus to the previous state. This con-
struction defines a state machine, but not
a finite-state machine because stimulus
histories are not bounded. Of course, most
interesting data abstractions have a func-
tion mapping the unbounded set of stimu-
lus histories to a finite set of new state
representations that let a finite-state
machine provide the black-box behavior.

However, the classical-state machine, in
which the state machine transition is a
mathematical function from stimuli and
old states to responses and new states, has
one serious deficiency in elaborating sys-
tem behavior in a hierarchical structure.
Such a transition function forces all state
data into the state machine’s state, ter-
minating the hierarchy of state data stor-
age. In fact, the implementations of
complex data abstractions typically con-
tain several levels, with information hid-
den at each level.

A state box-a simple generalization of
the idea of a state machine-allows such
implementations. A state box uses a data
abstraction to determine the next state and
response for each stimulus. The abstract
state can then be distributed in any way
desired between the state and the transition
behavior of the state box. A state box is
pictured in Figure 2, which shows an inter-
nal black box whose stimulus arrives con-
currently from the external stimulus and

)R

Figure 2. State box.

the internal state, and whose response
departs concurrently to the external
response and the new internal state.

Let Tbe a set of states. The behavior of
the state box is given by an initial state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt in
T and function g of the type

g : S * x T * - R x T

that is, a black-box function from stimu-
lus and state histories to the next response
and state. Each pair (t , g) uniquely
defines a black-box functionfthrough the
elimination of intermediate states by
repeated substitution.

For example, given (t , g) with ith
stimuluss.i, stimulus history s k i = (s.1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s.2, . . . , s. i) , ith response r.i, state r.i - 1 ,
state history th . i - 1 = (t , t.1, . . .,
f . i - I) , and g = (g r , g t) then

r . i = gr(sh.i, th.i- 1)

and

t.i = gt(sh.i, th. i - 1)

Define the state history function gth such
that

gth(sh.i, rh.i- 1) = (t , gt(sh. l , (r)) ,
. . . , gt(sh.1, th.i- 1))

By substitution, i f i > 1 ,

r. i = gr(sh. i, gth(sh. I - 1, fh. i - 2))

I f i > 2 ,

r . i = gr(sh.i, gth(sh.i- 1, gth(sh.i- 2 ,
th. i - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3)))

and, continuing i substitutions,

r . i = gr(sh. i, gth(sh. i - 1,
gth(sh.1, (0). . .))

which is a value of a function of typefwith
parameter t . That is, for each state box
there is a unique black box. Given black-
box functions of type F, state-box func-
tions of type G, and states of type T, there
exists a mathematical function d of type

d: T x G - F

The values of function d are called the
black-box derivatives of state boxes. To
verify that a state box has been designed
correctly to provide black-box behavior,
the derived black box need only be com-
pared to the intended black box.

Clear-box descriptions. The theorems
and experiences of structured program-
ming lead to a direct definition of four
kinds of clear boxes: three sequential
forms for sequence, alternation, and iter-
ation, and one concurrent form. In each
case, a particular form of sequential or
concurrent usage of data abstractions is
defined to replace the internal data
abstraction of the state box. Alternation
and iteration use special data abstractions
called conditions in which the stimulus is
directed out through one of multiple exits.
In each use, a regular data abstraction (not
a condition) accesses and updates the state.

The definitions in sequential usage are
familiar. In concurrent usage, the defini-
tions are novel to ensure referential trans-
parency in concurrent and sequential
usage. The definitions in concurrent usage

June 1988 25

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-
h: S* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx T*-U x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT

! U f,, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k: U' x TW? x T

+R

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I
I
I 1

b

Figure 3. Sequence Clear Box. The response from B1 becomes the stimulus to B2.

I
I
I
I
I
I

B1

h: S' x 7 L R x T

I I

2
b

t

82

k : S * X T L R X T

Figure 4. Alternation Clear Box. The condition black box C directs its stimulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto B l or B2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
provide an ordered set of new states and
responses from each concurrent data
abstraction, with the requirement that a
new data abstraction, called Resolve, be
defined to resolve discrepancies among the
responses into a single response.

The four kinds of clear boxes are pic-
tured in Figures 3-6. Their function seman-
tics can be derived directly from the
semantics of their states and black boxes.

As in the case of mapping a state box into
a black box, there is a derivative function
mapping any clear box into a unique state
box. To verify that a clear box has been
designed correctly to provide state-box
behavior, the derived state box need only
be compared with the intended state box.
These verifications can be carried out by
substitution and case analyses to elimina
sequential and concurrent process.

Realism and rigor in
software design

When jointly developing formality in
specifications and designs, a basic princi-
ple is that the final, formal system will
have the behavior of a black box function.
So the behavioral specification should be
a function or relation at every level of for-

26 COMPUTER

mality. The box structures allow any level
of formality. As formality increases, fal-
libilities and ambiguities can be discovered
and corrected.

