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Stereo-Based Pedestrian Detection for
Collision-Avoidance Applications

Sergiu Nedevschi, Member, IEEE, Silviu Bota, and Corneliu Tomiuc

Abstract—Pedestrians are the most vulnerable participants in
urban traffic. The first step toward protecting pedestrians is to
reliably detect them. We present a new approach for standing- and
walking-pedestrian detection, in urban traffic conditions, using
grayscale stereo cameras mounted on board a vehicle. Our system
uses pattern matching and motion for pedestrian detection. Both
2-D image intensity information and 3-D dense stereo information
are used for classification. The 3-D data are used for effective
pedestrian hypothesis generation, scale and depth estimation, and
2-D model selection. The scaled models are matched against the
selected hypothesis using high-performance matching, based on
the Chamfer distance. Kalman filtering is used to track detected
pedestrians. A subsequent validation, based on the motion field’s
variance and periodicity of tracked walking pedestrians, is used to
eliminate false positives.

Index Terms—Collision avoidance, optical flow, pattern match-
ing, pedestrian detection, stereo vision, urban traffic.

I. INTRODUCTION

R ECOGNIZING humanoid shape is very easy for humans,
yet it is very difficult, at the moment, for computer vision

systems. This is particularly true in highly cluttered urban
environments and using moving cameras. The high variance
in appearance, occlusions, and different poses and distances
present difficult problems in pedestrian detection. The aim
of our work was the development of a real-time pedestrian-
detection algorithm, exploiting 2-D and 3-D information that is
capable of detecting pedestrians in urban scenarios. Our system
is designed to work as a precrash sensor on board road vehicles.
The sensor will provide information for driver-warning systems
and actuators.

The architecture of our classification system is presented
in Fig. 1. Our pedestrian detector uses two grayscale cam-
eras arranged in a stereo configuration. Our cameras supply
512 × 383 images. The baseline of our stereo system is
320 mm. The focal length is 380 pixels, giving a field of view of
68◦. More information about the system can be found in [1].

In all subsequent equations, we will refer to the following
reference frames: 1) the image reference frame, having the ori-
gin in the top-left corner, the Oy axis pointing in the up–down
direction, and the Ox axis pointing from left to right; 2) the left
camera’s reference frame, having the origin in the optical center
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of the left camera, the Ox axis pointing from left to right, the
Oy axis pointing along the up–down direction, and the Oz axis
pointing away from the camera; and 3) the ego vehicle’s refer-
ence frame, which is similar to the left camera’s reference frame
but has the origin on the ground, in the middle of the front end
of the ego vehicle.

A hardware stereo-reconstruction system named “TYZX” [2]
is used to generate a range image (from a disparity map) by
stereo matching the two intensity images. From the range im-
age, a set of reconstructed 3-D points is generated. An original
point-grouping algorithm based on “density maps” is applied
on the set of reconstructed 3-D points to generate pedestrian
hypotheses. A model type and a scaling factor are determined
for each hypothesis, based on the 3-D information associated
with it. By projecting the 3-D hypothesis in the left camera’s
image plane, a 2-D candidate window is generated. A set of
2-D edges is extracted from each 2-D candidate window, and
the edges are filtered based on their associated depth informa-
tion. A “distance transform” is performed on the edges. The
set of edge features associated with the selected model type at
the selected scale is then elastically matched to the distance-
transformed edge image. Objects that do not have a high-
enough matching score are filtered out. The remaining objects
are strong pedestrian hypotheses. A Kalman-filter-based track-
ing algorithm is used to track these remaining strong pedestrian
hypotheses. If the tracked pedestrians are determined to be
moving (walking), a subsequent test based on motion is used
to reject false positives. The motion test is based on detecting
the variance of the 3-D motion field vectors associated with the
body parts of the presumed pedestrians. We call this variance a
“motion signature.” Pedestrians are expected to display a large
motion signature, which is caused by the different directions
in which body parts move during walking. Another powerful
test we use is to determine if the motion signature is a periodic
function of time. The periodicity is caused by the swinging of
the pedestrian’s arms and legs while walking.

A. Related Work

There are various methods for object detection and pedes-
trian hypothesis generation. Some are based on 2-D informa-
tion, for example, the detection of image regions where there
are a significant number of vertical edges [3]. Other methods
are based on some type of additional information like infrared
(IR) images [3] or depth information [3], [4]. Most pedestrian
detection methods, which use depth information, rely on the
disparity map and make some kind of segmentation on this map
to detect objects [4] or use a v-disparity approach [3]. However,
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Fig. 1. System architecture.

although the approaches based on disparity maps are faster
compared with approaches based on full 3-D information, these
approaches heavily rely on a dense and error-free disparity map,
which is hard to obtain in real-life scenarios. Some methods
to reduce errors are cumulation using v-disparity or the gener-
alized Hough transform paradigm. A similar approach to our
own, which uses a criterion based on reconstructed 3-D points
density, is described in [5]. The authors divide the ground plane
into cells and compare the number of reconstructed points with
the expected number. However, this approach may be unable to
accurately detect such small objects as pedestrians.

