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ABSTRACT

This paper describes the contribution of the DLR team

ranking 3rd in Track 1 of the 2020 IEEE GRSS Data Fusion

Contest, with results ranking 2nd in Track 2 of the same con-

test are reported in a companion paper. The classifications

are based on refinements of low-resolution MODIS labeling

on available higher resolution Sentinel-1 and Sentinel-2 data.

Results are initialized with a handcrafted decision tree in-

tegrating output from a random forest classifier, and subse-

quently boosted by detectors for specific classes.

1. INTRODUCTION

The 2020 Data Fusion Contest, organized by the Image Anal-

ysis and Data Fusion Technical Committee (IADF TC) of the

IEEE Geoscience and Remote Sensing Society (GRSS) and

the Technical University of Munich, focused on large-scale

land cover mapping from globally available multimodal satel-

lite data. The task is to train a machine learning model for

global land cover mapping based on weakly annotated sam-

ples. Training, validation and test data consist of triplets of

Sentinel-1 and Sentinel-2 images at 10 m/px spatial resolu-

tion, and MODIS semantic labels resampled from the original

500 m/px spatial resolution [1]. The source data are collected

over different parts of the world. The 2020 contest com-

prised two challenge tracks: land cover classification with

low-resolution labels (Track 1), and the same problem with

additional high resolution semantic labels made available for

training (Track 2). This paper describes the approach devel-

oped at the German Aerospace Center (DLR) ranking 3rd in

Track 1. Refinements to the reported approach which resulted

in a 2nd prize in Track 2 of the same contest are reported in a

companion paper [2].

2. METHODOLOGY

2.1. Training Area Subset

A subset of the available training data was selected as input

to the random forest classifier described in Section 2.3, using
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Fig. 1. Training area selection from CORINE and MODIS

labels (a, b). The Random Forest classifier is trained on the

intersection of the two (c). Cf. Fig. 3 for a legend.

as ground truth the agreement between MODIS labels and

resampled labels from the Copernicus CORINE [3] (wher-

ever available) or Global Land Cover Collection 2 (CGLS-

LC100) [4] datasets, both at 100 m/px spatial resolution,

and the SRTM Water Body Data (SWBD), at approximately

30 m/px [5]. The strongest semantic correspondences be-

tween classes in the different datasets have been researched

and are reported in Table 1. An example is reported in Fig.

2.1, where the class Savanna in MODIS has been removed as

it is ignored in the reference labels (appears therein in black).

Higher resolution OpenStreetMap data were not used due to

inconsistency with the contest’s labels.

2.2. MODIS Label Refinement

The initial labeling of MODIS identifies some classes less ac-

curately than others, and has a strong presence of the class

Savanna (see Fig. 3 (b)), which should not appear in the final

classification results. Exploiting the availability of higher-

resolution data, the initial MODIS labeling is therefore re-

fined by reassigning all pixels belonging to the Shrubland,

Savanna, Grasslands, Wetlands, and Barren classes to one of

the 8 final classes, according to a decision tree.

Initially, increasing values of Normalized Differential

Vegetation Index (NDVI) in Sentinel-2 are assigned to the

classes Barren, Shrubland, Grassland, Wetlands, and Forest.



Table 1. Semantic correspondences between classes

Class MODIS CGLS CORINE

Forest 1-5 111-124 141, 311-313

Shrubland 6,7 20 322-324, 333

Savanna 8, 9 None None

Grasslands 10 30 231, 321

Wetlands 11 90
411, 412,

421-423

Cropland 12, 14 40
211-213, 221

-223, 241-244

Urban 13 50

111, 112, 121-

124, 131-133,

142

Snow & Ice 15 70 None

Barren 16 60 331, 332, 334

Water 17 80, 81, 200
511, 512,

521-523

The decision tree then refines the classes based on differ-

ent spectral features and indices (e.g. the Normalized Water

Index [6]) extracted from Sentinel-2. At this stage, pixels

labeled in MODIS as Water, Cropland, Forest and Urban are

mostly left unmodified. Sample results for the validation

dataset are shown in column (c) of Fig. 3.

