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Abstract. This paper describes a method for autocalibrating a stereo rig.
A planar object performing general and unknown motions is observed by
the stereo rig and, based on point correspondences only, the autocalibra-
tion of the stereo rig is computed. A stratified approach is used and the
autocalibration is computed by estimating first the epipolar geometry of
the rig, then the plane at infinity Π∞ (affine calibration) and finally the
absolute conic Ω∞ (Euclidean calibration). We show that the affine and
Euclidean calibrations involve quadratic constraints and we describe an
algorithm to solve them based on a conic intersection technique. Experi-
ments with both synthetic and real data are used to evaluate the perfor-
mance of the method.

1 Introduction

Autocalibration consists of retrieving the metric information of the cameras –
their internal parameters and relative position and orientation – from images,
without using special calibration objects. Additional constraints can also be
introduced such as knowledge of some of the internal parameters of the two
cameras (aspect ratio, image skew, ...).

Planar autocalibration has several advantages. Planar scenes are very easy to
process, enable very reliable point matching by fitting inter-image homographies,
and very accurate estimation of the homographies. It will be seen that only the
homographies are required for the autocalibration.

Many approaches for autocalibration have been developed for monocular and
binocular sensors in recent years. Faugeras, Luong and Maybank [5] proposed
solving the Kruppa equations from point correspondences in 3 images. However,
this requires non-linear solution methods. An alternative is to first recover affine
structure and then solve for the camera calibration from this. Such a “stratified”
approach [4] can be applied to a single camera motion [1,7,9,12,14] or to a stereo
rig in motion [2,10,20] and requires no knowledge of the observed scene. The
stratified approach applied to the autocalibration of a stereo rig involves the
computation of projective transformations of 3-D space, that is the projective
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transformation that maps two different projective reconstructions of the same
3-D rigid scene. Unfortunately, these projective motions cannot be estimated
when the 3-D scene is planar so those autocalibration approaches cannot be
used.

Some approaches for calibration [11,16,18] and autocalibration [17] from pla-
nar scenes have also been developed. In [17], the author uses the constraint that
the projections of the circular points of a 3-D plane must lie on the image of the
absolute conic. The proposed criteria is non-linear and the associated optimiza-
tion process must be bootstrapped. Unfortunately no general method is given
to obtain this bootstrapping.

We show here that, using a stereo rig, the stratified paradigm is very well
adapted for autocalibration from planar scenes and extend the idea developed
in [17]. We prove the following results:

(1) Affine calibration can be uniquely estimated from 3 views of a plane.
(2) Euclidean calibration can be uniquely estimated from 3 views of a plane if

at least one of the cameras of the rig has zero image skew and known aspect
ratio. Otherwise 4 views are required.

2 Preliminaries

2.1 Camera Model

A pinhole camera projects a point M from the 3-D projective space onto a
point m of the 2-D projective plane. This projection can be written as a 3 × 4
homogeneous matrix P of rank equal to 3 :

m � PM

where � is the equality up to a scale factor. If we restrict the 3-D projective
space to the Euclidean space, then it is well known that P can be written as :

P = (KR Kt)

R and t are the rotation and translation that link the camera frame to the
3-D Euclidean one. The most general form for the matrix of internal parameters
K is :

K =




α rα u0

0 aα v0

0 0 1




where α is the horizontal scale factor, a is the ratio between the vertical
and horizontal scale factors, r is the image skew and u0 and v0 are the image
coordinates of the principal point.
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When the aspect ratio a is known and the image skew r is zero (i.e. the
image axes are orthogonal), the matrix of internal parameters depends only on
3 parameters and becomes:

K =




α 0 u0

0 aα v0

0 0 1


 (1)

2.2 Stratified Calibration

Autocalibration consists of recovering the metric information of the stereo rig.
This information can be obtained through the recovery of the internal parameters
and relative orientation and position of both cameras.