Object detection and object classification based on pattern
matching are traditionally limited to 2-D image intensity in-
formation [6]. Sometimes, techniques such as Adaboost with
illumination-independent features are used [7]. The advantage
of using the 2-D information consists of the fact that all the in-
formation has a high degree of accuracy and a high level of trust
since the image represents an accurate projection of the real
scene (without taking into account the image noise, which is not
a significant factor for high-quality video cameras; of course,
a production system would use lower quality cameras and
should apply some filtering to remove noise before processing).
The disadvantage of using only 2-D image information is that
we do not have any additional spatial information about where
the objects are and what their size is. A detection system based
on pattern matching using only the intensity image will usually
try to fit all the models using all the positions and scales that
are plausible to find a match in the image. This generates an

extremely large search space, which cannot be reduced because
the 3-D information is missing. Pattern-matching approaches
based on methods similar to the distance transform allow a
limited degree of difference between the model and the features
of the matched object but still require a large number of scales
and positions for each model.

The 3-D information generated by a stereo reconstruction
system provides depth for objects that make up the scene.
There are some classification methods that directly use this
information [8], [9]. The classification solely based on 3-D
information is difficult as the 3-D reconstruction systems do
not provide sufficiently dense and reliable 3-D data to allow the
reliable extraction of 3-D shapes and surfaces (however, for a
promising approach in surface extraction, see [10]).

The use of pattern matching in conjunction with 3-D in-
formation has not been extensively explored, mainly because
real-time dense stereo reconstruction systems have not been
available until recently. Some approaches aimed at pedestrian
detection have used dense 3-D information but only as a vali-
dation method [11]. The 3-D data generated by these real-time
dense stereo reconstruction devices are still noisy and have a
much lower degree of confidence than intensity data. However,
by careful calibration of the stereo rig and careful filtering and
usage of the 3-D data, it is now possible to extract quality results
from the 3-D data.

Another important feature for walking-pedestrian detection
is their walking pattern. There are a number of works, e.g., [12]
and [13], that have used motion cues for pedestrian detection.
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A typical approach for motion-based pedestrian detection is to
determine if the motion associated with the presumed pedes-
trian is periodic. However, in cluttered environments, it is
usually very hard to distinguish object motion from background
motion. Furthermore, due to high car speed, close range, and a
low frame rate, it is possible that objects will move many pixels
from one frame to the next, thus making local methods for
motion detection infeasible. Also in motion-based pedestrian
detection, 3-D features are not extensively explored. The main
advantage of a 3-D approach in motion analysis is the possibil-
ity of correctly segmenting the foreground and the background
in complex scenarios and with moving cameras. In addition,
having 3-D information means that the true scale of the motion
can be recovered.

B. System Characteristics

According to [14], pedestrian collision-avoidance systems
are classified by field of view, angular resolution, detection
range, range resolution, illumination type, hardware cost, and
algorithmic complexity. Our system has a wide field of view of
68◦. The angular resolution is medium, at about 8 of arc. The
detection range is medium, at 20 m. Above this range, because
of disparity errors, it becomes very difficult to detect such small
objects as pedestrians. The range resolution is high, due to the
use of 3-D information (the depth information is computed
from stereo rather than inferred from mono). Expected errors
are about 4%Z. We use no active illumination techniques,
which is an advantage. The hardware cost is medium as normal
cameras are used, but a hardware stereo vision machine [2]
is used for depth information extraction. The algorithmic com-
plexity is medium to low, as using 3-D information speeds
up the matching process. Motion signature computation too
is performed only when necessary and only on corner points
belonging to presumed pedestrians. Our system works under
all urban traffic conditions, illumination conditions permitting.

C. Contributions

The novelty of our system consists particularly in the pow-
erful combination of 2-D intensity information, 3-D depth
information, and motion features. This combination uses all the
possible information provided by our stereo sensor. Further-
more, no other sensors such as a gyroscope, radar, and laser
scanner, no active illumination, and no IR cameras are used.

Object detection using density maps is a novel and resilient
object-detection algorithm.

The pattern-matching algorithm rejects all edges that do not
have a correct depth. A similar approach is used for optical flow
computation, where all corner points that do not have correct
depth are eliminated. In addition, the correct scale of the model
used for matching is directly inferred using the 3-D information
available.

The motion-based approach also has many novel aspects.
The motion field computation is done in 3-D and not in 2-D
and is thus able to detect pedestrians walking in any direction.
We also introduce a new feature called the “motion signature”
feature.

D. Paper Structure

The next section presents the object-detection algorithm
using density maps. Section III describes the pattern-matching-
based classification. Sections IV and V describe the motion
signature and motion periodicity validation tests. In Section VI,
we describe the fusion of the pattern-matching-based classifi-
cation with the motion-based classification. In Section VII, we
show some experimental results obtained using our classifier,
and in Section VIII, we draw conclusions and present possible
future work.

II. OBJECT DETECTION USING DENSITY MAP

We propose a method for object detection and pedestrian
hypothesis generation based on full 3-D information (array of
3-D points with x-, y-, and z-coordinates computed based on
the disparity map and the parameters of the calibrated stereo-
acquisition system).

Our method for object detection relies on the fact that objects
have a higher concentration of reconstructed 3-D points than
the road surface (see Fig. 2). Furthermore, vertical structures
are usually very well reconstructed by the 3-D reconstruction
engines when the stereo camera system has a horizontal base-
line (our case also). This results in a high density of 3-D points
in the 3-D space occupied by objects in general and pedestrians
in particular. By trying to determine those positions in space
where there is a high density of 3-D points, possible positions
for objects can be determined.

