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This paper presents a stereoscopic image coder based on the MRF model and MAP estimation of the disparity field. The MRF
model minimizes the noise of disparity compensation, because it takes into account the residual energy, smoothness constraints
on the disparity field, and the occlusion field. Disparity compensation is formulated as an MAP-MRF problem in the spatial
domain, where the MRF field consists of the disparity vector and occlusion fields. The occlusion field is partitioned into three
regions by an initial double-threshold setting. The MAP search is conducted in a block-based sense on one or two of the three
regions, providing faster execution. The reference and residual images are decomposed by a discrete wavelet transform and the
transform coefficients are encoded by employing the morphological representation of wavelet coefficients algorithm. As a result
of the morphological encoding, the reference and residual images together with the disparity vector field are transmitted in parti-
tions, lowering total entropy. The experimental evaluation of the proposed scheme on synthetic and real images shows beneficial
performance over other stereoscopic coders in the literature.
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1. INTRODUCTION

The perception of a scene with 3D realism may be accom-
plished by a stereo image pair which consists of two images
of the same scene recorded from two slightly different per-
spectives. The two images are distinguished as Left and Right
images that present binocular redundancy, and for that rea-
son can be encoded more efficiently as a pair than indepen-
dently. The stereoscopic vision has a very wide field of ap-
plications in robot vision, virtual machines, medical surgery,
and so forth. Typically, the transmission or the storage of a
stereo image requires twice the bandwidth or the capacity of
a single image. The objective on a bandwidth-limited trans-
mission system is to develop an efficient coding scheme that
will exploit the redundancies of the two images, that is, in-
traimage and cross-image correlation or similarities.

A typical compression scenario is the encoding of one
image, which is called reference and the disparity compen-
sation of the other, which is called target. In this work, the
Left image is assigned as reference and the Right image as tar-
get. Transform coding is a method used to remove intraspa-
tial redundancy both from reference and target images. The

cross-image redundant information is evaluated by consider-
ing the disparity between the two images. Disparity compen-
sation procedure estimates the best prediction of the target
image from the reference and results in an error image, which
is called residual, together with a disparity vector field. The
encoded reference and residual images together with the dis-
parity vectors are entropy coded and transmitted. Therefore,
the effectiveness of the encoding algorithm, the energy of the
residual image, and the smoothness of the disparity vector
field affect the overall performance of the stereo coder.

Several methods have been developed for disparity com-
pensation. The area-based methods, including either pixel
or line or area matching, are simple approaches for dispar-
ity estimation [1, 2]. The block-based matching method, ei-
ther fixed or variable size (FSBM or VSBM), finds the dis-
tance between two blocks that have similar intensities within
a predefined search window [3]. The block-matching algo-
rithm (BMA) may also be applied on the objects that ap-
pear in a stereo pair after an object contour extraction in
the two images [4] or on the subbands of a wavelet decom-
posed stereo image pair in a hierarchical way [5]. Neverthe-
less, the area-matching methods, either pixel or block, often



2 EURASIP Journal on Applied Signal Processing

fail to estimate disparity satisfactorily because the dispar-
ity field inherits a nonsmooth variation due to noise and
the existence of occlusions. This may be improved by esti-
mating disparity field with the Markov random field (MRF)
model, which provides smoothness constraints and takes
into account the occlusions [6]. Some other methods code
the residual part of the predicted target image using effi-
cient coders for “still” images, as EZW, or mixed coding
[7–10]. Another method predicts the blocks transform of
one image from the matching blocks transform of the other
[11]. The subspace projection technique is another method
that combines disparity compensation and residual coding
by applying a transform to each block of the target image
[12].

MRF model takes into account the contextual con-
straints by considering that the disparity field is smooth
except near object boundaries. Hence, the value of a random
variable, which may be a block of pixels, is influenced by
the local neighbourhood system. The probabilistic aspect
of the MRF analysis is converted to energy distribution
through its equivalence to Gibbs distribution (GRF) with
Hammersley-Clifford theorem. The usual statistical crite-
rion for optimality is the maximum a posteriori probability
(MAP) that provides the MAP-MRF framework. Since
Gemans’ classical work [13], many methods have been
presented in motion estimation of a monoscopic video
which is very similar to the disparity estimation case. Some
works use either global or local methods for the MAP esti-
mation problem [6, 14]. The global methods, like simulated
annealing (SA), converge to a global minimum with high
computational cost, whereas the local methods, like iterated
conditional mode (ICM), converge quickly but they are
trapped to local minima. Some other methods, based on the
mean field theory (MFT), provide a compromise between
efficiency and computational cost [15, 16].