However, once the epipolar geometry of the stereo rig has been estimated
and a projective basis has been defined, the metric information of the rig is fully
encapsulated by the equation of the plane at infinity Π∞ and the equation of
absolute conic Ω∞ [10,20].

2.3 Notation

In this paper we assume that the cameras of the stereo rig have constant param-
eters under the motion, and that the rig acquired a sequence of n image pairs of
a moving planar object.

We denote by Π1,...,Πk,...,Πn the geometric planes associated with the dif-
ferent positions of the planar object.

Hij (resp. H′
ij) denote the homographies between the left (resp. right) image

of the stereo rig in position i and the left (resp. right) image of the stereo rig in
position j. These 3 × 3 inter-image homographies can be computed from point
correspondences.

We also denote by Γij the geometric Euclidean transformation that maps the
points of Πi onto the points of Πj . That is, if Mi is a 3-D point of the object at
position i and Mj the same point at position j, then these two points are related
by Mj = Γij(Mi).

A� denotes the transpose of the matrix A. [.]× denotes the matrix generating
the cross product: [x]×y = x ∧ y.

2.4 Organization of the Paper

The remainder of the paper is organized as follow. In Section 3, we explain
how the epipolar geometry can easily be estimated from a sequence of image
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pairs of a planar object. In Section 4, the affine autocalibration is described and
we show how the equation of the plane at infinity Π∞ can be estimated. The
Euclidean autocalibration (estimation of the absolute conic Ω∞ ) is performed
in Section 5. Section 6 shows some experiments with synthetic and real data in
order to demonstrate the stability of the approach. Finally a brief discussion is
given in Section 7.

3 Projective Calibration

The projective calibration consists of estimating the epipolar geometry of the
stereo rig. The epipolar geometry is assumed to be constant and can therefore
be computed from many image pairs.

It is well known that the epipolar geometry cannot be estimated from a single
image pair of a 3-D planar scene. However when the planar scene performs mo-
tions, all the image pairs (each corresponding to a different position of the planar
scene) gathered by the stereo rig can be used and this makes the computation
of the epipolar geometry possible.

The motions of the plane must be chosen so that they do not correspond
to critical motions [13]. These are motions which are not sufficient to enable
the epipolar geometry to be computed uniquely. In this case they are transla-
tions parallel to the plane of the scene, rotations orthogonal to the plane of the
scene and combinations of the two. The plane is effectively fixed (as a set, not
pointwise) relative to the rig under these motions.

The fundamental matrix F associated with the stereo rig is computed from all
the left-to-right point correspondences from all the image pairs using a standard
technique [19]. The projection matrices P and P′ associated with the left and
right cameras respectively can then be derived [8]. Without loss of generality
these two 3×4 matrices can be written as:

P � (I 0) P′ � (
P̄′ p′) (2)

where I is the 3 × 3 identity matrix, P̄′ is a 3 × 3 matrix and p′ a 3-vector.

Using point correspondences it is therefore possible to obtain a projective
reconstruction of the points of the planes. It is also possible to estimate the
projective coordinates π1,...,πk,...,πn of the planes Π1,...,Πk,...,Πn associated
with the different positions of the planar object. In the following, πk is the
4-vector:

πk =
(

π̄k

αk

)
(3)

where π̄k is a 3-vector and αk a real number.
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Fig. 1. The geometry of lines and planes involved in the affine autocalibration. The
image line li is the vanishing line of the plane Πi, which is the image of Li.

4 Affine Calibration

This section describes the affine autocalibration, which consists of estimating, in
the projective basis determined previously (2), the coordinates π∞ of the plane
at infinity Π∞ . For this purpose we use here the vanishing line of the observed
plane in each left view, and show how quadratic constraints on the coordinates
of this vanishing line can be derived.

We will use the fact that Π∞ is a particular plane: it is the only plane of
projective space that remains globally invariant under any affine transformation,
i.e. under the action of any affine transformation, any point lying on Π∞ has its
image lying on Π∞ as well.

