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Fig. 6. Bums’ versus FLF execution times. (a) FLF using the default 
8 buckets; @) FLF using two buckets tuned i2Oo. The bottom curve in 
each includes the derivative computation time; the upper curve excludes it. 
For example, in (a) for a gradient magnitude of 5,  the FLF time including 
derivative computation time (the bottom curve) is almost 10 times faster than 
the Burns algori-, excluding derivative computation time (the upper curve), 
it is about 14 times faster. 

or parallel processors, using focus-of-attention to define subimages 
to process, or the use of additional image processing hardware can 
also be used to approach frame rate performance. 
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Stereo by Incremental Matching of Contours 

Doron Sherman and Shmuel Peleg 

Absfmct-Contours made up of sequences of adjacent edge points are 
used as primitives in stereo pair matching. Matching contour segments, 
rather than the traditional epipolar edge points, can greatly reduce possi- 
ble ambiguity. This is done by reformulating point matching constraints 
to apply to contour matching, and by introducing a uniqne incremental 
matching scheme. Best matched contours are paired hrst, constraining 
through neighborhood support their neighboring contours. Examples for 
the proposed stereo matching scheme are shown, with very few errors, 
for aerial images of natural terrain. 

Index Tenns-Curve matching, stereo vision. 

I. INTRODUCTION 
Passively sensing three-dimensional structure by means of com- 

putational stereo has been addressed both from the biological and 
computational points of view. Stereo techniques (reviewed in [6]) 
recover the 3-D location of every point in the scene by bringing 
its two projections on the pair of images into correspondence and 
then use 3-D triangulation. Nevertheless, solving this correspondence 
problem is a difficult task. 

Biological studies [lo], [14], [15] indicate that intensity changes 
(edges) in the image, reflecting physical events in the 3-D world, carry 
vital information for human stereopsis. Constraints on permissible 
matches, derived from assumptions about the world and the image 
formation process, have already been defined for edge-point matching 
[12]. In this work, the primitive matching elements are contour 
segments extracted from the images by linking edge points. In order to 
resolve ambiguous contour candidates effectively, the point matching 
constraints are reformulated for contour matching. 

The matching scheme defines the way in which local and global 
information interact to yield a set of correspondences between pairs 
of contours. The scheme developed in this work resembles the 
relaxation labeling technique [19], [13] in its iterative nature and 
exploitation of neighborhood relations among potential matches. 
Matching decisions are made according to local support accumulated 
from the neighborhood. The strategy is to accept matches in an 
incremental manner. Most probable candidates (i.e., those having 
locally highest support) are matched first and are used, with the aid 
of the reformulated constraints, to introduce restrictions upon other 
potential matches in their neighborhood. 
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As a result, inconsistent candidates are discarded, causing the 
number of ambiguous candidates to decrease with each additional 
iteration. The process iterates for the remaining candidates until 
matches are neither eliminated nor accepted. Thus, the matching 
algorithm reduces ambiguity until a consistent result, with respect 
to the locally defined constraints, is reached. 

In order to calculate the depth of a scene point from a pair of 
photographs, the geometric model of the stereo pair and its relation to 
the scene coordinate system should be known. This can be computed 
by manually identifying a few corresponding points in the stereo 
images and providing their 3-D world coordinates [8], [9], [21]. 
After recovering the complete imaging geometry, the images are 
corrected (epipolar rectification [3], [5]) to allow scanline to scanline 
correspondence. 

11. CONTOUR EXTRACTION 
To extract contour segments, images are first filtered with a recur- 

sive gradient operator (Deriche [7]). The filtering operation provides 
a description of gradient magnitude and direction for each pixel of 
the image. Edge points are detected by nonmaximal suppression 
performed on the gradient. A pixel is marked as an edge point if 
the following conditions hold: 

The edge makes an angle of more than 30" with the x-axis. This 
requirement prevents using near-horizontal contours which can 
not be matched accurately. 
The gradient magnitude at the pixel is larger than the gradient at 
the two neighboring horizontal pixels. This requirement prevents 
contours from crossing each other. 