2.3. Random Forest Classification

Due to the difficulty of training neural networks with low-

resolution labels and the unsatisfying results yielded by Deep

Learning algorithms, Random Forest (RF) classifiers have

been used instead. Optimal hyper-parameters were set us-

ing grid-search and qualitatively evaluating the results, as

follows:

• Though forests of RF are generally more reliable,

they did not produce satisfactory results for any class.

Therefore, a single RF was used.

• Based on the implementation of the Scikit-learn python

library, the following RF architecture was used: num-

ber of trees = 500, maximum depth = 100 (longest

branch in a tree), maximum leaf nodes = 100. Ad-

ditionally, we handled the class imbalance problem

within our training data by setting the parameter

“class weight” to “balanced”.

• All pixels from 22 scenes randomly drawn from the

”ROIs1158 spring” training dataset were selected, us-

ing our refined MODIS labels as ground truth (see Sub-

section 2.1). We explain the effectiveness of the spring

images due to the strong localization bias in the valida-

tion dataset, which seemed to correspond more to the

spring season than to any other.

(a) Sentinel-2 (b) RF predictions (c) Reference Labels

Fig. 2. Random forest classifier predictions for Track 1. Cf.

Fig. 3 for a legend.

Results show confusion between the classes Cropland,

Grasslands, Barren, Shrubland, Wetlands and Forest (see

examples illustrated in Fig. 2). Therefore, only the predic-

tions for the better identified classes Urban and Water were

stored for the next steps. In Track 2, the predictions for

classes Grasslands and Forest were better distinguished and

were also employed (see companion paper describing Track

2 results).

2.4. K-means Reclassification

For the reclassification, first a global Bag of Words (BoW) is

constructed. The BoW consists of patch-wise extracted sets of

[MODIS label, word] pairs, where each word is a centroid ob-

tained from a K-means classification of the union of Sentinel-

1 and Sentinel-2 bands [2, 3, 4, 5, 6, 7, 8, 9, 12, 13]. The

specific procedure applied to each patch is the following:

Data: S1, S2, Refined MODIS

Result: BoW [MODIS Class, centroid]

for MODIS Class in Refined MODIS do

get pixels corresponding to MODIS Class;

if pixels ≥ 100 then

fit a K-means classifier using pixels (S1,S2);

predict clusters (clusters = 5);

for centroid in clusters do

if centroid population ≥ 20% then
include [MODIS Class,centroid] in

BoW;

Algorithm 1: Extraction of patch BoW

With the global BoW created, a Gaussian Naive Bayes

classifier is trained and the validation set is once again classi-

fied. Sample results are shown in column (d) of Fig. 3.



(a) Sentinel-2 (b) MODIS (c) Preliminary Results (d) Reclassification (e) Final Results (f) Reference Labels

Fig. 3. Main steps of the classification strategy for Track 1. From left to right: True color combination of Sentinel-2 bands (a);

coarse MODIS labelling at 500 m spatial resolution (b); output of the decision tree described in Section 2.2 (c); results after

reclassification using k-means (d); final classification after post-processing (e); reference labels for selected test images (f).



2.5. Urban Detector

The Urban area as computed by the RF is refined by an urban

detector using three complementary elements: Gabor texture

parameters, NDTI (Normalized Difference Tillage Index) [7]

computed from the Short Wave Infrared (SWIR) bands of

Sentinel-2, and brightness of Sentinel-1. The Gabor features

are extracted at 4 orientations and 2 scales, and capture strong

texture features which are more common for Urban regions

than for rural areas. Higher values of NDTI are effective at

separating urban areas from bare soil. Finally, a high-intensity

level in Sentinel-1 images increases the probability of having

man-made structures (often partly made of metal and orthog-

onal surfaces). In this context, a penalty is added as additional

prior if no dominant point signature (intensity above 0 dB) is

present in the image patch. The resulting detection is mor-

phologically dilated and pixels not included in the resulting

area are excluded as false alarms. Residential areas, usually

included in these false alarms, are recovered in a second step

by checking if the NDVI of the removed pixels is above a

minimum threshold, as residential areas often include vegeta-

tion in a single image element at the spatial resolution of the

dataset. Finally, urban boundaries are regularized by extend-

ing the strong urban candidates to neighbouring weak candi-

dates.