Let L1,...,Lk,...,Ln be the 3-D lines corresponding to the intersections of Π∞
with Π1,...,Πk,...,Πn respectively, (see Figure 1). We use the following result:

Proposition 1. Consider any two lines Li and Lj among L1,...,Ln. Γij being
the Euclidean transformation that maps Πi onto Πj as defined in Section 2.3,
we have:

Lj = Γij(Li).
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Proof: The intersection of two planes is preserved by a Euclidean transformation
(or indeed a projective transformation). However, a Euclidean transformation
has the additional property that Π∞ is fixed (as a set, not pointwise). Therefore,
Li (on Π∞) is mapped to Lj (on Π∞). In our notation this is written:

Γij(Li) = Γij(Π∞ ∩ Πi)
= Γij(Π∞) ∩ Γij(Πi)
= Π∞ ∩ Πj

= Lj

�

This proves that, for all k, 1 ≤ k ≤ n, Lk is the same line of the planar
object in the different positions of the object, namely the line at infinity on the
scene plane. An important feature of the lines L1,...,Lk,...,Ln is that they are all
contained in the plane Π∞ and therefore are coplanar. This provides a constraint
that will be used to solve for π∞ . In fact we actually solve for the vanishing line
lk of each plane Πk and parameterize the solution by l1.

Let lk be the vanishing line of Πk which is the image of Lk in the left camera
(see Figure 1). Let Φk be the 3-D plane going through Lk and the optical centre
C of the left camera. The plane Φk also intersects the left image plane at lk
and it can easily be shown that, in the projective basis defined in Section 3, the
equation of Φk is φk = P�lk. With P = (I 0) we have φk = (l�k 0)� .

Lk can be regarded as the intersection of Πk and Φk. Πk and Φk define
a pencil of planes that contains Lk, and Π∞ is in this pencil. Π∞ is therefore
common to all pencils (Πk, Φk). In other words, there exist some reals λ1,λ2,...,λn

and µ1,µ2,...,µn such that for all k:

π∞ = λkπk + µkφk (4)

Combining equation (4) for two pencils of planes (Πi, Φi) and (Πj , Φj) we
obtain the constraint corresponding to the coplanarity on Π∞ of two lines Li

and Lj :
λiπi + µiφi = λjπj + µjφj (5)

Equation (5) means that πi, φi, πj and φj are linearly dependent and there-
fore is equivalent to det(πi, πj , φi, φj) = 0. Using (3) for πk, the condition for
two lines Li and Lj being coplanar becomes:

∣∣∣∣
π̄i π̄j li lj
αi αj 0 0

∣∣∣∣ = 0 (6)

The lines l1,...,lk,...,ln represent the corresponding vanishing lines of the
plane in the different images. Since all lk are images of L1 on Π1, we have:

lk = H−�
1k l1 (7)
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We can therefore express all the lines l2,...,ln with respect to l1. Expanding
the determinant (6), we obtain the following quadratic equation:

l�1 C�
ijl1 = 0 (8)

where C�
ij is a 3×3 symmetric matrix such that C�

ij = Aij+A�
ij

2 and Aij is a
3×3 matrix defined by Aij = H−1

1j [αjπ̄i − αiπ̄j ]×H−�
1i .

The coplanarity of Li and Lj therefore defines a quadratic constraint on l1.
Once l1 is estimated, the lines l2,...,ln are estimated from (7), and the equations
of the planes φ1,...,φn as well.

We will see that only the lines l1,...,ln are required for Euclidean autocali-
bration. However π∞ can also be estimated. π∞ is computed as the common
plane to all pencils of planes (Πk, Φk). In practice, π∞ is computed by solving
the linear system defined by equations (4) where the unknowns are π∞ and the
reals λ1,...,λn and µ1,...,µn. For n positions, this linear system has 2n + 4 un-
knowns (n λ’s, n µ’s and 4 for π∞) and 4n equations, and these can be solved
using an SVD approach. To conclude:

– with 2 views of the planar object, we obtain a single constraint C�
12 and

there is a one-parameter family of solutions for l1 (all the lines of the conic
C�

12). Therefore there is a one-parameter family of solutions for π∞ ;
– with 3 views of the planar object, we obtain 3 independent constraints C�

12,
C�

13 and C�
23, and l1 corresponds to the common intersection of these conics.