The characteristics of a collision avoidance safety system
require a detection area of 20 m (longitudinal) and 10 m
(lateral). Our camera system is designed to give the best results
in these range. Therefore, we select, for the purpose of object
detection, a box-shaped subspace of the scene, having a 20-m
length, a 10-m width, and a 2-m height. The height restriction is
necessary to avoid spurious detection of tree foliage, suspended
objects, etc.

To cope with projection errors caused by errors in the cam-
eras’ extrinsic parameters, we use a very precise calibration pro-
cedure, which produces exact results up to a range of 35 m [15].
The precise calibration procedure allows stereo reconstruction
to be performed in principle up to the specified distance without
significant outliers caused by incorrect image rectification or
undistortion. The pitch and roll of the ego vehicle are estimated
online [16]. However, some errors are still present, caused by
imperfect stereo matching. These errors are filtered out by the
accumulation (averaging) effect of the density map and do
not significantly alter the performance of our system in the
detection area given above. There is also an increase in recon-
struction error with distance. The stereo reconstruction, which
is performed by the TYZX hardware, computes disparities with
subpixel accuracy, and because of this, the errors are not too
serious for the considered range.

A density map is constructed from the 3-D points located
within this limited subspace. The 3-D points are projected on
the xOz (road) plane. In this limited area that we have consid-
ered for detection, the road can be considered flat; therefore, it
is no problem that a plane is used.
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Fig. 2. (a) Grayscale image and objects. (b) Three-dimensional points projected on the xOz plane (the big box represents the result of a different object detection
algorithm [1].

The density map is an accumulation buffer. Each projected
point adds a value to the accumulation buffer. A cell in the
accumulation buffer covers an area of 50 mm × 50 mm on the
ground plane. The weights that the point adds to the density
map have a Gaussian form, with the maximum at the center
cell and decreasing in the neighboring cells. Because points
become sparser as we move away from the camera, the size of
the patch increases with the distance. The diameter of the patch
is one cell (50 mm) at the nearest range and increases up to six
cells (300 mm) at the far range (20 m). The amount by which
the patch increases was empirically determined by testing the
system in various scenarios. A better approach would be to
consider a probabilistic error model for stereo reconstruction
and to compute the required patch size from it. Furthermore,
at the far end of the detection range, there exists the risk of
multiple persons being grouped together, because of the large
patch size.

Because the influence of the 3-D points on the density map
is cumulative, the density map will contain large values in areas
with a high density of 3-D points.

Segmentation is performed on the density map, using a
region-growing algorithm to determine possible object can-
didates. The region-growing threshold is based on the total
amount of 3-D reconstructed points. This allows the segmen-
tation to adapt to the situations where the reconstruction is less
than perfect.

The result of the segmentation is a list of object hypotheses
on the density map. Three-dimensional boxes are generated
based on the position and size of the object hypotheses in the
density map. Once the list of potential candidates is determined,
the pattern-matching algorithm is applied, as described in
Section III.

The detector’s resilience to occlusions mainly depends on the
amount of occluded area. Usually, if at least 50% of the pedes-
trian is visible, then the density map approach is able to detect
it. Of course, it is rather difficult, by any imaginable approach,
to completely detect occluded pedestrians. The tracking module
is able to propagate the pedestrian hypotheses for a few frames
if they become temporarily occluded.

In the area considered for detection, we found that we are
also able to detect small children.

Usually, our detector is able to segment individual pedes-
trians from pedestrian groups. If properly segmented, the
pedestrians will be individually detected, using shape pattern
matching and motion features. If pedestrians are multiply
grouped, then the pattern matching will usually fail, but the

Fig. 3. Object detection using density map. (a) Grayscale image. (b) Density
map. (c) Three-dimensional points projected on the xOz plane.

motion features may be able to supply enough information for
correct classification.

Fig. 3 shows the results of density-map-based object detec-
tion. The top-right cluster is caused by points that are outside
the considered region. Because of this, they are not considered
when the density map is built. In this particular scenario, these
points were caused by bad reconstruction (they “slipped” to the
far range). The large dark-gray boxes are the result of a different
object detection algorithm that is suitable for large objects such
as cars [1].

III. PATTERN-MATCHING-BASED CLASSIFICATION

This section presents the shape-based pedestrian–
nonpedestrian classification. The first step is to select a
number of candidates from the detected objects (see the
previous section). Next, the edge features used for pattern
matching are extracted from the left 2-D image and filtered
based on their 3-D positions to be coherent with the position of
the object box. Models are selected based on the aspect of the
3-D box containing the object, and their scale is determined.
A distance transform is applied on the edge-feature image.
Finally, the selected model is matched to the feature image. The
following sections will describe each of these steps in detail.

A. 3-D Candidate Selection

A fast classification algorithm is applied on the 3-D boxes
that contain the objects. Candidate objects are classified based
on 3-D size and position. This type of classification only
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Fig. 4. (a) Original image (reconstructed object points are colored). (b) Object
separation. (c) Feature selection

provides rough information and is only able to distinguish
between classes of objects that are very different in size, like
trucks, cars, and pedestrians. The size features for 3-D boxes are
their height and “base radius.” The height is obtained by ana-
lyzing the 3-D point distribution along the vertical axis it will be
discarded. We have determined the right attribute values using
Bayesian learning, and the acceptance or rejection is made
by a naive Bayesian classifier. We found that the acceptable
height is between 0.9 and 2.2 m, and the base radius is between
0.25 and 1 m. Of course, each height and base radius value
has its own likelihood of being a valid hypothesis. With these
limits, groups with up to three persons and small children are
accepted. The position refers to the position of the hypothesis
as related to the current driving lane. If the driving lane is
detected and if the object’s position is not on or near the current
lane, then we discard it (this validation is optional).