Sponsors and implementers urgently
need a coherent account of design activi-
ties. However, the unfolding of a design
from specifications to computer resources
requires considerable learning with much
trial and error. In particular, two formi-
dable problems complicate the design trail.
Intelligent decision-making at the top level
requires that various low-level problems be
assessed and solved in detail. Also, any
reasonable method must recognize that the
specification is almost certain to change
during development. To deal with such
problems, Parnas advocates a usage hier-
archy of modules, each hiding certain
secrets, by a joint study of the specification
in the problem domain and the available
computing resources, with the probability
of change explicitly re~ogn ized.~

Box-structured design leads to the same
goal as Parnas' usage hierarchy. Let's
assume that the top of a mountain is a for-
mal description and that farther down its
slopes the descriptions are more and more
informal (with more and more fallibility).
I propose a spiral approach to the top
through several levels of formality. In fact, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I

I
I . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s-

I
I B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h:S'x-IY_LSxT +

State
r -- - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4-
I
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

Figure 5. Iteration Clear Box. The condition black box C directs its stimulus to B

or the external response of the clear box. The response from B becomes the stimu-

lus to c . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S-

I
I
I
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1

H k:S'x T-Rx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT

82 I
I I I

I- k:S'x T-Rx T 4

I
I
I
I

Resolve

a: R x R x T x T-R x T +R

Figure 6. Concurrent Clear Box. The external stimulus is directed to both B1 and B2. The responses from B1 and B2 together

become the stimulus to Resolve.

June 1988 21

the climb begins in the language of the
problem domain-often a lot of
English-and ends up in the computer
domain of entirely formal code. Box struc-
tures, whether formally or informally
described, are used on the way up with
stepwise refinement and verification.
Also, advance scouts must move ahead to
assess and solve problems in low-level
details with more formality. So, for exam-
ple, Parnas’ ideas about looking for
appropriate secrets in upcoming data
abstractions are useful. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
System design by
box-structure
expansion

A box-structure expansion begins with
a black-box specification of a data abstrac-
tion. It identifies the black box, a state box
with the same behavior as that of the black
box, and a clear box with the same
behavior as that of the state machine,
using data abstractions at the next level
with their own black-box behavior.
Although the theory can be given entirely
in function theoretical terms with abstract
states and functions, a practical design
process must use concrete design and pro-
gramming languages to describe data
abstractions and their uses. This shift from
theory to practice involves only a change
in syntax, not in semantics. A design or
program is a rule for a function, and data
descriptions and program structures are
means for facilitating expression of such
rules.

Each expansion of a box structure is a
step in designing internal state data and
internal sequential or concurrent process.
These steps can require considerable
invention. It helps to break each expansion
into smaller steps, leaving design trails that
permit more objective engineering inspec-
tions. For this purpose, I define the follow-
ing 1 1-step box-structure expansion
process: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Define the black box

(1) Define black-box stimuli
Determine all possible stimuli
for the black box. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(2) Define black-box behavior
For each possible stimulus,
determine its complete response
in terms of its stimulus history.

Design the state box
(3) Discover state data requirements

For each response to be calcu-

lated, encapsulate its stimulus
history into a state data
requirement.

(4) Define the state
Select a subset of the required
state data items to encapsulate
stimulus histories. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(5) Design the state box
For the selected state, deter-
mine the internal black box
required for the state box.

Verify the correctness of the
state box with respect to the
required black-box behavior.

(6) Verify the state box

Design the clear box
(7) Discover state data accesses

For each item of state data and
each possible stimulus, deter-
mine all possible accesses of the
item.

Organize state data into data
abstractions for effective
access.

Define sequential or concurrent
uses of the data abstractions
defined to replace the internal
black box of the state box.

Verify the correctness of the
clear box with respect to the
state-box behavior.

(8) Define data abstractions

(9) Design the clear box

(10) Verify the clear box

Continue the process
(1 1) Repeat stepwise expansion until

For each new data abstraction,
repeat steps 1-10 until suitable
data and program specifica-
tions are reached.

design completion

The inventions required in this process
are strictly contained in steps 4, 5 , 8, and
9 and labeled there. The other steps are
analytic and repeatable. This process iso-
lates and embeds the creative design steps,
allowing design reviews in canonical cases
and automatically developing relevant
information while leading up to each step.
For example, step 3 provides enough back-
ground to carry out step 4 and review it
objectively.

In contrast, heuristic approaches often
skip these analytic steps and leap to net-
works of sources, processes, stores, and
sinks. However, in large problems, it is dif-
ficult and sometimes painful to determine
i f a leap was inspired or flawed. The com-
plexity and the number of design alterna-

tives make it risky to leap that
discontinuity without a lot of engineering
analysis.

A navigation and
weather buoy case
study

Booch uses the problem of a navigation
and weather buoy to illustrate a data-flow
approach to object-oriented architecture
and d e ~ i g n . ~ The problem was redone in
box structures as shown below. (I subse-
quently learned that this problem was
originally suggested by Chmura et al.’
with a solution in terms of a set of
information-hiding modules. The solution
below was developed without knowledge
of Chmura’s solution.) Booch gives the
following statement of the problem.

The Host at Sea system is a group of
free-floating buoys that provide naviga-
tion and weather data to air and ship traf-
fic. The buoys collect data on air and water
temperature, wind speed, and location
through sensors. Each buoy can have a
different number of sensors and can be
modified to support other types of sensors.