Marked edge points are then linked into contour segments which 
are allowed to cross any scanline only once. Each contour segment 
is traced until an abrupt change in the local edge orientation is 
encountered. This can help to avoid the linking of nearby edge points 
belonging to different scene boundaries. 

As a consequence, all edge points in one contour segment have 
the same contrast sign which is used as a contour-related property. 
In addition, only sufficiently long contour segments are used, as 
very short contour segments do not contain enough information. 
The description of each contour includes the following items: length, 
contrast sign, coordinates of edge points and disparity limits. 

111. CONTOUR MATCHING CONSTRAINTS 

The nature of the stereo correspondence problem allows the 
formulation of several constraints which are helpful in reducing 
the ambiguity in the large number of matching altematives. These 
constraints are derived from assumptions which are made about the 
properties of the imaged world, as they are reflected in the stereo 
imagery. Most constraints were originally formulated for edge points 
and are modified below in order to apply to contours. It is possible 
to formulate the constraints directly on the reconstructed surfaces 
[12], but computation is more efficient when ambiguities are reduced 
before surface computation. 

Shape Similarity: A pair of similar contours, one from each image, 
is more likely to be the projection of the same physical event in 
the scene. Arnold and Binford [l] analyzed stereo projections of 
uniformly distributed line segments in the 3-D world, and found 
that orientations of corresponding projections tend to be equal. 
Corresponding contours sharing common scanlines should therefore 
have similar orientations on the common scanlines [4], [ l l ] ,  [14], 
[16]. The exact definition of the similarity measure appears in part B 
of the Appendix. 

Contrast Sign: Matched contours must have the same contrast sign. 
Disparity Gradient was originally defined for a neighboring pair 

of point matches. It estimates the local deformation of the disparity 
field (Pollard, Mayhew, and Frisby [MI). The disparity difference 
between two pairs of point matches is the absolute difference of 
disparity of each pair. The cyclopean separation between the two pairs 
is the distance between their midpoints. The disparity gradient is the 
ratio between the disparity difference and the cyclopean separation. 

Left 

Fig. 1. Two cases of the disparity gradient between contours. 

The modified definition of disparity gradient for neighboring pairs of 
matched contours (Fig. 1) considers the following two cases: 

1) The two pairs of contours share at least one common scanline. 
The disparity gradient is calculated between the edge points on 
the scanline for which the cyclopean separation is minimal. 

2) The two pairs of contours have no scanline in common. The 
disparity gradient is calculated on the two nearest scanlines. 
Each pair of edge points lies on a separate scanline. 

Following the observation that lengths of corresponding intervals 
tend to be equal [l], the value of the disparity gradient between two 
neighboring matches can be bounded. This limit on the permitted 
disparity gradient is set to the base-to-height ratio, calculated for the 
acquired stereo pair. The exact definition of the disparity gradient 
appears in part A of the Appendix. 

Figural Continuity: A connected chain of edge points in the image 
probably represents the projection of a continuous curve in 3-D space 
(Mayhew and Frisby [15]). Matched contours must therefore form a 
smooth disparity curve. 

Ordering: Given a pair of corresponding scanlines (one on each 
image), the left-to-right order of matched points along these lines 
should be preserved (Baker [4], Ohta and Kanade [17]). Such 
positional reversals may, in fact, occur in certain environments (e.g., 
transparent objects, wires, etc.) but are seldom encountered in natural 
outdoor scenes. Since a contour may cross any scanline only once 
and any two contours may not cross each other, it is sufficient to 
check for order reversals on one common scanline only. 

Uniqueness: The uniqueness constraint (Man and Poggio [14]) 
requires that an item on one image may correspond to no more than 
one item on the other image. For contours, uniqueness is required 
only on scanlines which are shared by a pair of contours. This allows 
the matching of split contours caused by imperfect edge detection as 
shown in Fig. 2, and disallows cases as in Fig. 3. 