The candidates are also filtered based on 3-D information,
taking into account that the objects need to have a good distrib-
ution of reconstructed 3-D points to be good candidates. If not
enough 3-D information is present, the classification will have
a low degree of certainty, and the result will not be very useful.
As a result, if an object does not have a continuous distribution
of 3-D points along the vertical axis, it will be eliminated.
This filter will eliminate false positives that are small objects
but have a high enough density of reconstructed 3-D points to
surpass the density threshold.

B. 2-D Candidate Processing

Once a 3-D hypothesis has been determined to be a good
candidate for classification, a 2-D hypothesis is generated by
projecting the 3-D object on the left image plane. The 2-D
hypothesis is a window containing the hypothetical pedestrian
and is described by its bordering edges. In Fig. 4(a), the window
of the 2-D hypothesis is shown. In Fig. 4(b), only reconstructed
points that are located within the hypothesis’ 3-D box are
shown. In Fig. 4(c), the edges belonging to the object’s outline
are shown.

The set of edge features that will be used for pattern matching
are extracted from this window using the Canny edge detector
algorithm [17]. A clear separation of the edges belonging to
the object against the other background edges is required to
increase the accuracy of the pattern matching. For that, a depth
coherency constraint is applied, exploiting the available 3-D
information. The edges in the selected image window have
associated depth information, and only edges situated in the

volume of space determined by the 3-D box of the object
hypothesis are used, as opposed to all the edges in that region.

The edges we use for classification are occlusion edges,
caused by the pedestrian’s outline covering the background.
These edges cause problems for some stereo-reconstruction
algorithms. This is because they represent discontinuities in
the intensity image and may be viewed from slightly different
angles by the left and right cameras. However, this is not the
case with the stereo vision machine we use. It usually pulls
the reconstructed points to the foreground and thus generates
correct depth for foreground edges. Furthermore, because of
the short baseline, the cameras view the same object from
approximately the same angle, and thus, there are no large
errors around reconstructed edges.

Subsequently, the 2-D hypotheses are filtered out based on
the absence of significant (long) edge features in the image
window. This is because objects lacking significant edges and,
thus, implicitly significant corner points would be useless for
further shape- and motion-based classification steps. From our
test scenarios, we observed that we never eliminated a true
pedestrian by this filter. Usually, the false positives eliminated
here are objects with a high density of 3-D points, vertically
distributed and belonging to small elements, e.g., foliage or
other strongly textured structures.

C. Pattern Matching

In this step, we match a set of human shape (outline) models
with the edges present in the 2-D image window. A shape model
is a set of points forming a pedestrian outline. To reduce the
computational time and to optimize the classification process,
the set of templates is grouped into a hierarchical structure, as
presented in [18]. The hierarchy is constructed by determining
the similarity between each pair of models. The initial set
of models is segmented into a number of groups, based on
similarity. A prototype model (the model that is most similar
to all other models in its group) is selected for each group. The
process is then repeated at the next level, using the prototypes
from the previous level, until a single model remains. This
model has the highest similarity compared to all other models
(it is the most general), and it will be situated at the root of the
template tree. The children of each node in the template tree
are the nodes from among which it was selected as a prototype.
Therefore, the templates become more particular along each
path going from the root of the tree to a leaf. The similarity
matrix and the structure of the tree are determined offline.

The 3-D information related to the object provides the exact
distance to the object and its dimensions. Using the projection
equations, we can determine the size of the object in the 2-D
image. As a result, the height information is used to determine
the model type, and the depth information is used to determine
the scaling factor for the models used in the pattern matching.

To perform the pattern matching, a distance transform is
applied on the hypothesized image window (see Fig. 5). The
distance transform is applied on the edge image rather than on
the model image because the model has less information and
can be reduced to a vector of image positions. This vector will
only contain those positions where information is present in
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Fig. 5. Distance transform matching.

the model image. This parameterization of the model provides
a significant speedup in the matching stage. The result of
applying a distance transformation [19] to an edge image is a
bidimensional map with the same size as the image, and each
element of this map has a value proportional with the distance
from the corresponding image point to the closest edge point.

The distance between the model and the distance-
transformed image is then computed, and the model receives
a score based on this distance. Two main distance metrics
can be used to measure the similarity between two sets of
points: the average distance (or Chamfer distance [20]) and the
average truncated distance (or Hausdorff distance [21], [22]).
The Hausdorff distance is more robust (can deal with partial
object occlusions) than the Chamfer distance, but it has an
increased computational complexity. In our system, we chose to
use the average distance (Chamfer distance) for matching since
the system needs to fulfill real-time processing constraints. We
found that the errors generated by the use of the Chamfer
distance are usually small.

To reduce the number of models and levels in the classifi-
cation tree, we used models that represent only the torso and
head of the pedestrians since these features seem to be the ones
that change the least in the process of walking. The head and
torso of the hypotheses are considered to lie within its upper
body part. This approach induces some false positives but also
decreases the amount of false negatives, improving the overall
correct detection rate.