A robust “still” image encoder and a disparity compen-
sation process, which is based on the MRF/GRF model [17],
are the novelties of the proposed coder. According to this
model, occlusion field is initially separated into three regions
by setting two threshold levels. The blocks of the intermedi-
ate region, which is called uncertain, are finally characterized
as occluded or nonoccluded. This reduces the number of
regions needed for the MAP search procedure, which is
normally implemented in the entire occlusion field, making
the algorithm simpler and faster. Also, mean absolute error
(MAE) is selected instead of mean square error (MSE), in
order to render our algorithm less sensitive to noise. The
reference image and the resulting disparity compensated
difference (DCD) or residual are decomposed by a discrete
wavelet transform (DWT) and encoded by employing the
morphological representation of wavelet data (MRWD)
encoding algorithm [18]. The disparity vectors are DPCM
entropy encoded and are embedded in the formed partitions
of the morphological algorithm. The outstanding features of
the proposed stereoscopic coder are the inherent advantages
of the wavelet transform, the efficiency and simplicity of the
employed morphological compression algorithm, and the
effectiveness of the disparity compensation process.

This paper is organized as follows. In Section 2, there
are overviews of the disparity compensation process, the
MRF model, and the employed morphological encoder.
In Section 3, the proposed algorithm is discussed and in
Section 4, the experimental results are presented. Finally,
conclusions are summarized in Section 5.

2. OVERVIEW

2.1. Disparity in stereoscopic vision

The problem of finding the points of a stereo pair that cor-
respond to the same 3D object point is called correspon-
dence. The correspondence problem is simplified into one-
dimensional problem if the cameras are coplanar. The dis-
tance between two points of the stereo pair images that cor-
respond to the same scene point is called disparity. The esti-
mation of this distance (disparity vector or DV) is very im-
portant in stereo image compression because the target im-
age (Right) can be predicted from the reference (Left) along
with the disparity vectors. Then, the difference of the predic-
tion from the original image (disparity compensated differ-
ence or DCD) is evaluated so that redundant information is
not encoded and transmitted [19, 20]. Disparity compensa-
tion usually employs BMA for the estimation of a residual or
DCD block:

DCD
(
bi, j
)
=

∑

(x,y)∈bi, j

∣∣bRi, j(x, y)− b̃Li, j
(
x + dvx, y + dvy

)∣∣,

(1)

where bRi, j , b̃
L
i, j are the corresponding blocks of the Right and

the reconstructed Left images, respectively and dvx, dvy are
the disparity vector components for the best match, which is
defined as

DV
(
bi, j
)
= argmin

(dvx ,dvy)∈A

DCD
(
bi, j
)
, (2)

where A is the window searching area and the matching cri-
terion is MAE. In this work, the general case is considered
where the disparity vector has horizontal and vertical com-
ponents. The above-described disparity compensation pro-
cess is called closed-loop, because the prediction of the tar-
get image is performed with the reconstructed reference im-
age. This is quite reasonable because the reconstruction of
the target image will be performed with the assistance of the
reconstructed reference image at the decoder’s side [8]. Al-
ternatively, disparity compensation may be performed with
the reference image and is called open-loop. The open-loop
systems, although they are simpler since there is no need for
inverse quantization and wavelet transform at the encoder’s
side, are less effective. The disparity compensation process
exploits the spatial cross-image dependency in order to re-
move redundant information. However, some blocks that
have no correspondence may be encountered and are called
occluded blocks. The sides of the stereo pair that cannot be
seen directly by both eyes as well as the areas from object
overlapping are occluded regions. The occluded regions are
usually tracked and excluded during the disparity estimation
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Figure 1: (a) First-order neighbourhood system; (b) single-site
clique; (c) double-site cliques.

process, since they contribute to high distortion in the resid-
ual image. MRF model penalizes the existence of an occluded
block and encourages the connectivity of neighbouring oc-
cluded blocks, as they usually appear at the boundaries of
objects where large intensity gradients prevail.

2.2. The MRF/GRF model

In this section, the basic concepts of the MRF model are re-
viewed [21, 22]. Let

S =
{

(i, j) | 1 ≤ i, j ≤ N
}

(3)

be a rectangular lattice of size N ×N , which in this case is the
disparity compensated image and

D =
{
Di, j , (i, j) ∈ S

}
(4)

a family of random variables defined on S representing the
random disparity field. Obviously, each disparity compen-
sated image may be viewed as a discrete sample realization
of D, with a configuration d, which is a set of each random
variable. Each disparity compensated block of pixels may be
viewed as a random variable in the spatial domain:

d =
{
di, j , (i, j) ∈ S

}
. (5)

The MRF model considers a neighbourhood system N on S,
which is defined as

N =
{
Ni, j , (i, j) ∈ S

}
, (6)

where Ni, j is the set of sites on the neighbourhood of the (i, j)
block. The definition of the neighbourhood is as follows:

Ni, j =
{

(i′, j′) | (i′, j′) ∈ S, (i′, j′) �= (i, j),

(i− i′)2 + ( j − j′)2 ≤ k
}

,
(7)

where k is a positive integer defining the order of a neigh-
bourhood system. The first-order neighbourhood (k = 1),
which is used in the present work, is a four-connected struc-
turing element as shown in Figure 1.