Each buoy is also equipped with a radio
transmitter (to broadcast weather and
location information as well as an SOS
message) and a radio receiver (to receive
requests from passing vessels). A sailor can
flip a switch on the buoy to initiate an SOS
broadcast and some buoys are equipped
with a red light that can be activated by a
passing vessel during search operations.
Software for each buoy must:

Maintain current average wind, tem-
perature, and location information. Wind
speed readings are taken every 30 seconds,
and temperature and location readings are
taken every 10 seconds. Wind and temper-
ature values are kept as a running average.

Broadcast wind, temperature, and
location information every 60 seconds.

Broadcast wind, temperature, and
location information from the past 24
hours in response to requests from passing
vessels. This takes priority over the peri-
odic broadcast.

Activate or deactivate the red light
based on a request from a passing vessel.

Continuously broadcast an SOS sig-
nal after a sailor engages the emergency
switch. This signal takes priority over all
other broadcasts and continues until reset
by a passing vessel.

On the basis of this problem statement,
Booch invented a data-flow diagram and
identified objects, attributes, and opera-

28 COMPUTER

tions for an object-oriented architecture
for such a However, the 11-step
expansion process outlined above yields a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Preliminary black-box analysis. The
data-flow approach jumps right in with
various internal flows and processes to

approach focuses first on defining the
problem as a real-time transformation of
stimuli to responses. The problem state-
ment identifies the following general types
of stimuli:

different architecture. A black box is a
formal specification

that is complete,
unambiguous, and

consistent.
solve the problem. The box-structure

clock data (various references to time)
winddata
temperature data
location data
request to broadcast 24 hours of
weather data
request to activate or deactivate a red
light
request to start or stop continuous
SOS broadcast

Members of these stimulus types may
arrive concurrently in various combina-
tions to make up a stimulus.

The problem statement further identi-
fies possible responses to these stimuli as

start or stop continuous SOS

activate or deactivate the red light
start a broadcast of 24 hours of

start a broadcast of current weather

Since there is only one transmitter, start-
ing a broadcast means stopping any other
broadcast currently under way.

The rest of the problem statement gener-
ally indicates which response should fol-
low any possible stimulus. The response
depends on the stimuli accumulated to the
moment, through references to running
averages. So the buoy’s black box will
require histories of certain stimuli cover-
ing more than 24 hours (for example, a
24-hour-old running average will require
data more than 24 hours old).

Data must be encapsulated in any state
box for this black box. References to run-
ning averages of wind and temperature
data suggest that new data abstractions
can greatly simplify the necessary compu-
tations and data management. However,
before rushing into architecture and design
decisions on internal data flows and pro-
cesses, it is worthwhile to focus more
attention on the problem.

broadcast

weather data

data

Questions about the problem statement.

This preliminary black-box analysis shows

that the problem statement is far from a
specification. Many additional decisions
are needed to remove ambiguities, ensure
completeness and consistency, and pro-
vide a solution without unpleasant sur-
prises for the buoy’s sponsors and users.
Such problems should be tackled at the
black-box level before plunging into state-
box and clear-box expansions.

Obviously absent from the problem
statement is how the buoy is to be oper-
ated. While the buoy could be developed
as an expendable device that is deployed
and left alone, whoever is responsible for
its operation might want more control (for
example, to monitor system integrity,
security, or correctness through testing or
diagnostics). I f so, additional types of
stimuli and responses must be defined.

This example assumes the buoy is
expendable. However, note that a focus on
immediate users, to the exclusion of secon-
dary users such as operators and main-
tainers, usually leads to faulty designs that
can only be patched up enough to become
poor designs.

Also absent from the problem statement
are questions involving initialization:

Is the periodic weather broadcast
(every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 seconds) tied to Greenwich Mean
Time (GMT) or to an internal clock that
will appear random in real time to its
users?

What is expected if a 24-hour-weather
broadcast is requested before enough data
have been collected since the start (or
restart) of the buoy’s operation?

Can the operators restart the buoy
(for example, after moving it to another
location in an emergency situation)?

How are the running averages to be
initialized?

The problem statement mentions that
SOS broadcasts and 24-hour-weather
broadcasts have priority, but that raises
more questions:

Does a lower-priority broadcast abort

when a higher-priority one is requested, or
does it finish first?

Can a 24-hour request abort another
24-hour request?

Other questions to be addressed at this
stage include

What is the exact content of a current-
weather broadcast? Of a 24-hour-weather
broadcast?

How many samples are needed for
running averages, and can that parameter
be controlled by the operators?

Is the running average of wind a vec-
tor average?

Completing the problem statement. A
black-box analysis forces the identification
of every possible stimulus of the buoy and
every acceptable response in terms of the
stimulus history. The principle of transac-
tion closure’ requires that any informa-
tion needed to produce a response be
provided by some previous stimulus. For
example, a weather broadcast requires
previous wind and temperature data.

A black box is a formal specification
that is complete, unambiguous, and con-
sistent because it is a mathematical func-
tion or relation from all possible stimulus
histories to responses, whether it is repre-
sented in mathematical notation, English,
or a mixture of the two in the problem
domain. Completion of a black-box anal-
ysis and description usually requires many
interactions with sponsors and users.
However, getting a good specification is
far less expensive over the life cycle than
launching into design and implementation
without knowing what the sponsors had in
mind or the users needed.