An alternative approach when matching would have been to
use scale-invariant descriptors such as shape context. However,
these methods have a much larger computational complexity
and do not take advantage of the fact that we already know the
correct scale (by stereo).

IV. MOTION-BASED VALIDATION FOR

WALKING PEDESTRIANS

In this section, we present the motion-validation method used
to eliminate false positives among walking pedestrians. This
step is applied only to moving hypotheses. If a hypothesis is
not moving, it will be classified based on shape only.

A. Hypotheses Tracking

The first step for the motion-based validation is to track
pedestrian hypotheses across multiple frames. The purpose
of tracking is twofold. First, it is used to determine if the
pedestrian hypothesis is moving relative to the fixed scene (the
reference frame attached to the road). Second, the tracking
supplies associations between objects in the previous frame and

the current frame, which are important for the computation of
motion-based features.

Our multiple-tracking frame consists of the following steps.
First, the ego vehicle motion is estimated, using a yaw rate
sensor (the serial production sensor incorporated in the ESP
system), a speed sensor (again, the serial production sensor),
and knowledge of the time stamps of the previous and current
frames. As the yaw rate sensor is noisy, we track its output using
a Kalman filter for more stable results.

We are thus able to obtain a rotation matrix and a translation
vector, which together describe the way in which the ego
vehicle has moved relative to the fixed reference frame, from
the time of the previous frame to the time of the current frame.
Alternatively, the translation vector and the rotation matrix
describe how objects (considered fixed relative to the fixed
scene) are moving relative to the ego vehicle.

Second, we consider that each pedestrian hypothesis moves
in a straight line at constant speed. We are thus able to predict
their position relative to the ego vehicle. Of course, pedestrians
do not always move in straight lines, but this is a good first-
order approximation.

The association phase is the most difficult and sensitive step.
To make the association more resilient, we used image-based
validation for matching targets from the previous frame with
targets in the current frame. The images used for matching are
depth masked (i.e., only the points for which 3-D information is
available and which, according to this 3-D information, belong
to the object’s foreground are used). Furthermore, because
of the 3-D information available, we are able to scale the
images (to compensate for the zoom-in effect caused by the
ego vehicle motion). Image validation is performed on depth-
masked scaled-down object images, using the sum of absolute
differences as a similarity measurement.

Unfortunately, most association errors occur when object
trajectories cross. In this case, one object usually occludes
the other, and we are left with very few unoccluded pixels to
perform image-based validation. Furthermore, pedestrians tend
to be similar in appearance. As a further improvement, we used
the method of bipartite graph matching, which is described in
[23], to find globally optimal associations.

If, according to the tracking information, the object seems to
be moving relative to the fixed scene, we consider it a walking-
pedestrian hypothesis and validate it using motion.

A motion signature, based on the 3-D motion field associated
with the presumed pedestrian is computed, and objects with a
low value for this motion signature are discarded. Finally, we
test to see if the motion signature is periodic across multiple
frames and discard objects with nonperiodic motion signature.
The following sections present each step in detail.

B. Depth Masking and 2-D Optical Flow Computation

In urban environment scenarios, there are a number of diffi-
culties associated with optical flow extraction.

1) Frame Rate: The frame rate is relatively low, as com-
pared with the velocities of the objects in the scene. The average
frame rate in the sequences we used was 20 ft/s, which means
that an object that is sufficiently close by could move by many
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pixels from one frame to the next. For example, a pedestrian
situated at 2 m in front of the camera moving with a speed of
2 m/s on a direction parallel to the camera would generate an
image motion of

Δx =
fxVX

Z
Δt (1)

which equals 19 pixels in our f = 380-pixel camera. A speed
of 2 m/s is equivalent to 7.2 km/h, which is not very large for
a running pedestrian. To cope with the relatively low frame
rate, we use the output from the tracker to estimate the global
motion of the object. We extract the object’s image from the
previous frame based on its previous location and the object’s
image in the current frame based on the location predicted by
the tracker. The size of the extracted image is given by the
minimum rectangle (bounding box) that encloses the projected
3-D cuboid associated with each object. To simplify the optical
flow computation, we equalize the sizes of the previous and
current object image, considering the largest size.

2) Occlusions: Objects passing in front of each other cause
occlusions. The problem of occlusions must be addressed,
because if we ignore it, a moving object passing in front of
a stationary one will cause spurious optical flow components
associated with the object in the background. To eliminate
from objects’ images the pixels that are not associated with
true object parts, we only consider a “slice” of the image.
We compute the minimum and maximum depth values of the
cuboid associated with the considered object, as expressed in
the camera’s coordinate system. We then filter out the points
for which the depth estimate computed by the TYZX system
lies outside the minimum and maximum depth interval. Having
dense stereo information is crucial for this step, as a sparse
set of points would not capture the true extent of the object’s
shape. Even with a dense set of stereo-reconstructed points, the
masked image sometimes contains “holes,” particularly if the
pedestrian’s clothing texture is uniform. This does not pose big
problems, because in areas with uniform texture, we would not
be able to extract the optical flow anyway. Another problem is
that some parts of the pedestrian’s feet are linked with the road.
This too does not seem to influence the result of the optical flow
computation.