Epipolar: Rectifying the stereo images enables matching of image 
points lying on pairs of horizontal lines. As a result, the two- 
dimensional search required in the general case of image matching, 
is reduced to a one-dimensional search. This constraint is extended 
for contour matching by requiring that matchable contours share a 
minimum number of common (epipolar) scanlines. 

Iv. CONTOUR MATCHING SCHEME 

A. Selecting Potential Matches 
Each contour is assigned candidate contours it may match in the 

other image. The matching process works in both directions, from the 
left image into the right image and vice versa. Matchable contours 
obey the following conditions. 

Epipolar: Matched contours must have at least eight scanlines in 
common. 

Disparity Range: Measured disparity should be within the allowed 
limits. (Approximated elevation range is translated into permissible 
disparities using the known imaging geometry.) 

Contrast Sign: Matched contours must have the same sign of 
contrast. 
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Fig. 2. Unique matching of split contours. 

Fig. 3. Violation of the uniqueness constraint. 

Local Similarity: Orientations of edge points, lying on common 
scanlines, must not differ by more than 30 degrees. 

After constructing candidate lists for every contour, a measure of 
shape similarity is calculated for each pair of matchable contours 
(Appendix, part B). 

B. Support Calculation 
Neighborhood relations between contours in each image are defined 

using a grid of windows (Ayache and Faverjon [2]).  Neighborhood 
support is based on the ordering and disparity gradient limit. The 
latter constraint is quantified (Appendix, part C) so that neighboring 
matches can influence the relative strengths of each other. 
lko attributes are associated with each candidate; one is the 

support accumulator which gathers scores of the neighbors’ support 
and the similarity values of candidates. The other is the support 
counter which stores the total number of supporting neighbors. The 
support for a given candidate (c; , cj ) is calculated from the neighbors 
of ci in the left image as follows. 

For each contour Ch in N i  (neighbors of ci) do: 
1) For each candidate ck in Lh (candidates of ch) do: 

a) Verify that ( c i , ~ , )  and (ch,ck) are ordered properly. 
b) Calculate the disparity gradient for (ci, cj) and (ch, ck). 
c) If order is reversed or disparity gradient exceeds the 

limit (base-to-height ratio), then (ci, cj) and (Ch, q) are 
inconsistent. If (ch,ck) is an accepted match, discard c, 
from the candidate list of ci. 

d) Otherwise, quantify the mutual support between the two 
pairs (Appendix, part C). 

2) The largest-valued candidate of Ch (denoted by ck) is chosen 
to support (ci,c,) as follows: 
a) The values of the similarity measure S h k  and the mutual 

support measure ’D:! (Appendix, parts B and C) are 
added to the support accumulator. 

b) The support counter of (ci,c,) is incremented by two if 
(ch, ck) is an accepted match, and is incremented by one 
if (ch,ck) is a potential match. 

The above steps are repeated for the neighbors of c, in the right 
image. Support information from both images is accumulated together 
(Appendix, part D). 

C. Disambiguation Procedure 
The disambiguation procedure is an iterative process performing 

‘Accept’ and ‘Reject’ operations on the set of candidate matches. 
The procedure starts with the constructed candidate lists of the 
contours for the left and the right images. Subsequent iterations use 
neighborhood relations for eliminating inconsistent candidates and for 
strengthening consistent ones. Each iteration of the process consists 
of the following steps. 

Support calculation: For each contour in the image which has 
not been assigned a final match, rank the potential matches in its 
candidate list according to the calculated neighborhood support. 

Reject operation: Unsupported candidates are discarded from the 
candidate lists. This may cause neighboring candidates to become 
unsupported. The process is repeated recursively until no more 
unsupported candidates remain. 