The cliques are a subset of sites in S, where each site is
a neighbour of the other sites in the defined neighbourhood

system. A family of random variables D is an MRF model on
S with respect to N if the following properties are satisfied:

P
(
Di, j = di, j

)
> 0, ∀di, j ∈ D, (8)

P
(
Di, j = di, j | Dm,n = dm,n, (m,n) ∈ S, (m,n) �= (i, j)) =

P
(
Di, j = di, j | Dm,n = dm,n, (m,n) ∈ Ni, j

)
.

(9)

Equation (9) is called Markovianity and indicates that dis-
parity field on site (i, j) has local characteristics, that is,
it depends only on neighbouring sites Ni, j . According to
Hammersley-Clifford theorem [23], D is an MRF on S with
respect to N if P(D = d) for all configurations d is a Gibbs
distribution with respect to N . Gibbs distribution has the fol-
lowing form:

P(d) = Z−1 × e−(1/T)U(d), (10)

where

U(d) =
∑

c∈C

Vc(d) =
∑

(i, j)∈C1

V1

(
di, j
)

+
∑

(i, j)∈C2

V2

(
di, j
)

(11)

is the energy function for d. Vc(d) represents the clique po-
tential of all possible first-order clique sets, which are single-
site C1 and double-site C2. Normalization factor Z is called
partition function and has the following form:

Z =
∑

d

e−(1/T)U(d). (12)

The practical value of the above is that the probability of a
configuration d may be specified in terms of prior potentials
Vc(d) for all the cliques. Let us assume that the observation
model r, the configuration d, the a priori probability P(d),
and the likelihood density p(r | d) are known. Normally, the
best value of d is given by an MAP estimation, which can be
expressed with Bayes formula as

P
(
d | r

)
=

p
(
r | d

)
P(d)

p(r)
, (13)

where p(r) is the probability density function of the observa-
tion model, which does not affect the solution of (13). There-
fore, an MAP solution is given by

d̂ = argmax
d∈S

P
(
d | r

)
= argmax

d∈S

[
p
(
r | d

)
P(d)

]
. (14)

According to Gibbs distribution equation (10), the MAP so-
lution may be converted as follows:

d̂ = argmax
d∈S

[
p
(
r | d

)
P(d)

]

= argmax
d∈S

[
Z−1
r × e−U(r|d)

][
Z−1 × e−U(d)

] (15)

or

d̂ = argmin
d∈S

[
U(d) + U

(
r | d

)]
, (16)
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Figure 2: (a) Spatial dependency of significant coefficients among the subbands of a three-level wavelet decomposition; (b) partitions of
significance and insignificance.

where U(d) is the prior and U
(
r | d

)
the likelihood energies.

Finally, configuration d may be estimated by the minimiza-
tion of energy equation (16) knowing the prior and likeli-
hood energies for a given neighbourhood system.

2.3. The morphological encoder

The conventional wavelet image coders decompose a “still”
image into multiresolution bands providing better compres-
sion quality than the so far existing DCT transform [24].
The statistical properties of the wavelet coefficients led to
the development of some very efficient encoding algorithms
such as the embedded zero-tree wavelet coder (EZW) [25],
the coder based on set partitioning in hierarchical trees
(SPIHT) [26], the coder based on the morphological repre-
sentation of wavelet data (MRWD) [18], and its enhanced
version called significance-linked connected component
analysis for wavelet image coding (SLCCA) [27].

MRWD algorithm, which is used in the present work,
exploits the intraband clustering and interband directional
spatial dependency of the wavelet coefficients. This spatial
dependency is shown in Figure 2(a) for a three-level wavelet
transform. Hence, a prediction of the significant coefficients
in a hierarchical manner is feasible starting from the coarsest
scale. This may be accomplished using the morphological
dilation operation with a structuring element. A dead-zone
uniform step-size quantizer quantizes all the subbands and
the coefficients of the coarsest detail subbands constitute
either the map of significance or insignificance, that is, a
binary image with two partitions in every subband. The
intraband dependency of wavelet coefficients or the tendency
to form clusters suggests that significant neighbours may be
captured applying a morphological dilation operator. The
finer-scale significant coefficients, in the children subbands,
may be predicted from the significant ones of the coarser
scale, parent subbands, by applying the same morphological
operator to an enlarged neighbourhood, because children

subbands have double size than their parents. However,
the significant partitions comprise insignificant coefficients
that were captured as significant, and correspondingly the
insignificant partitions comprise significant coefficients that
were isolated. So, each of these two partitions may be further
partitioned into two groups, so that the elements of each
group have the same properties.

Figure 2(b) shows binary images of the detail subbands
with the formed clusters after the aforementioned mor-
phological operation. The black areas denote significant
coefficients, the white areas denote insignificant ones, while
the grey areas illustrate insignificant coefficients that are cap-
tured as significant by dilation operation with a 3 × 3 struc-
turing element. The approximation subband, which contains
the low-frequency components, is not subjected to this oper-
ation and all of its coefficients are considered as significant.