3) Optical Flow Variability: We tried various methods for
computing the optical flow, based on brightness constancy
constraints such as those described in [24]–[26] and block
matching. We also tried methods based on both brightness and
depth, as described in [27]. Unfortunately, when the ego ve-
hicle is nonstationary, the radial optical flow field components
generated by the motion of the ego vehicle greatly vary from
the center of the image to its edges. Furthermore, because
of imperfect tracking, global object motion cannot be totally
eliminated. The moving parts of the human body also generate
a large optical flow variance when imaged from a close range.
However, it is imperative to compute a correct 2-D optical flow
field, as this motion-based detection scheme solely relies on it.

The methods described in [24] and [25] do not yield good
results because they are unable to estimate sufficiently large
motion vectors that are caused by a low frame rate and large

motions (ego vehicle and other objects). The method described
in [27] does not seem to increase the precision of the optical
flow computation, because the range data used to form the
linear depth constancy equation are too smooth (lacking corners
or edges) to be useful.

Consequently, only two methods for optical flow computa-
tion are useful for our environment: block matching and the
pyramidal approach described in [26]. Block matching gives
good results but is prohibitively computationally expensive. It
is also unable to generate a sufficient number of optical flow
vectors, because it uses fixed-size large blocks. Therefore, we
used the pyramidal approach described in [26]. This approach
has the advantage that it works across a large range of dis-
placements. It also computes the optical flow only where it can
be exactly recovered, i.e., at image corner points. The number
of corner points is relatively small. The fact that we track the
global motion of each object further increases the working
range of this optical flow extraction method, as it only needs to
detect local motion displacements. Because we perform corner
detection only on the masked object images and only corner
points are tracked, optical flow computation does not have a
very high computational expense.

To summarize, the steps we perform for optical flow extrac-
tion are (see Fig. 6):

1) tracked object’s image extraction;
2) depth mask computation, which eliminates wrong points

from the object’s image (i.e., points that belong to the
background because of their associated depth);

3) pyramidal 2-D optical flow computation:
a) corner detection (based on eigenvalues);
b) Gaussian pyramid generation;
c) pyramidal optical flow computation;

4) elimination of optical flow vectors that have ends that do
not fall onto points with correct depth.

C. 3-D Motion Field Computation

In this section, we discuss the computation of the true 3-D
motion of objects in the scene, based on the 2-D optical flow
and the range image. As explained in the previous section, we
only compute 2-D optical flow vectors that start and end in
points for which the hardware TYZX system is able to supply
the range value. Let p1(x1, y2) denote the start of the optical
flow vector �v in the previous frame and p2(x2, y2) denote
the end of the optical flow vector (in the current frame). In
addition, let z1 and z2 be the depth values supplied by the
TYZX system at points p1 and p2, respectively. Then, the 3-D
relative motion vector (expressed in the left camera’s coordinate
system) associated with the 2-D optical flow vector �v is

�V =

⎛
⎝

(x2−x1)z1
fx

(y2−y1)z1
fy

z2 − z1

⎞
⎠ (2)

where fx and fy are the focal lengths of the left camera, which
is expressed in horizontal and vertical pixel units, respectively.

Because the camera’s position is arbitrary, we would like to
express the 3-D motion vector into the more suitable reference



NEDEVSCHI et al.: STEREO-BASED PEDESTRIAN DETECTION FOR COLLISION-AVOIDANCE APPLICATIONS 387

Fig. 6. Image extraction, depth masking, and optical flow computation. The
masked pixels are grayed. Optical flow vectors are represented using lines.

frame (one attached to the vehicle). We have

�V w = RT (�V − �T ) (3)

where �T and R are the translation vector and the rotation
matrix from the vehicle’s reference frame to the left camera’s
coordinate system, as determined by the calibration process.

After performing these transformations, we end up with a
set of �V w vectors for each tracked object. The first step is the
elimination of objects that lack a sufficiently high number of
motion vectors. Our experiments determined that objects for
which there are less than five motion vectors are very unlikely
to be walking pedestrians. These objects are mainly poles or
other stationary objects. Therefore, in the next steps, we will
only consider objects for which more than five motion vectors
have been computed.

The 3-D motion vectors cannot, by themselves, serve as a
discriminating feature between pedestrians and other objects.
Because of imperfect tracking, objects tend to still have a
global motion, even after the global displacement predicted by
tracking is eliminated. We solve this problem by subtracting the
average motion

μV =
∑n

i=1 V W
i

n
(4)

from each motion vector. Another problem is caused by objects
such as vertical poles. Because they lack horizontal edges
(high-frequency components along the vertical direction), such
objects may present spurious vertical motion components. We
tried various approaches to eliminate such spurious motion
vectors:

1) considering the ratio of horizontal/vertical motion
components;

2) considering the average angle between the horizontal
plane and the motion vector;

3) considering only the horizontal components of the motion
vectors.

Although all the above approaches yield better results (higher
discriminating power) than considering only the magnitudes
of the motion vectors, they are all rather sensitive to noise.
A much better and stable approach, i.e., the principal compo-
nent analysis, is described in the next section.