In this case study, let us assume the fol-
lowing resolutions to the previous
questions:

The buoy clock and sensors are
restarted at the next GMT minute mark
after the moment of restart.

The phrase “24-hour-weather broad-
cast” means “weather-since-restart broad-
cast” i f restart was less than 24 hours ago.

A buoy can be restarted or shut down
at any time by the use of a password, with
restart conditions for its location and
running-average parameters. The pass-
word can be changed by use of the current
password; the initial password is “buoy.”
The password is unchanged by a restart or
shutdown.

A request for SOS broadcast
preempts and aborts any other broadcast.

A periodic weather broadcast is can-
celled if any other broadcast is under way.

June 1988 29

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequest for 24-hour-weather broad-
cast is ignored if an SOS broadcast is under
way. It is queued to follow a periodic
current-weather broadcast or 24-hour-
weather broadcast if one of these is already
under way. Otherwise, it is granted
immediately.

The exact content of a current-
weather broadcast is the current location,
running average of wind, and running
average of air and water temperatures. A

24-hour-weather broadcast contains the
current-weather broadcasts for each of the
previous 24 GMT hour marks (or all GMT
hour marks if restart was less than 24 hours

The number of samples in running
averages for wind and temperature is
defined by integer parameters set at restart
or by default. The term ‘‘running aver-
age” means “average since restart.”

The running average of wind is the
running average of the wind vector.

In practice, these resolutions should be
further scrutinized by sponsors, users, and
analysts, and the entire problem state-
ment/black box should be cast into a more
systematic problem-domain statement for
formal review and concurrence by spon-
sors and users.

The result is a mathematical function or
relation from all possible stimulus histo-
ries to responses, in which transaction clo-
sure is obtained. This function or relation
must deal specifically with the response to
the first stimulus, the second, the third,
and so on, even though it is tempting to
focus on steady-state operations far
removed from initial conditions.

ago).

Stepwise box-structure
expansion of the buoy
problem

Step 1. Define black-box stimuli. The
second round of the problem statement
analysis gave the buoy a restart capability
that obviates all history except the current
password. Such a restart capability is
usually needed for operational control, no
matter how well the device was thought
out.

The physical media for stimulus types
include clock and sensor connections,
radio receptions, and mechanical switches.
Let us suppose the buoy has a basic inter-
nal clock that polls the digitized informa-
tion and is accurate enough to deal with the
sensors and the radio transmitter and
receiver. Let us also assume that a “start

tories of stimuli with one to 14 members of
these stimulus types. That is an infinite
domain, but with a simple structure. For-
tunately, the interactions between these Sponsors, users, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*
stimulus types are also simple.

The function mapping from these
stimulus histories to responses is simple
enough to decompose the effects of stimu-
lus types to a few cases, many quite
autonomous for the stimulus type

analysts must
determine the

response from every

possible stimulus -
involved. This is shown in Figure 7 , where
the response required is denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. The

history.

broadcast” command is available and that
the transmitter returns a “broadcast ter-
minated” signal.

Because of the need to maintain GMT,
let us suppose the clock is synchronized to
GMT by means outside the scope of this
study and that the basic periodic clock
pulse generated is present in every stimu-
lus. The possible stimulus types are

clock pulse,
restart command and data,
shutdown command,
change password command and data,
wind data,
air temperature data,
water temperature data,
location data,
request to broadcast 24 hours of
weather data,
request to activate a red light,
request to deactivate a red light,
request to start continuous SOS

request to stop continuous SOS

broadcast terminated.
Thus, there are 14 possible stimulus

types present in every stimulus. The clock
pulse is always present and the others are
present independently of each other. Seven
of these types contain data, but seven do
not.

Some types conflict in their effects. For
example, a vessel may send a request to
stop continuous SOS broadcast due to its
handling of one emergency at the same
time a sailor pushes the switch to start an
SOS broadcast for another emergency.
The black box must describe the response
to this presumably unusual case. In fact,
the information developed in the interac-
tion between sponsors, users, and analysts
must determine the response from every
possible stimulus history, whether
expected frequently or infrequently.

broadcast,

broadcast, and

Step 2. Define black-box behavior. As

derived above, the domain for the black
box (function) is the set of all possible his-

response required for each stimulus type
is given in Box Description Language’ for
readability by sponsors, users, and
analysts. The outer syntax is formal
(denoted in Figure 7 in uppercase charac-
ters), but the inner syntax is informal for
now.8 The informal expressions in inner
syntax should be replaced by more formal
expressions as the design progresses.

Note that the responses in Figure 7 are
described entirely in terms of stimulus his-
tories. The phrase “broadcast is under
way” looks suspiciously like a status, but
is used as shorthand for “broadcast previ-
ously started with no subsequent broad-
cast termination stimulus.” “Broadcast
has been requested” is shorthand for
“broadcast previously requested with no
subsequent broadcast started.” It is some-
times convenient to use response history
(such as broadcast started) as proper short-
hand in a black-box description because
any such response can be determined from
previous stimulus history.