The solution of the equations (8) can be found in Annex A. π∞ is thus
determined uniquely.

5 Euclidean Calibration

Let Ω∞ be the absolute conic and ω∞ and ω′
∞ its projection onto the left and

right camera respectively. A fundamental property of Ω∞ , ω∞ and ω′
∞ is that

they are all invariant to Euclidean transformations (provided that the internal
parameters of the cameras are constant). Euclidean autocalibration consists of
estimating the coordinates of Ω∞ . It is also equivalent, given Π∞ , to estimating
the equation of one of the projections of Ω∞ . We can choose, for instance, to
estimate its left projection ω∞ whose expression is ω∞ = (KK�)−1 where K
is the matrix of internal parameters of the left camera.

Consider the (complex) circular points Ik and Īk of the plane Πk. By def-
inition Ik and Īk are the intersections of Πk with Ω∞ and therefore are also
the intersections of Lk with Ω∞ . Let Ik and Īk be the projections of Ik and
Īk onto the left camera. As a consequence, Ik and Īk are the intersections of lk
and ω∞ . Solving for ω∞ then consists of the following steps:
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Fig. 2. The circular points lie on the absolute conic Ω∞

1. Use the constraint that the points Ik and Īk lie on the lines lk estimated by
the affine autocalibration;

2. Express the constraint that all Ik and Īk lie on the same conic ω∞ ;
3. Estimate ω∞ from all Ik and Īk;
4. Compute K from ω∞ .

Let p1 and q1 be two real points lying on l1. I1 can be parameterized by
a complex λ such that I1 = q1 + λp1. As all Ik and Īk belong to the planar
object, they are related by the inter-image homographies Hij and therefore we
have for all k:

Ik = H1kI1 = H1kq1 + λH1kp1

Īk = H1kĪ1 = H1kq1 + λ̄H1kp1
(9)

A constraint can be expressed on λ that all points Ik and Īk lie on the same
conic ω∞ . We will consider first the case of unrestricted K.

5.1 General Calibration K

Consider any 3 positions of the planar object associated with the planes Πi, Πj

and Πk and the projections Ii, Īi, Ij , Īj , Ik and Īk of their circular points onto
the left camera.
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Let Y ij , Y ik and Y jk be the respective intersections of the lines (IiĪj) and
(ĪiIj), (I iĪk) and (ĪiIk), (Ij Īk) and (ĪjIk). One can show that the expression
of Y ij is:

Y ij � (Ii ∧ Īj) ∧ (Ij ∧ Īi)
� Aiju + Bijv + Cij

(10)

where Aij , Bij and Cij are three reals depending only on the entries of p1, q1,
H1i and H1j , and u and v are two real numbers such that u = λλ̄ and v = λ+ λ̄.

I i
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��

��
��
��
��
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����
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Yij

Y

I
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Fig. 3. Pascal’s theorem : condition for 6 points to lie on a conic.

From Pascal’s theorem, the six points Ii, Īi, Ij , Īj , Ik and Īk lie on the
same conic if and only if Y ik, Y jk and Y ij lie on a line (see Figure 3). This can
be expressed as:

det(Y ik, Y jk, Y ij) = 0 (11)

Using the expression obtained in (10) for Y ij it is clear that (11) – and
therefore the constraint that the points Ii, Īi, Ij , Īj , Ik and Īk are on a conic
– is a cubic equation in u and v:

Γijk(u, v) =
N≤3∑
N=0

m≤N∑
m=0

γm,N−mumvN−m (12)

where γm,N−m are some real numbers depending only on the entries of p1, q1,
H1i, H1j and H1k.