D. Principal Components Analysis and Thresholding

While experimenting with the different features extracted
from the 3-D motion field presented in the previous section,
we observed that both the magnitudes and the orientations of
the motion field vectors are important features for our walking-
pedestrian detector. We would like to find the main direction
along which most motion takes place. Furthermore, we are
not interested in the motion itself but rather in its variability.
For example, while walking, a foot moves forward, while the
other moves backward (relative to the global body motion); in
addition, the arms tend to have the same motion pattern (if not
carrying large bags). A measure of the motion variance can
be obtained by performing principal component analysis. The
covariance of the motion vectors is

C =
1
n

n∑
i=1

(V w
i − μV )(V w

i − μV )T . (5)

The 3 × 3 matrix C represents a covariance matrix. Let λmax

be the largest eigenvalue of matrix C. The eigenvector �Vmax

associated with λmax represents the direction of the principal
variance of the vector field �V . The standard deviation along
the direction �Vmax is

√
λmax. Pedestrians move mainly in

the horizontal xOz plane. Therefore, we eliminate the verti-
cal (y) motion components and consider only the projection
of �Vmax on the xOz plane. We call the fraction of λmax

corresponding to this projection as λxz . As the experimental
results will show, the value of the new standard deviation
σ =

√
λxz is a good feature for discriminating walking pedes-

trians from other objects. Moreover, because of the fact that
it does not consider vertical motion, it eliminates some errors
caused by the absence of horizontal features on objects such
as poles, which sometimes generate spurious vertical motion
vectors.

The next step is to determine how to use the values of λt
xz

to determine if an object is a walking pedestrian or something
else. It is obvious that the values of λt

xz will be larger for
walking pedestrians than for rigid objects. We manually labeled
400 images of both pedestrian and nonpedestrian objects and
found that the best threshold is λt

xz = 5(m2/s2). The procedure
used for determining the threshold was an expectation–
maximization algorithm.
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Fig. 7. (Left) Objects. (Middle) Variation with time of the motion signature.
(Right) Motion signature frequency spectrum.

V. MOTION SIGNATURE PERIODICITY

A problem with the motion signature feature is that occasion-
ally, because of errors in stereo reconstruction and optical flow
computation, a nonpedestrian object displays a high motion
signature. However, these errors usually last for one or two
frames.

Because we track pedestrian hypotheses, we can record and
analyze their motion signature history. We have determined
that for pedestrians, the motion signature variation with time
is approximately periodic. Although nonpedestrian objects oc-
casionally display some spike noise in their motion signature,
this is caused by errors and is not periodic.

To characterize the periodic versus nonperiodic nature of
the motion signature generated by an object, we use Welch’s
averaged modified periodogram method of spectral estimation
[28] to compute the frequency spectrum. Frequency spectra
corresponding to periodic pedestrian motion are typically band
limited, while for other types of objects, they are not. This is
because noise occurs with equal probability in all the spectra,
while the periodic motion caused by swinging of pedestrians’
arms and legs during walking occurs at some fixed frequencies.

Fig. 7 shows some examples of the motion signature vari-
ation and their spectra for two pedestrians and one car. In
the middle column, the motion signature magnitude is plotted
against time. In the left column, the frequency spectrum of the
motion signature is shown. For the two pedestrians, this spec-
trum is limited to a few low frequencies. For the car, the spec-
trum of the motion signature is extended to high frequencies.

The classifier analyzes the frequency spectrum of motion
signature to identify the periodical motion of the pedestrian’s
arms and legs. The cutoff frequency is used as a feature.

A major disadvantage of the motion periodicity feature
is the fact that it can only be computed after the pedestrian
hypothesis has been tracked for a number of frames (we
used 1 s in our system). This is because we must capture the
periodic motion caused by pedestrians’ walking to analyze the
frequency spectrum.

Another disadvantage of both motion signature and motion
periodicity is that their accuracy decreases if the predominant
motion direction approaches the line of sight, because it relies
more and more on noisy 3-D data. The results are optimal if the
predominant direction of motion is perpendicular to the line
of sight.

VI. CLASSIFICATION RESULT FUSION

In this section, we describe the process by which we fuse the
results of the pattern matching with those of motion signature
and motion periodicity. The aim of this fusion is to reduce
the number of false positives as much as possible while not
rejecting correct positives.

The first observation is that while the pattern matching
always gives a classification score, this is not the case for
motion-based features. The first requirement for the motion-
based features is that the object must be tracked. This means
that at least one-frame delay is incurred from the initial hypoth-
esis generation to the first motion signature result. The second
requirement is that the object must be nonstationary (relative
to the fixed scene). If the object is stationary, we do not expect
any motion signature. The third requirement, this time for the
motion periodicity, is that the object be tracked for a sufficient
number of frames.

Therefore, we use the following scheme for fusion.
1) The pattern-matching score is computed on all pedestrian

hypotheses.
2) If an object is not tracked, then only the pattern-matching

score is considered, albeit with a reduced weight.
3) If an object is tracked and is moving relative to the fixed

scene, then its motion signature is computed. The motion
signature is then normalized with regard to the object’s
speed. This is because we expect a larger magnitude for
the motion signature as the pedestrian’s speed increases.

4) Finally, if the pedestrian hypothesis was tracked for a
sufficient number of frames and the motion periodicity
feature can be computed, then it is taken into account and
has a major influence on the final result.

5) Another component of the fusion is the propagation of
the object’s class by tracking. If an object was classified
as a pedestrian in the previous frame, the classification
result will increase the probability that the object will
also be classified as a pedestrian in the current frame and
vice versa, toward the pedestrian in the current frame.