The actions in Figure 7 are limited to
responses without presuming internal
activity. For example, statement 9, in
response to a request to broadcast 24 hours
of weather data, responds only if no
broadcast is under way. If a broadcast is
under way, one might expect some inter-
nal action to note the request for later
response, but statement 9 takes no such
action. However, statement 1 deals with
this situation by checking stimulus histo-
ries for requests that can be responded to
at each clock pulse. The principle is to deal
only with responses specified by stimulus
histories, not to begin inadvertently
inventing internals.

Note that several stimulus types are
accepted during shutdown, namely restart
command and data, request to activate or
deactivate red light, request to start or stop
SOS broadcast, all sensor stimuli, and
broadcast termination. These are decisions
about specifications as well as design i f
they have not been explicitly defined. In
fact, the black box will define a specifica-
tion that the sponsors and users should

30 COMPUTER

1. clock pulse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: IF no shutdown command since last restart

command
THEN

IF no broadcast is under way AND a
24-hour-weather broadcast has been
requested

THEN form and start 24-hour-
weather broadcast

ELSE
IF GMT is at the minute mark

THEN form and start current-
weather broadcast.

2. restart command and data
R: IF password correct

THEN confirm restart.

3. shutdown command
R: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIF no shutdown command since last restart

command
THEN

IF password correct and no restart
command

THEN confirm shutdown.

4. change password command and data
R: IF no shutdown command since last restart

command
THEN

IF password correct and no restart or
shutdown command

THEN confirm password change. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 . winddata

R: acknowledge data.

6. air temperature data
R: acknowledge data.

7 . water temperature data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: acknowledge data.

8. location data
R: acknowledge data.

9. request to broadcast 24 hours of weather data
R: IF no shutdown command since last restart

command
THEN

IF no broadcast is under way

weather broadcast.
THEN form and start 24-hour- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10. request to activate red light
R: activate red light.

11. request to deactivate red light
R: IF no request to activate red light

THEN deactivate red light.

12. request to start continuous SOS broadcast
R: start continuous SOS broadcast.

13. request to stop continuous SOS broadcast
R: IF no request to start SOS broadcast

THEN stop continuous SOS broadcast.

14. broadcast termination
R: acknowledge termination.

Figure 7. Black-box responses for buoy.

understand in confirming previous agree-
ments on what is required of the system.

Step 3. Discover state data requlre-

ments. The next step is to determine the
information needed to encapsulate stimu-
lus histories to be maintained from one
stimulus to the next, so no previous stimu-
lus is required to determine the response.
There is a simple necessary and sufficient
condition for this encapsulation:

The responses define the necessary
information to be maintained in the state
box.

The history of stimuli contains suffi-
cient information for the state box.

That is, a satisfactory encapsulation of his-
tory into the state and internal black box
of the state box can be derived directly
from the black box.

To provide a convenient design trail for
engineering inspections of the buoy, I
expand the listing of stimulus types and
responses in Figure 7 into state data that
encapsulates the necessary histories, as
shown in Figure 8. The encapsulation fol-
lows directly from an examination of the
responses and their dependency on stimu-

lus histories.
For example, in the clock pulse stimu-

lus type, the condition “no shutdown
command since the last restart command”
must be encapsulated because it depends
on stimulus history. Let us encapsulate it
in “buoy status,” an invented term for a
derived requirement, and suppose that
buoy status is on only if there has been no
shutdown command since the last restart
command. Similarly, the condition “no
broadcast is under way” can be encapsu-
lated in “broadcast status,” and
“24-hour-weather broadcast has been

June 1988 31

1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.

3.

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .

clock pulse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: IF no shutdown command since last restart

command
THEN

IF no broadcast is under way AND a
24-hour-weather broadcast has been
requested

THEN form and start 24-hour-
weather broadcast

ELSE
IF GMT is at the minute mark

THEN form and start current-
weather broadcast.

E: buoy status, broadcast status, broadcast-
request status, 24-hour weather history, clock
time, location, wind history, air temperature
history, water temperature history

restart command and data
R: IF password correct

E: password, restart state.
THEN confirm restart.

shutdown command
R: IF no shutdown command since last restart

command
THEN

IF password correct and no restart
command

THEN confirm shutdown.
E: password, shutdown state

change password command and data
R: IF no shutdown command since last restart

command
THEN

IF password correct and no restart or
shutdown command

THEN confirm password change.
E: password

wind data
R: acknowledge data.
E: none

6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8.

9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10.

11.

12.

13.

14.

air temperature data
R: acknowledge data.
E: none

water temperature data
R: acknowledge data.
E: none

location data
R: acknowledge data.
E: none

request to broadcast 24 hours of weather data
R: IF no shutdown command since last restart

command
THEN

IF no broadcast is under way

weather broadcast.
broadcast status, 24-hour weather history

THEN form and start 24-hour-

E:

request to activate red light
R: activate red light.
E: none

request to deactivate red light
R:

E: none

IF no request to activate red light
THEN deactivate red light.

request to start continuous SOS broadcast
R: start continuous SOS broadcast.
E: none

request to stop continuous SOS broadcast
R: IF no request to start SOS broadcast

E: none
THEN stop continuous SOS broadcast.

broadcast termination
R: acknowledge termination.
E: none

Figure 8. Derivation of encapsulated data for buoy.