Consequently, the coefficients of the wavelet transform
are partitioned into groups with the same characteristics
and total composite entropy is lowered. The transmitted se-
quence of these partitions has a certain order of transmission
including side information, which consists of the headers
that define each partition, needed at the decoder’s stage.
The performance of this algorithm for “still” images is quite
good with respect to other state-of-the-art compression
techniques. It provides PSNR values of about 1 dB better
than EZW and has about the same performance as SPIHT
[18]. The morphological encoder has also the capability,
by assigning a set of embedded quantizers, to produce an
embedded coding which insures resolution scalability at the
decoder’s side.

3. THE PROPOSED ALGORITHM

The disparity field of a stereo image pair is an MRF/GRF
model consisting of disparity D and occlusion O fields.
The problem is to determine disparity and occlusion fields
from the observations which are the pair of images. The
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configurations d and o, for disparity and occlusion fields,
respectively, may be estimated by (16):

(
d̂, ô
)
= argmin

(d,o)∈S

[
U
(
SR | SL,d, o

)
+ U

(
d | o

)
+ U(o)

]
,

(17)

where SL, SR are the observations and represent the Left
and Right images, respectively. The first term represents
the likelihood energy, the second term represents the prior
disparity field when occlusion field is given, and the third
term represents the prior occlusion constraint.

3.1. The likelihood energy

The likelihood energy, which is also called similarity con-
straint, indicates how similar two corresponding images are
when disparity and occlusion fields are known. Typically, this
may be expressed as

U
(
SR | SL,d, o

)
=

∑

(i, j)∈S

(
1− oi, j

) ∑

(k,l)∈bi, j

(
cR(k,l) − c̃L(k,l)⊕di, j

)2
,

(18)

where oi, j is a binary indication for the presence of an oc-

cluded block, cR(k,l) are the pixels of the processed block bi, j ,

and c̃L(k,l)⊕di, j
are the predicted pixels of the reconstructed Left

block that are translated by di, j in order to have a best match
to the corresponding ones of the processed block. The best
matching between two corresponding blocks is decided by
the minimum value of their MAE.

3.2. The smoothness constraint

The prior disparity field, when occlusion field is given, is also
called smoothness constraint. Minimization of the respective
term in the general equation (17) provides a smooth dispar-
ity field except on the occluded points. This is expressed as
follows:

U
(
d | o

)
=
∑

Ni, j

(
1− oNi, j

)(
di, j − dNi, j

)2
, (19)

where dNi, j is the disparity field of the first-order neighbour-
hood system. As it is clear from the above equation, the oc-
cluded neighbours are not taken into account, since they rep-
resent local discontinuities. The effect of this procedure is to
result in a more uniform disparity field, which provides bet-
ter encoding. In this work, MAE is selected instead of MSE as
a measure of the energy terms in (18) and (19), because it is
simpler and less sensitive to outliers.

3.3. The occlusion constraint

The prior occlusion field, which is called occlusion con-
straint, is a binary field that defines local discontinuities. The
occluded blocks are not compensated and their disparity vec-
tor is set to zero. The energy equation of the occlusion field

has the following form:

U(o) =
∑

c∈C

Vc

(
oi, j , oNi, j

)

=
∑

(i, j)∈C1

oi, jVc

(
oi, j , oNi, j

)
+

∑

(i, j)∈C2

Vc

(
oi, j , oNi, j

)
,

(20)

where oNi, j are the occluded neighbours of the processed oi, j ,
C1 and C2 are the single and double clique sites, respectively.
First term provides the energy cost if a block becomes oc-
cluded and second term encourages occlusion connectivity.

3.4. The final equation for disparity estimation

The general equation (17) of the MRF/GRF model, taking
into account (18), (19), and (20), may be expressed as

(
d̂, ô
)

= argmin
(d,o)∈S

{(
1− λd

) ∑

(i, j)∈S

(
1− oi, j

) ∑

(k,l)∈bi, j

∣∣cR(k,l) − c̃L(k,l)⊕di, j

∣∣

+ λd
∑

Ni, j

(
1− oNi, j

)∥∥di, j − dNi, j

∥∥

+
∑

(i, j)∈C1

oi, jVc

(
oi, j , oNi, j

)

+ λo
∑

(i, j)∈C2

Vc

(
oi, j , oNi, j

)}
,

(21)

where λd and λo are weighting constants that control each
of the participating fields. Each term of the above equation
depicts the energy cost of likelihood, smoothness constraint,
and occlusion functions, respectively.