Accept operation: New accepted matches are obtained by perform- 
ing the following selections successively on all contours in both 
images: 

1) Select the best candidate in each candidate list. 
2) Suppress candidates having less than four supporting neighbors 

(total support count). Repeat this step again with remaining 
candidates. 

3) Accept candidates as permanent matches if their support count 
in the neighborhood is maximal. 

Validation: Ignore conflicting matches (i.e., those violating the 
uniqueness or figural continuity constraints) and discard redundant 
candidates (i.e., those included in a list containing an accepted match). 

The above procedure is iterated for both images until candidates 
are neither discarded nor accepted as permanent matches. 

v. EXPERIMENTAL RESULTS 

The matching phase provides a sparse set of feature matches, each 
of which corresponds to a unique 3-D location in the scene. Given 
a matched pair of edge points, determining the 3-D location is a 
relatively simple matter of triangulation. Disparity measurements are 
transformed into ground coordinates, providing a set of irregularly- 
spaced locations in the 3-D world. 

Contours sample the underlying surface shape, particularly at 
places where real changes occur (e.g., discontinuities in depth) and, 
hence, they may be used for reconstructing a dense depth map by 
interpolation. For environments of rolling terrain, a globally smooth 
surface can be fitted to the boundary conditions established by contour 
matches with reasonable physical justification. The reconstruction of 
a two-dimensional function from a sparse set of irregularly-spaced 
samples is in itself a difficult problem and a subject for extensive 
research. The method used for performing this task is implemented by 
an efficient multigrid algorithm (Tempolous [20]). The final product 
of the stereo process is a two-dimensional grid containing Scene 
depths at fixed intervals. 

The stereo algorithm has been applied to four aerial images of 
natural terrain. These stereo pairs (512 by 512 pixels in size) have 
a base-to-height ratio of 0.236 and a mutual overlap of about 80%. 
The camera model has been derived by identifying manually 18 pairs 
of corresponding image points, whose 3-D locations in the world 
are known. Each image is then filtered to provide the gradients 
(magnitude and direction) which are used by the edge detection and 
linking procedures to extract contours. The minimal contour length 
was set to ten pixels. All contours are then transformed into collinear 
geometry and an initial disparity range which occupies about one fifth 
of the width of the images is attached to each rectified contour. 
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TABLE I 
NUMBER OF -RES AND "m~ STATISTICS IN 1 " s  OF SE 512 x 512 AND DISPARITY RANGE 114. 

Image 1 

Contours ( I ,  r )  873,778 

Edge Points ( I ,r)  12559, 
11 085 

Matched 381 

(Errors: #, %) 

Matched Edge 5541 
Points 
(Errors: #, %) (0, 0%) 

Contours (O,O%) 

Image 2 Image 3 

979,1012 881,847 

14 072, 12 624, 
14436 12036 

503 310 
(2,0.4%) (1,0.32%) 

7203 4488 

(19,0.26%) (10,0.22%) 

Image 4 

783,802 

11 250, 
11 546 

326 
(2,0.61%) 

4649 

(18,0.39%) 

The iterative matching algorithm is then applied to the stereo set 
of rectified contours. A grid of windows has been used to partition 
each image to construct neighborhood relations among contours. The 
number of iterations needed to resolve the ambiguities and satisfy 
the stopping conditions (i.e., when additional matches are neither 
eliminated nor accepted) depends upon the size of the neighbors' 
lists. For the images used in the experiments, window dimensions of 
40 by 40 gave an average list size of 7. With these values, about six 
to eight iterations of the algorithm were performed until the stopping 
conditions were met. 

Finally, disparities measured on the matched contours were con- 
verted into 3-D scene locations, from which a regularly-spaced grid 
is interpolated. The statistics of matching results for the four stereo 
pairs are summarized in Table I. The table shows the number of 
contours and edge points extracted from the stereo imagery and 
the number (and error percentage) of matched contours and edge 
points. Examples of two (out of the four) stereo pairs are shown in 
this correspondence in Figs. 4 and 5. The results of the matching 
algorithm are presented as follows: 

1) An image of the matched contours, registered to the left image 
of the stereo pair, is displayed in part (c). 