From 4 views, it is therefore possible to obtain 4 cubic constraints Γijk(u, v)
such as (12). Solving simultaneously these cubic constraints [15] gives a solution
for (u, v) from which λ and hence ω∞ may be computed.
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5.2 Zero Skew, Known Aspect Ratio

In the case of a 3-parameter projective camera as described by the model (1),
skew is zero and the aspect ratio a is known. These constraints can be imposed
by introducing two complex points J and J̄ such that J = (1 ai 0)� and
J̄ = (1 − ai 0)� . Then if skew is zero and the aspect ratio a is known J and J̄
lie on ω∞ (the intersection of ω∞ with the line at infinity in the image).

The same approach as in the general case described above can be used. Using
any two positions i and j of the planar object, a constraint derived from Pascal’s
theorem can be expressed that the 6 points Ii, Īi, Ij , Īj , J and J̄ lie on the
same conic ω∞ . Including J and J̄ reduces the number of views required to
solve for ω∞ . In this case the constraint (11) has the form:

(λ − λ̄)2x�Qijx = 0

where x is a real 3-vector such that x = (λλ̄, λ+λ̄, 1) and Qij is a 3×3 symmetric
matrix that depends only on the entries of p1, q1, H1i, H1j and the aspect ratio
a. As λ is a non-real complex number, then λ �= λ̄ and the constraint reduces to:

x�Qijx = 0 (13)

Then from two views we obtain a quadratic constraint on x. From 3 views
or more, we obtain therefore at least 3 independent conics Qij corresponding to
the quadratic constraints (13). The intersection of these conics gives, when the
motions of the planar object are general, a unique solution for x.

Once x is computed (see details in Annex A), λ is known and then all the
points Ik, Īk can be estimated as well. ω∞ can then be computed as the conic
going through all the points Ik, Īk and J and J̄ .

Finally K is estimated by the Cholesky decomposition of ω∞ = (KK�)−1.

5.3 Summary of the Autocalibration Algorithm

The complete algorithm can be summarized as follow:

1. Compute the fundamental matrix F and the projective coordinates π1,...,πn

of the planes Π1,...,Πn;
2. Estimate the inter-image homographies Hij ;
3. Affine autocalibration: solve the quadratic constraints (8) for l1;
4. Euclidean autocalibration: solve the quadratic constraints (13). Compute λ,

Ik and Īk with (9). Then compute ω∞ as the conic going through all Ik

and Īk and finally compute K by Cholesky decomposition;
5. Bundle adjustment (optional): minimization of point backprojection errors

onto the left and right cameras of the 3-D planar scene at its different loca-
tions.
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6 Experiments

The stereo autocalibration algorithm has been implemented in matlab and ap-
plied to both synthetic and real data.

6.1 Synthetic Data
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Fig. 4. Errors in the estimation of focal length (in %) and of principal point (in pix.)
vs. level of noise.
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Fig. 5. Errors in the estimation of focal length (in %) and of principal point (in pix.)
vs. number of image pairs.

Experiments with simulated data are carried out in order to assess the sta-
bility of the method against measurement noise.

A synthetic 3-D planar scene consisting of 100 points is generated and placed
at different locations in 3-D space. The 3-D points of each position are projected
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onto the cameras of a stereo rig and Gaussian noise with varying standard de-
viation σ (from 0.0 to 1.0 pixel) is added to the image point locations. The
cameras have a nominal focal length f of 1200 pixels, unit aspect ratio and zero
image skew and the image size is 512 × 512. Image point locations are normal-
ized as described in [6] and inter-image homographies Hij are estimated. The
autocalibration is then computed 100 times for each σ.

Figure 4 shows the resulting accuracy with varying noise and 7 image pairs.
Figure 5 shows the resulting accuracy with a fixed noise level of 0.7 pix. and a
varying number of image pairs.

The experiments show that the estimation provided by the method is quite
accurate. Even for a level of noise of 1.0 pix., the error in the estimation of the
focal length is less than 2.5%. Moreover the approach gives sufficiently stable
and accurate results to initialize a bundle adjustment procedure. With such
a procedure, the accuracy of the estimation of both the focal length and the
location of the principal point is increased as shown in Figures 4 and 5.