3.5. The proposed disparity compensation

The disparity field, which is estimated by (1) and (2), con-
sists of the residual image and the vector field. The initial
occlusion field is formed by employing a double-threshold
procedure as in [16]:

nonoccluded block at (i, j) ∈ S

if
∣∣CR

i, j − CL
(i, j)⊕di, j

∣∣ < T1,

occluded block at (i, j) ∈ S

if
∣∣CR

i, j − CL
(i, j)⊕di, j

∣∣ ≥ T2,

uncertain block at (i, j) ∈ S

if T1 ≤
∣∣CR

i, j − CL
(i, j)⊕di, j

∣∣ < T2.

(22)

Hence, the occlusion field is separated into three regions:

(i) the nonoccluded region, where the blocks are always
predictable;

(ii) the occluded region, where the blocks are always oc-
cluded and excluded from the MAP search;
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(iii) the uncertain region, where the blocks are subjected
into an MAP search, in order to enrol them as occluded
or nonoccluded.

Disparity and occlusion fields are iteratively updated ac-
cording to the nonoptimal deterministic method proposed
in [28], in order to reduce complexity.

(i) Given the best initial estimate of the occlusion field,
update disparity field by minimizing the first two
terms of the final equation (21). This phase refers to
blocks that belong to the nonoccluded and uncertain
regions, because occluded blocks are not compensated.

(ii) Given the best estimate of the disparity field, update
occlusion field by minimizing the last two terms of the
final equation. This phase is applied on blocks that be-
long to the uncertain region, in order to enrol them
in one of the other two regions. First term penalizes
the conversion of an uncertain block to an occluded or
nonoccluded block and second term favours the con-
nectivity of the processed block.

(iii) The whole process is repeated until no further energy
minimization takes place. The proposed MRF method
converges in three or four iterations.

The last two terms of (21) represent the potential costs for
the occlusion phase and are defined as follows:

U
(
oi, j
)
= oi, j

[
C0 − λp mean

(∣∣bRi, j − b̃Li, j
∣∣)]

+ λo
∑

(i′, j′)∈Ni, j

h
(
oi, j , oi′, j′

)
,

(23)

where C0, λp, λo are weighting constants. The first term of
the above equation is the energy cost if an uncertain block is
assigned as occluded and is expressed in terms of the mean
residual block. The second term penalizes the connectivity
of an uncertain block to its neighbours. The function h(·) is
defined as

h
(
oi, j , oi′, j′

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣oi, j − oi′, j′
∣∣ if (i′, j′) /∈ uncertain,

[
1− sign

(∥∥di, j − di′, j′
∥∥− λq

)]

×
[
1− 2δ

(
oi, j − oi′, j′

)]
if (i′, j′) ∈ uncertain,

(24)

where δ(·) is the Kronecker delta function and sign is the
signum function.

If the neighbours of an uncertain block are occluded or
nonoccluded blocks, the cost increases with the number of
neighbours that are of different kind. This term favours the
connectivity of an uncertain block to its neighbourhood. If
a neighbour of an uncertain block is also uncertain, the cost
depends on their disparity vectors difference. If this is greater
than a threshold λq, there is no energy cost. If the difference is
less than the prespecified threshold, the energy cost increases
if the two uncertain blocks are of different kind. The thresh-
old λq becomes smaller over the iterations, as the disparity
vector field becomes more uniform and in this work is de-
fined as λq = max(2e−i/8, 1).

3.6. The computational complexity of
the proposed algorithm

It is well known that the computational complexity of a dis-
parity estimation algorithm is defined by the search algo-
rithm, the cost function, and the search range. Assume the
macroblock size of 8× 8 pixels and that the search range pa-
rameter is p. Let us also assume that a disparity estimation
algorithm employs the MSE cost function and that the image
size is M ×N pixels. The computational complexity of BMA
is given by

OBMA =

(
MN

64
− nocc

)
(2p + 1)2OMSE + OOCC, (25)

where OMSE is the complexity of the cost function requir-
ing 259 operations. The exhaustive search technique requires
(2p + 1)2 searches per macroblock. If p = 16, as proposed in
this paper, the number of searches is 1089. The disparity field,
unlike motion field, depends on the distance from the cam-
era and thus is less uniform, as different parts of the back-
ground show different disparity. The occlusion field is de-
fined by comparing the magnitude of the MAE of a matching
block with a preselected threshold and is assumed consist-
ing of nocc occluded macroblocks. The disparity compensa-
tion procedure is performed for macroblocks that are not oc-
cluded. Thus, the complexity of defining the occlusion field
is given by the term OOCC that is about the complexity of the
MAE cost function.

The computational complexity given by (25) is consid-
ered as the initial step of a typical MRF algorithm, [6]. To this
complexity, the required operations for updating the dispar-
ity field and the operations for updating the occlusion field
have to be added, as mentioned in the previous subsection.
The update of the disparity field is performed by the first two
terms of (21), whereas the update of the occlusion field is
performed by the last two terms of the same equation or (23)
and (24). This may be expressed as

OMRF = OBMA +
(
ODCD + OO

)
k, (26)

where ODCD and OO represent the computational complexity
for updating the disparity and occlusion fields, respectively,
and k is the number of required iterations. The update of the
disparity field concerns only the nonoccluded macroblocks,
whereas the update of the occlusion field concerns all the
macroblocks.