Let A be the pattern-matching score (Chamfer distance
between model and hypothesis edges), B = (λxz/vxz) be the
motion signature score normalized with speed, and C = fcutoff

be the motion periodicity score. In addition, let St−1 be the
previous score (if the object was tracked). A, B, and C are
always positive values. For each of the scores, a threshold
must be determined. The thresholds were determined in a
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similar manner for each feature by minimizing the classification
error probability on a manually labeled training set. Let N be
the number of hypotheses detected in the training set, Np

be the number pedestrian among these hypothesis, and Nn

be the number of nonpedestrians. Of course, N = Np + Nn.
Let also P be the subset of pedestrians in the training
set and N be the subset of nonpedestrians in the train-
ing set. For the given threshold T and for a given feature
extractor X applied to hypothesis H , we consider the object
classified as pedestrian if X (H) > T and as nonpedestrian
otherwise. Let Nfp be the number of misclassified nonpedes-
trians (false positives) and Nfn be the number of misclassified
pedestrians (false negatives). We have

Nfp =
∑

H ∈ N ∧ X (H) > T (6)

Nfp =
∑

H ∈ P ∧ X (H) ≤ T. (7)

Therefore, the best threshold is

T = arg min
T

(
Nfp

Nn
+

Nfn

Np

)
. (8)

Of course, another way to choose the threshold would be to
minimize a utility function. If, for example, the false negatives
are considered more dangerous, we could assign them a higher
weight when choosing the threshold. Of course, this will in-
crease the number of false positives.

The classification score is the weighted sum of thresholded
A, B, and C values and of the previous classification score St if
the object is tracked

S =
α(A− TA) + β(B − TB) + γ(C − TC) + θSt−1

α + β + γ + θ
. (9)

If any of these scores are missing, then it is considered
equal to the threshold minus one small ε value, which acts as a
penalty for the missing feature (therefore, a missing value will
have a small negative weight, which biases the system toward
nonpedestrians).

To determine the relative magnitude of α, β, γ, θ, and ε, we
determined the detection rate of each single-feature classifier
(pattern matching, motion signature, and motion periodicity).
This approach is not 100% correct, because the features are
not really independent. However, currently, we do not have a
training set large enough to permit capturing the dependencies
between the features. We determined the following magnitudes:
α = 0.2, β = 0.2, γ = 0.3, and θ = 0.3. We also empirically
determined that a good value for ε is between 0.01 and 0.08.

VII. EXPERIMENTAL RESULTS

Our system was tested in many different crowded urban
traffic scenarios using cameras mounted on a moving road
vehicle. The detection rate is high, and our system proves
to be reliable. There are few false positives, and pedestrians
are detected early enough to permit taking active measures
for collision avoidance. Fig. 8 shows some correctly detected
pedestrians.

Fig. 8. Pedestrian detection results.

To obtain a quantitative measure of our system’s accuracy,
we used a set of 2600 manually labeled frames from various
scenarios with different complexities. The detection algorithms
were tested against these ground-truth data. The results are
summarized in Table I. The “total objects” row represents
the number of hypotheses (objects) detected using the den-
sity map. The “pedestrians” row represents the ground-truth
pedestrians (manually labeled). The “others” row represents the
ground-truth other objects (cars, trees, and poles). The “false
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TABLE I
EXPERIMENTAL RESULTS

pedestrians” row represents the objects that the system incor-
rectly classified as pedestrians but which were not pedestrians.
The “undetected pedestrians” row represents the total number
of objects the system classified as others, even though they
were pedestrians. “Incorrect detection” is the sum of “false
pedestrians” and “undetected pedestrians.” “Correct detection”
represents all cases of correctly classified pedestrians and other
types of objects.

We concluded that all steps of our algorithm, i.e., object
detection, pattern matching, and motion-based validation, are
accurate and together yield a high rate of pedestrian detection.
However, this detection rate is not yet sufficient for a production
system, and it will have to be improved in the future. Most false-
pedestrian errors occur because of trees, poles, and car pillars
(particularly the D pillar). Most undetected pedestrians occur
when pedestrians are too close to other objects or are severely
occluded.

We also found that our detector has no problem running
in real-time (we can achieve 25 ft/s on an Intel Core 2 Duo
2.6-GHz processor).

VIII. CONCLUSION AND FUTURE WORK

We developed a real-time pedestrian-detection system, ex-
ploiting 2-D and 3-D information, that is capable of detecting
pedestrians in urban scenarios. Our system was designed to
work as a precrash sensor on board road vehicles. The sen-
sor will provide information for driver-warning systems and
actuators.

The novelty of our system particularly consists of the pow-
erful combination of 2-D intensity information, 3-D depth in-
formation, and motion features. Object detection using density
maps is a novel and resilient pedestrian hypothesis-generation
algorithm. The pattern-matching algorithm rejects all edges
that do not have the correct depth. A similar approach is used
for optical flow computation, where all corner points that do

not have the correct depth are eliminated. Furthermore, the
correct scale of the model used for matching is directly inferred
using the 3-D information available. A powerful motion-based
validation is used for walking pedestrians, consisting of motion
signature extraction and the analysis of the periodicity of this
motion signature.

Possible future work in the detection area includes using
more features, such as texture, and combining all the features
into a Bayesian framework. We also wish to integrate our
system into a generic driving-assistance system, which, based
on the information given by our pedestrian-collision sensor,
will actively act to reduce the risk of potential collisions and
minimize the effects of unavoidable collisions.
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