requested” can be encapsulated in data require only acknowledgment of such buoy status,
“broadcast-request status.” In Figure 8,

encapsulated data is denoted by E.
Note that these state data requirements

are derived from the responses of the black
box, not the stimuli. For example, the
stimulus types for wind and temperature are wind history,

data, not retention. The need to encapsu-
late wind and temperature data in the state
box comes from the response “form and
start current-weather broadcast.” In sum-
mary, the encapsulated data requirements

broadcast status,
broadcast-request Status,
24-hour weather history,
clock time,
location,

32 COMPUTER

air temperature history,
water temperature history,
password,
restart state, and
shutdown state. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Step 4. Define the state. The identifica-
tion of state data requirements is a first
design step. However, all such data are
candidates for migration into lower-level
box structures. For example, the four his-
tory types in the above list appear to be log-
ical candidates for migration, since they
will each require considerable storage and
processing to meet the buoy’s needs. Also,
restart state and shutdown state are can-
didates for migration because each
appears in only one statement. The
remaining data items are scalar and can
make up the state for the buoy state box.
Decisions on the migration of encapsu-
lated data are reversible if further analy-
sis uncovers a better strategy.

Step 5. Design the state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbox. Steps 3 and
4 derive state data from the black box by
rewriting the responses in Figure 7 in terms
of state data and appending the state tran-
sitions required for the state box. These
responses and transitions are shown in Fig-
ure 9. For each stimulus type, the response
and transition is denoted by RT. In Box
Description Language, CON/NOC
brackets concurrent statements separated
by commas.

Note the internal action in statement 9
that turns broadcast-request status on if
the response is to be handled later, in con-
trast with statement 9 of the black box.

Step 6. Verify the state box. To verify
the state box, the state data must be elimi-
nated to obtain a derived black box, which
then must be compared with the intended
black box. The derivation for this state box
is quite direct at the level of description
given.

For example, the clock pulse RTstate-
ment in Figure 9 begins

IF buoy status on

while the clock pulse R statement in Fig-
ure 7 begins

IF no shutdown command since last
restart command

which must be verified as equivalent. In
this case, Figure 9 shows that buoy status
is set only by the restart command and
shutdown command. Since the restart

The outline of the
verification can be a
reminder and guide

for the formal design
and verification.

command only sets buoy status on and the
shutdown command only sets buoy status
off, eliminating the state data in the con-
dition “buoy status on” reduces to any
stimulus history in which “no shutdown
command since last restart command”
holds. Therefore, the two IF statements
from the black box and state box begin
with equivalent conditions.

Broadcast status and broadcast-request
status can be treated similarly to buoy sta-
tus. The systematic elimination of state
data in Figure 9 to derive a black box to
compare with Figure 7 may seem like a
rather detailed effort at this point, but it
builds a solid foundation for continuing
the design, even on an informal basis such
as this.

The alternative to this detailed analysis
is to leave the high-level control properties
defined by these three state items to later
programming details, which cannot be
verified as design decisions, and leave the
actual design to people who may not com-
prehensively understand the system
requirements. However, in system design,
every level of decomposition must be con-
trolled by a few details that should be iden-
tified and verified immediately.

Figure 9 should contain enough infor-
mation to verify the correct use of state
data to meet the requirements of black-box
behavior in Figure 7. I f this verification
cannot be carried out, even informally, the
state box is not completely defined.

In a completed design in a formal lan-
guage, the derivation will take on the
character of a formal engineering analysis
of the designed state box to determine the
derivative black box for comparison with
a formal black-box specification. This
engineering analysis is defined in the func-
tion theoretical proof that a state box has
a unique black-box derivative. But even at
the informal level described here, the out-
line of the verification can be a reminder
and guide for the formal design and verifi-
cation.

Step 7. Discover state data accesses. The
previous lists and Figures 7, 8, and 9 can
be used to cross reference all possible
accesses to this data in various stimulus
types. For example, buoy status data will
be captured in certain stimuli and the anal-
ysis shows the necessity of their retention
in state data. These cross references are
given in Figure 10. For each state data
requirement item, every stimulus type that
could or should access it is listed. For each
such type, every type of action related to
the items is also listed. For convenience, I
identify each access as an update or use.
Data must be updated before being used,
so further study is indicated if analysis
shows no update.

Step 8. Define data abstractions. Access
and storage of the 12 data items listed in
Step 3 have been represented explicitly in
the state or in data abstractions at lower
levels. Figure 8 shows every access by every
stimulus type, providing a basis to derive
the black boxes required for a clear-box
design at this level. Six of these objects rep-
resent scalar variables in the state:

buoy status
broadcast status
broadcast-request status
clock time
location
password

while four represent histories to be
migrated as common services to new data
abstractions:

24-hour weather history
wind history
air temperature history
water temperature history

and two are complete buoy states to be
migrated down in the clear box to be
designed:

restart state
shutdown state

The response requirements on these
common data abstractions determine their
forms. For example, “24-hour weather
history response” is a sequence of current-
weather records, each consisting of a GMT
hour mark, location, wind average, air
temperature average, and water tempera-
ture average, with a maximum of 24 ele-
ments in the list. However, the only use of
wind average and air and water tempera-
tures (in current-weather broadcast) calls
for a running average, so these histories
can be migrated and encapsulated into
abstractions whose only data responses are
running averages.