2.6. Post-processing

The Water class from the RF classifier is overlaid on the clas-

sification results. Confusion between Wetlands and Grassland

is mitigated by considering local differences in NDVI and the

SWIR bands. Additionally, the SWIR bands are analyzed to

include neighbouring Shrubland into Croplands. Gabor tex-

ture features, already employed for the detection of Urban ar-

eas, helped in turn separating Croplands from Barren areas, as

the former usually appear smoother than the latter. Morpho-

logical openings and closings have not been applied as results

appeared degraded. Final results are reported in Fig. 3 (e),

along with the reference high-resolution labels disclosed af-

ter the Development phase by the contest organizers in Fig. 3

(f). Results in terms of accuracy per class are reported in Ta-

ble 2. Therein, Development refers to the preliminary phase

assessed on the validation data, and Track 1 to the relative

contest results assessed on the test data. As a comparison, the

score for the best ranked teams are also reported.

3. CONCLUSIONS

This paper reports the stepwise refinement of coarse labelling

for earth observation data, using as auxiliary sources multi-

modal data having higher spatial resolution. The research has

been conducted in the frame of the 2020 IEEE GRSS Data

Fusion Contest and presents the team’s classifications rank-

ing 3rd in Track 1, where only low resolution reference labels

are available. Classification results ranking 2nd in Track 2 of

Table 2. Classification results

Class Development Track 1

Forest 0.8534 0.8012

Shrubland 0.4621 0.3538

Grassland 0.4820 0.4446

Wetlands 0.6719 0.4273

Croplands 0.7122 0.3704

Urban 0.8605 0.8140

Barren 0.5752 0.3556

Water 0.9992 0.9838

Average Accuracy 0.7021 0.5688

Contest’s Best Results 0.7073 0.5749

the contest, in which some high resolution labels are made

available, are reported in a separate article [2] and build up on

the results presented in this paper.

4. ACKNOWLEDGEMENT

The authors would like to thank the research group for Signal Pro-

cessing in Earth Observation at the Technical University of Munich

for providing the data used in this study, and the IEEE GRSS Image

Analysis and Data Fusion Technical Committee for organizing the

Data Fusion Contest.

5. REFERENCES

[1] Michael Schmitt, Lloyd Haydn Hughes, Chunping Qiu, and

Xiao Xiang Zhu, “Sen12ms–a curated dataset of georeferenced

multi-spectral sentinel-1/2 imagery for deep learning and data

fusion,” arXiv preprint arXiv:1906.07789, 2019.

[2] D. Cerra, N. Merkle, C. Henry, K. Alonso, P. d’Angelo, S. Auer,

R. Bahmanyar, X. Yuan, K. Bittner, M. Langheinrich, G. Zhang,

M. Pato, J. Tian, and P. Reinartz, “Stepwise refinement of low

resolution labels for earth observation data: Part 2,” in IGARSS

2020 - 2020 IEEE International Geoscience and Remote Sens-

ing Symposium, 2020.

[3] M. Bossard, J. Feranec, and J. Otahel, “CORINE Land Cover

Technical Guide - Addendum 2000,” European Environmental

Agency, Copenhagen, 2000.

[4] Marcel Buchhorn, Myroslava Lesiv, Nandin-Erdene Tsend-

bazar, Martin Herold, Luc Bertels, and Bruno Smets, “Coper-

nicus global land cover layers—collection 2,” Remote Sensing,

vol. 12, no. 6, pp. 1044, 2020.

[5] Earth Resources Observation And Science (EROS) Center,

“Srtm water body dataset,” 2017.

[6] S. K. McFeeters, “The use of the normalized difference water

index (NDWI) in the delineation of open water features,” Inter-

national Journal of Remote Sensing, vol. 17, no. 7, pp. 1425–

1432, 1996.

[7] AP Van Deventer, AD Ward, PH Gowda, and JG Lyon, “Us-

ing thematic mapper data to identify contrasting soil plains and

tillage practices,” Photogrammetric Engineering and Remote

Sensing, vol. 63, pp. 87–93, 1997.


	 Introduction
	 Methodology
	 Training Area Subset
	 MODIS Label Refinement
	 Random Forest Classification
	 K-means Reclassification
	 Urban Detector
	 Post-processing

	 Conclusions
	 Acknowledgement
	 References