In our proposed algorithm, the update of the occlusion
field is performed only on the uncertain region as indi-
cated by (22), which is a fraction of the total image size.
This reduces the computational complexity of a typical MRF
method, which is expressed by (26), and renders the execu-
tion time faster. Moreover, MAE has been chosen as the cost
function because of its simplicity compared to MSE, its direct
hardware implementation, and its robustness to outliers. It
has been estimated that the time consumed by our proposed
algorithm is about three times that of BMA and about 30%
less than that of a typical MRF algorithm. The complexity
of our proposed scheme may be reduced if the search range
in the vertical direction is confined to ±2 pixels. In that case,
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Table 1: Values assigned to weighting constants.

Parameter Value Parameter Value

T1 2×mean (|DCD |) λo 10

T2 mean (|DCD |) λp 1

C0 50 λq max(2e−i/8, 1)

λd 0.5 — —

the number of searches is reduced to 165. This is reasonable
because the natural images used for experimental evaluation
have been captured by fixed and aligned cameras. The com-
plexity may be further improved if a fast searching algorithm
is employed for disparity estimation, as for motion estima-
tion. For example, the three-step search algorithm presents
a complexity O(log p) compared to O(p2) that the exhaus-
tive search presents. Also, the complexity of the hierarchical
block-matching algorithm is 50 times lower compared to the
exhaustive search.

4. EXPERIMENTAL RESULTS

In this section, the experimental evaluation of the proposed
coder is reported. Three grey-scale stereo image pairs were
employed for the experimental evaluation, from which two
images are synthetic: “Room” (256 × 256) and “SYN.256”
(256×256); and two images are real: “Fruit” (256×256) and
“Aqua” (360×288) [29–31]. The proposed stereoscopic coder
employs four-level DWT with symmetric extension, based on
the 9/7 biorthogonal Daubechies filters [32]. The parameter
values are obtained by trial and error and are listed in Table 1.

(i) T1, T2 are thresholds that define an initial occlusion
field. They are defined in terms of the average value
of the initial disparity compensated field. The initial
DCD or the initial residual image is attained after dis-
parity estimation for all the macroblocks employing
BMA.

(ii) λd controls the smoothness of the disparity vector
field. Large values of this parameter may lead to blur-
ring across object boundaries.

(iii) C0, λp control the energy cost of an uncertain block to
be assigned as occluded. In the final energy equation,
they represent the single-site cliques.

(iv) λo controls the double-site cliques and enforces the
connectivity of neighbours.

(v) λq is a variable threshold value in each iteration that
penalizes the disparity vector difference between un-
certain neighbouring blocks.

Except for the thresholds T1 and T2, which define the three
regions of the occlusion field, minor alterations to the other
parameters will not change considerably the experimental re-
sults. It is very difficult to estimate automatically their values
or to correlate their estimation with the source stereoscopic
image pair. For this reason, the parameters listed in Table 1
were kept constant throughout the experiments and for all
the tested images.

The experimental evaluation of the proposed method is
performed with the following criteria.

(i) The subjective quality measure, which is the optical
quality of the reproduced target image. The smooth-
ness of the residual image and the disparity vector field
are indicative of the final target image quality. The
abnormalities that appear in the residual image due to
occlusions make the bit cost larger. Also, the detection
of the occlusion field by using thresholds is simple but
contributes to a larger bit cost.

(ii) The objective quality measure of the reproduced im-
ages, which is expressed by the PSNR value in terms of
the total bit rate:

PSNR = 10 log10

2552

(
MSEL + MSER

)
/2

, (27)

where MSEL and MSER are the mean square errors of Left
and Right images, respectively. The total bit rate is the en-
tropy of the DWT subband coefficients of reference and
residual images, after their morphological representation and
partitioning by the morphological encoder and the disparity
vectors, which are DPCM encoded, since their transmission
must be lossless.

(i) The entropy of the disparity vector field, which is de-
fined as

HDV = −
∑

dvx

P
(
dvx
)

log2 P
(
dvx
)
−
∑

dvy

P
(
dvy
)

log2 P
(
dvy
)
,

(28)

where P(dvx) and P(dvy) denote the probability of the hor-
izontal and vertical disparity vector components. This mea-
sure indicates the randomness of the disparity field and it is
intended to be as low as possible. This is normal in most im-
ages which consist of smooth intensity objects, except around
object boundaries. The MRF method, in contradiction to the
classical BMA, takes care of that vector smoothness.

(ii) The normalized average energy or MSE of the residual
image, which is defined as

EDCD =

∑
(i, j)∈S

[
DCD(i, j)

]2

N ×N
, (29)

where S is the image lattice of N × N dimensions. A lower
residual energy means that fewer bits are needed for encod-
ing, so it is indicative of the matching algorithm effectiveness.