June 1988 33

1. clock pulse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RT: IF buoy status on

THEN
CON

update clock,
IF broadcast status off AND

broadcast-request status on
THEN

CON
form and start 24-hour-

weather broadcast,
set broadcast status on,
set broadcast-request status

off
NOC

ELSE
IF clock time is at the minute mark

THEN
CON

form and start current-

set broadcast status on
weather broadcast,

NOC
NOC

2. restart command and data
RT: IF password in stimulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= password

THEN confirm restart

3. shutdown command
RT: IF buoy status on

THEN
IF password in stimulus = password

AND no restart command
THEN confirm shutdown

4. change password command and data
RT: IF buoy status on

THEN
IF password in stimulus = password

AND no restart or shutdown
command

THEN
CON

confirm password change,
update password

NOC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 . wind data

RT: acknowledge data

6. air temperature data
RT: acknowledge data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9. State-box responses and transitions for buoy.

I .

8.

9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10.

11.

12.

13.

14.

water temperature data
RT: acknowledge data

location data
RT: CON

acknowledge data,
update location

NOC

request to broadcast 24 hours of weather data
RT: IF buoy status on

THEN
IF broadcast status off

THEN
CON

form and start broadcast,
set broadcast status on

NOC

set broadcast-request status on
ELSE

request to activate red light
RT: activate red light

request to deactivate red light
RT: IF no request to activate red light

THEN deactivate red light

request to start continuous SOS broadcast
RT: IF broadcast status not SOS

THEN
CON

start continuous broadcast,
set broadcast status on

NOC

request to stop continuous SOS broadcast
RT: IF no request to start SOS broadcast

THEN
CON

stop SOS broadcast,
set broadcast status off

NOC

broadcast termination
RT: CON

acknowledge termination,
set broadcast status off

NOC

COMPUTER 34

2 .

buoy status
in clock pulse

use to test if buoy on

update as part of restart state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 in shutdown command

me to test if buoy on
update as part of shutdown state

use to test if buoy on

use to test if buoy on

use to test if buoy on

in restart command and data

0

0

0 in broadcast termination

in change password command and data

in request to broadcast 24 hours of weather data

broadcast status
in clock pulse

use to test if no broadcast under way
update at start 24-hour-weather broadcast
update at start current-weather broadcast

in restart command and data
update as part of restart state

in request to broadcast zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24 hours of weather data
update at start 24-hour-weather broadcast

in request to start continuous SOS broadcast
update at start continuous broadcast

in request to stop continuous SOS broadcast
update at stop continuous broadcast

update at broadcast termination

0

0

in broadcast termination

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. broadcast-request status
0 in clock pulse

use to test if 24-hour broadcast has been

update at start 24-hour-weather broadcast
requested

0

in restart command and data
update as part of restart state

in request to broadcast 24 hours of weather data
use to test if broadcast is under way
update at start 24-hour-weather broadcast

4 . clock time
0 in clock pulse

update every clock pulse
use to test i f GMT is at the minute mark
use to test if GMT is at the hour mark

update as part of restart state
0 in restart command and data

5 . location
0 in clock pulse

0

0 in location data

use in current-weather broadcast

update as part of restart state

update with location data

in restart command and data

6 . password
0

0 in shutdown command

0

in start command and data
use to test i f password correct

use to test if password correct

use to test if password correct
update with new password

in change password command and data

Figure 10. Encapsulated data analysis table for buoy.

Step 9. Design the clear box. The clear-
box expansion of the state machine is quite
direct at this point. The responses and
transitions in Figure 9 lead directly to a
clear box of 14 concurrent black boxes-
one for each stimulus type-in which each
black box recogniies its own stimulus type
in the current complex stimulus and
responds accordingly. Certain black boxes
must also recognize other stimulus types.
For example, the shutdown-command
black box must check for the absence of a
restart command before shutting down the
system. Also, the clock-pulse black box
must identify the stimulus type “request to
broadcast 24 hours of weather data.”

These 14 concurrent black boxes are
shown as part of Figure 9.

The Resolve black box required for this
concurrent clear box must resolve possible
conflicts in the broadcast responses and
the values set for buoy status, broadcast
status, and broadcast-request status. In
this case, the conflicts can be resolved as
follows:

R: accept any response of change in
state data except for response
broadcasts, buoy status,
broadcast status, and
broadcast-request status,
which are to be resolved as
follows:

response broadcast:

SOS broadcast,
24-hour-weather broad-
cast, current-weather
broadcast, no broadcast

select in priority order-

buoy status: on
broadcast status: based on

broadcast-request status: on
response broadcast

Step 10. Verify the clear box. To verify
the clear box, the sequential and concur-
rent process must be eliminated to obtain
the derived state box, which then must be
compared with the intended state box. The

June 1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35

derivation is quite direct for this clear box
because its concurrent black boxes
respond to different stimulus type values.
The Resolve black box defines the priori-
ties and conflict resolutions among the
concurrent black boxes as already identi-
fied. Immediate verification again pro-
vides direct control over the eventual
behavior of the system.