2) A contour map of interpolated scene depths, produced from 
the triangulated 3-D measurements, is shown in part (d). This 
representation, however, may smooth out rapid depth changes. 

3) An isometric view of interpolated depths, coded in a regularly 
gridded format, is shown in part (e). 

VI. CONCLUDING REMARKS 
An approach to stereo depth extraction which is primarily con- 

cemed with the correspondence problem has been presented. Con- 
tours were found to be useful primitives for matching, expressing 
benefits of the implicit usage of the figural continuity constraint. 
The other stereo matching constraints, which have been traditionally 
used for edge points, are modified to handle contours. The suggested 
matching algorithm is iterative (resembling a discrete relaxation 
scheme), and utilizes the constraints for obtaining contour Correspon- 
dences in an incremental manner. The order in which matches are 
added is determined by their relative strengths. These strengths are 
estimated dynamically using a measure of support that is gathered 
from the neighborhood of each potential match. 

The performance of the proposed algorithm is shown in examples 
of stereo pairs from a natural terrain environment. Table I shows that 
more than one third of the extracted contours are matched. The error 
rate for those matches is very low (usually less than half percent). The 
matching algorithm is not very fast in its current implementation, but 
may run much faster on a multiprocessor machine due to its parallel 
nature. 

In spite of the promising feasibility of the algorithm, additional 
research has still to be done in order to build a complete stereo 
system. This research should concentrate on the feature extraction 
process in order to overcome the imperfections of existing edge 
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Fig. 4. Stereo from aerial photographs, first example. (a) Left image of a 
stereo pair. @) Rectified contours of left image. (c) Matched edges between 
both images. (d) Contour map of terrain. (e) Isometric plot of interpolated 
depths. 

detection methods. In addition, a true description of the underlying 
depth field is dependent upon the interpolation step. Reconstruction of 
scene surfaces should locate surface boundaries and preserve detected 
discontinuities. 

APPENDIX 

A. Disparity Gradient Calculation 
Given a point (x l , y l )  in the left image matched with (x2,yi) in the 

right image and similarly (x3,yZ) matched with (&,y2), the disparity 
difference is calculated as 
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Fig. 5. Stereo from aerial photographs, second example. (a) Left image of a 
stereo pair. @) Rectified contours of left image. (c) Matched edges between 
both images. (d) Contour map of terrain. (e) Isometric plot of interpolated 
depths. 

the cyclopean separation as 

(2) 
Y =  J[(F 2 1  + 2 2  - -)I2 2 3  + 2 4  + (Y2 - Y d 2 ,  

and the disparity gradient as their ratio 

6 E =  -. 
Y (3) 

B. Contours Similarity Calculation 
The local orientation c+h of an edge point is defined as 

XCk+2 - Xck--2 
4ct M arctan ( I ), 

where X is the horizontal image coordinate of an edge point and c! 
is the edge point of contour ci lying on scanline k. 

The similarity Sij between potentially matched contours ci and c, 
is defined as 

(4) 

where kl and k~ are the upper and lower indexes of the scanlines 
shared by the pair of contours and is arbitrarily set to 30 degrees. 

C. Mutual Support Calculation 

of matched contours (cl, c,) and ( 4 ,  a ) ,  is defined as 

hk  A1 

The mutual support measure V:’, between two neighboring pairs 

(5 )  VZJ = 
~ ( C Z ,  c3, ch, c k ) Y ( C z ,  C J ,  c h ,  ck) + x 2 ’  

where 
6 is the absolute disparity difference [Equation (l)], 
y is the cyclopean separation [Equation (2)], 
AI and A2 are normalization factors. 

D. Total Support Calculation 
The accumulated support for a given match (ci, c,) is calculated as 

where the notation is identical to that used in (4) and (5). 
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