The experimental evaluation involves the comparison of
the proposed disparity compensation process, which is based
on the MRF model, with respect to the classical BMA method
and the performance of the proposed stereo coder with re-
spect to other state-of-the-art coders. In this coder, the dis-
parity compensation process is implemented with blocks of
8×8 pixels in a searching area of 16 pixels. This size of blocks
is found to be the best choice in terms of the produced noise
and coding efficiency.
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(a) (b)

Figure 3: (a) The initial occlusion field as it has been formed after a two-threshold-level classification. The grey colour indicates the un-
certain blocks, whereas the black colour indicates the occluded blocks. (b) The final occlusion field after the occlusion phase of the energy
minimization process. The occluded region has been augmented because the employed algorithm favours occlusion connectivity.

Table 2: Comparative results between BMA and MRF.

Image Method
Total bit
rate
(bpp)

EDCD
HDV

(bpp)

Room
BMA

0.20 (bpp)
0.0308 0.1275

MRF 0.0198 0.0975

SYN.256
BMA

0.21 (bpp)
0.0186 0.1381

MRF 0.0186 0.1284

Table 2 shows the normalized average energy of the resid-
ual image and the entropy of the disparity vector field for
BMA and MRF processes at a specific total bit rate. As ex-
pected, the MRF residual images present lower energy and
the disparity vector field is smoother than that of BMA pro-
cessing. This lower energy and the smoothness of the vector
field insure lower total entropy values. The occluded regions
are usually tracked and excluded from the disparity compen-
sation process, since they contribute to distortions increasing
excessively the bit rate. The occlusion indicators are trans-
mitted because their residual coding results in a total bit-rate
benefit. Also, their main role is to avoid mismatching blocks
containing object boundaries and preventing disparity over-
smoothing across discontinuities. The MRF model penalizes
the existence of an occluded block and encourages the con-
nectivity of neighbouring occluded blocks, which usually ap-
pear at objects boundaries where large intensity gradients
prevail.

Figure 3(a) and 3(b) show the initial and final occlusion
fields for the “Room” stereo pair, respectively. In (a), grey re-
gions represent the uncertain field, black areas represent the
occluded field, and white areas represent the nonoccluded
field. The isolated occluded blocks are initially assigned as
uncertain blocks, because it is desirable to exclude them as
they increase entropy cost. It is also apparent in (b) that oc-
clusion connectivity is favoured, as black areas have been en-
larged.

Figures 4(a)–4(d) show the residual image and the dis-
parity vector of a BMA- and an MRF-based disparity com-
pensation process for the “Room” stereo pair, at a bit rate of
0.20 bpp. Figures 5(a)–5(d) show the residual image and the
disparity vector field of a BMA- and an MRF-based dispar-
ity compensation process for the “SYN.256” stereo pair, at a
bit rate of 0.21 bpp. In both stereo pairs, the performance of
the MRF disparity compensation process is better than the
corresponding BMA. Apparently, the MRF model residual
images present lower energy and their corresponding dispar-
ity vector fields are smoother than their BMA counterparts
validating the results of Table 2.

Figures 6(a) and 6(b) show the reconstructed target im-
age of stereo pair “Room,” for BMA and MRF, respectively.
The objective quality of BMA and MRF processes is 26.02 dB
and 28.24 dB, respectively, for a bit rate of 0.2 bpp. Figures
7(a) and 7(b) show the reconstructed target image of stereo
pair “SYN.256,” for BMA and MRF, respectively. The perfor-
mance of BMA and MRF processes is 29.08 dB and 29.92 dB,
respectively, for a bit rate of 0.21 bpp.

Table 3 demonstrates the performance of the proposed
coder for all the tested stereo pairs at discrete bit rates.

Figure 8 illustrates the quality performance of various
stereoscopic coders for the “Room” stereo image pair, over
the examined bit-rate range from 0.25 to 1 bpp. The pro-
posed MRF stereo coder outperforms Frajka and Zeger
coder by about 1 dB [9], Boulgouris and Strintzis coder by
2 dB [8], disparity-compensated JPEG2000 coder by about
2.5 dB [33], and optimal blockwise-dependent quantization
by about 3 dB [34]. The optimal blockwise-dependent quan-
tization stereo coder by Woo et al. employs a JPEG-like coder
for both the reference and residual images, whereas Boulgo-
uris and Strintzis use DWT and EZW followed by arithmetic
encoding. Frajka and Zeger employ JPEG for the reference
image and a mixed transform coder followed by arithmetic
encoding for the residual image. The disparity compensated
JPEG2000 stereo coder is based on a JPEG2000 coder for the
reference and residual images with a disparity compensation
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(a) (b)

(c) (d)

Figure 4: Residual image and disparity vector field: (a), (b) BMA method; (c), (d) MRF method.

procedure that is performed with fixed-size block BMA. Fi-
nally, our proposed coder presents inferior quality compared
to Woo et al. hierarchical MRF stereo coder at medium bit
rates [35].