One possible issue here is the responses
to other stimulus types at restart or shut-
down. The derived state box will provide
responses to sensors and various requests
for service that may be counter to the spirit
of the problem. For example, if a shut-
down command and a request to broad-
cast 24 hours of weather data arrive
concurrently, the derived state box may
both confirm a shutdown and form and
start the broadcast, possibly a questiona-
ble response. A review of the intended
state box shows that this clear-box
behavior meets the state-box require-
ments. So, the state box itself should be
questioned, which leads back to the black
box from which the expansion began. In
fact, this may be a desirable way to shut
down, but it should be resolved and
documented in black-box behavior. The
stepwise refinement and verification pro-
cess leaves a design trail for such recon-
siderations, with enough documentation
to maintain consistency between specifica-
tions and design. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Step 11. Repeat stepwise expansion until

design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s complete. The new common
services-24-Hour Weather History,
Wind History, Water Temperature His-
tory, and Air Temperature History-are
also subject to systematic design with the
stepwise box-structure expansion process.

For example, in order to relocate
weather data into a new abstraction called
24-Hour Weather History, its black-box
stimuli and responses must be determined.
The abstraction’s main purpose is to
return a 24-hour weather history on
demand for the 24-hour-weather broad-
cast. Consequently, a query stimulus is
needed. Also, weather data including
GMT, location, wind average, and air and
water temperature averages must be
acquired hourly. Call this a data stimulus.
And, because the buoy can be restarted, a
restart stimulus is also needed. This infor-
mation is captured formally as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Black-box stimulus types.
(1) restart
(2) data (GMT, location, wind aver-

age, air temperature average,

water temperature average)
(3) query

Black-box responses.
(1) restart

R: acknowledge restart.
(2) data (GMT, location, wind aver-

age, air temperature average,
water temperature average) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: acknowledge data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R: last 24 or fewer records of
weather data received since last
restart stimulus.

If this expansion were continued, the
state data required for the state box would
be derived using the necessary and suffi-
cient condition for the encapsulation of
history into state. As before, the listing of
stimulus types and responses would be
expanded one more step. The expansion is
simple in this case, but it provides a design
trail for engineering inspections as part of
the overall design of the buoy.

(3) query

tepwise refinement and verifica-
tion in the box structures of data
abstractions provides a systematic

discipline for complex system design at any
level of formality. Once the black box is
understood as a mathematical function
from stimulus histories to responses, the
derivation of state data requirements
becomes a very direct analysis process sub-
ject to rigorous engineering inspections.
The identification of state boxes to encap-
sulate state data and processes at the next
level is also a very direct process. Since
data abstractions are used at the next level,
their restatement as black boxes defines
their behavior, from which state dataand
even lower-level box structures can be der-
ived and inspected systematically. Unlike
heuristic invention, this derivation is
repeatable, allowing engineering inspec-
tions because the products and the steps in
deriving them are familiar to the
inspectors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

Acknowledgments
I t is a pleasure to acknowledge stimulating

discussions with Richard Cobb, Alan Hevner,
Richard Linger, and David Weiss in the prepa-
ration of this paper. The reviewers of this paper
also contributed significantly to its quality.

References
1. H.D. Mills, R.C. Linger, andA.R. Hevner,

“Box-Structured Information Systems,”
IBMSystems J . , Vol. 26, No. 4, 1987, pp.
395-41 3.

2. J. Guttag, J. Homing, and J. Wing, Larch
in FiveEasy Pieces, tech. report, DEC Sys-
tems Research Center, Palo Alto, 1985.

3. D.L. Parnas, “Ona ‘Buzzword’: Hierarchi-
cal Structure,” Proc. IFIP Congress 74,
North Holland, 1974, pp. 336-339.

4. G. Booch, SoftwareComponents with Ada,
Benjamin/Cummings, 1987.

5. D.L. Parnas and W. Bartussek, Using
Traces to Write Abstract Specifcations for
Software Modules, University of North
Carolina technical report, UNC TR77-012,
1977.

6 . C.A.R. Hoare, Communicating Sequential
Processes, Prentice Hall, 1985.

7. L. Chmura et al., Software Engineering
Principles, course notebook, Naval
Research Laboratory, 1981.

8. R.C. Linger, H.D. Mills, and B.I. Win,
Structured Programming: Theory and
Practice, Addison-Wesley, 1979.

Harlan D. Mills is a professor in the Computer
and Information Sciences Dept. at the Univer-
sity of Florida. He is also director of the Infor-
mation Systems Institute in Vero Beach, Fla.
His current research interests are systems
engineering and the mathematical foundations
of computer science.
Mills is a member of the US Air Force Scientific
Advisory Board, and was a governor of the
Computer Society from 1982-84, a regent of the
DPMA Education Foundation, and recipient of
the DPMA Distinguished Information Science
Award in 1985 and the Warnier Prize in 1988.

Mills received his bachelor’s, master’s, and
PhD degrees in mathematics from Iowa State
University in 1948, 1950, and 1952, respectively.

Readers may write to Mills at IS1 Information
Systems, 2770 Indian River Boulevard, Vero
Beach, FL 32960.

36 COMPUTER

	Stepwise Refinement and Verification in Box-Structured Systems
	Recommended Citation

	Stepwise refinement and verification in box-structured systems - Computer