6.2 Real Data

Fig. 6. One of the seven pairs gathered by the stereo rig

We gathered 7 image pairs of a planar scene (see Figure 6) with a stereo rig.
Thirty points are matched between all images and the autocalibration algorithm
applied using 4 to 7 image pairs from the whole sequence. In order to show
the efficiency of the method, we show results before and after applying the
bundle-adjustment procedure. The results are shown in Figure 7 where they are
compared with the results of an off-line calibration [3].

As the number of views increases the estimated values approach ground truth.
Although we used few points and all matches were made by hand, the method
gives acceptable results. The bundle-adjustment procedure, initialized with these
results, provides accurate enough calibration for metric reconstruction purposes.
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Autocalibration left camera right camera
nb. of image pairs method f u0 v0 f u0 v0

4 image pairs std. 1008 420 275 1076 298 313
w/ bund.-adj. 1058 373 304 1065 264 276

5 image pairs std. 1088 503 286 1060 399 290
w/ bund.-adj. 1060 421 221 1025 306 254

6 image pairs std. 1008 320 300 1090 278 343
w/ bund.-adj. 1020 399 274 1036 291 294

7 image pairs std. 1048 345 247 1116 212 254
w/ bund.-adj. 1022 400 279 1041 301 290

Off-line calibration 1030 399 269 1045 305 283

Fig. 7. Results of autocalibration algorithm for the real data of Figure 6 using different
numbers of image pairs and off-line calibration.

7 Conclusion

We describe in this paper a new method for autocalibrating a stereo rig from
several views of a plane.

We show that the epipolar geometry of the rig can easily be estimated with
a planar scene in motion. We use the constraint that the projections of the cir-
cular points of a 3-D plane must lie on the image of the absolute conic. Then the
autocalibration is performed by applying a stratified approach. Both autocali-
bration steps –affine and Euclidean– involve a set of quadratic constraints and
we therefore designed a conic intersection method to solve for them.

Futhermore, our approach provides an algebraic solution (i.e. non-iterative)
to Trigg’s planar method [17] when vanishing lines are known, and this could be
used for autocalibrating a camera from a monocular sequence of planes.

A Intersection of Conics

Let C1,...,Ck,...,Cn be n conics (n ≥ 3) represented as 3 × 3 matrices. Let us
suppose that these conics have a common intersection x. For each k we have:

x�Ckx = 0

Consider any two conics Ci and Cj . Let ν0 be a real number such that
det(Ci + ν0Cj) = 0 (ν0 always exists because ν �→ det(Ci + νCj) is a degree-
three polynomial with real factors). Let Dij be such that Dij = Ci+ν0Cj . Then
Dij belongs to the pencil of conics generated by Ci and Cj and is degenerate
(det(Dij) = 0). Moreover x belongs to Dij because:

x�Dijx = x�(Ci + ν0Cj)x
= x�Cix + ν0x

�Cjx = 0
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As a degenerate conic, Dij is the union of two lines ∆ij and ∆′
ij and therefore

x lies on one (at least) of these two lines. As a consequence, x can be estimated
as the common intersection of all the pairs of lines ∆ij and ∆′

ij .

Therefore the method we propose for solving simultaneously the quadratic
constraints defined by the matrices Ck consists of the following steps:

– compute the degenerate conics Dij and their associated pairs of lines ∆ij

and ∆′
ij . In practice, it is not necessary to compute all the possible Dij , we

can choose to compute only n of them;
– intersect the pairs of lines ∆ij and ∆′

ij , that is, find a point x such that it
belongs to one line at least of each pair of lines ∆ij and ∆′

ij . It is worth
noticing that when data are noisy, the lines do not exactly intersect at the
same point and an approach similar to linear least squares can be used to
find the closest point x to all pairs of lines.
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