At the lower bound, the two algorithms converge, where-
as at bit rates greater than 0.5 bpp, our proposed scheme
outperforms Woo et al.’s coder. The hierarchical MRF stereo
coder incorporates the typical MRF model and a variable-
size block-matching scheme for disparity estimation. Conse-
quently, we believe that a variable-size block disparity esti-
mation scheme, adapted to our MRF model, would improve
the performance of our coder.

Figure 9 shows the experimental evaluation of various
stereoscopic coders for the “Fruit” stereo image pair. The dis-
parity compensated EZW coder is based on EZW encoding
for both the reference and residual images employing fixed-
size block BMA for disparity estimation. The proposed MRF
stereo coder presents beneficial PSNR values in comparison
with the other coders. This proves that our coder behaves
equally well not only with synthetic stereo images but with
camera-acquired images, which present a more difficult dis-
parity field as this field depends on cameras distances and
their alignment. It should be observed that the quality dif-
ference mitigates at lower bit rates, which may be ascribed to

the fixed-size block matching. BMA disparity compensation
with fixed-size blocks does not exploit the constant disparity
areas that exist in a scene and assigns more bits than actually
required. Figure 10 illustrates the performance of the pro-
posed coder in comparison with other state-of-the-art coders
for the “Aqua” stereo image pair. Again, our proposed coder
outperforms in the middle and high bit rates of at least 0.8 dB
the other stereo coders and its performance converges to the
others at lower bit rates. It is worth to note that hierarchical
MRF stereo coder presents inferior quality to the specific nat-
ural image, whereas our proposed scheme has a stable perfor-
mance both in synthetic and natural images.

Apart from the MRF model, which treats disparity com-
pensation very effectively, the wavelet-based morphological
encoder contributes to the good performance of our pro-
posed scheme because it is more efficient than other coders.
It presents, for “still” images, about 1 dB better performance
over EZW and also outperforms DCT because of its wavelet
nature. Apart from its simple implementation, fast execu-
tion, and efficiency, MRWD encoder may provide embedded
bit streams and spatial scalability that are prerequisites of a
modern coding scheme.

The proposed algorithm may be applied to stereoscopic
video coding with advantageous results as the smoother
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(a) (b)

(c) (d)

Figure 5: Residual image and disparity vector field: (a), (b) BMA method; (c), (d) MRF method.

(a) (b)

Figure 6: Reconstructed target image at a bit rate of 0.2 bpp: (a) BMA; (b) MRF.

disparity field will imply better temporal prediction. Of
course, this will imply a more complicated framework be-
cause motion and disparity fields along with their unpre-
dictable fields must be integrated. The motion-disparity es-
timation procedure for compensating the auxiliary channel
with techniques like the joint motion-disparity estimation,

vector regularization, as well as the GOP structure of the two
channels should be considered for an effective coding scheme
with low complexity. Also, the fixed-size block framework
employed in this paper assumes that all the pixels of a block
have the same disparity, which is not the case. This assump-
tion does not take advantage of the constant disparity areas.
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(a) (b)

Figure 7: Reconstructed target image at a bit rate of 0.2 bpp: (a) BMA; (b) MRF.

Table 3: PSNR versus bit rate of the proposed coder.

Image
PSNR (dB)

0.25 (bpp) 0.5 (bpp) 0.75 (bpp) 1 (bpp)

Room 30.67 36.98 41.85 45.06

SYN.256 30.76 35.60 38.63 41.20

Fruit — 37.00 38.65 39.86

Aqua 26.35 28.87 30.81 32.57

Therefore, as a plan for future work, the application of the
proposed scheme in a variable-size block framework should
be considered.

5. CONCLUSIONS

In this work, an algorithm employing the MRF model is pro-
posed for the disparity estimation of a stereo image pair. The
MRF model is a popular method in video community for a
consistent evaluation of motion fields. It provides the means
to accomplish smooth disparity field without increasing the
residual energy, and thus to devote fewer bits to encode them.
The proposed coder consists of a disparity compensation
unit and an encoding unit. The disparity compensation unit
constructs initially the disparity and occlusion fields using
BMA. The occlusion field is separated into three regions by
employing a two-level threshold and the MAP search is per-
formed on the uncertain region, which consists of blocks that
have to enrol in the occlusion or nonocclusion regions. This
approach permits faster execution times, as the MAP search
is conducted in a fraction of the whole image. In addition, the
choice of MAE provides more reliable disparity estimation
than MSE because it is more robust and simpler. The encod-
ing unit decomposes the reference and residual images with
DWT and employs the morphological algorithm MRWD for
compression. This algorithm partitions the coefficients of the
wavelet transform and lowers their entropy. The obtained re-
sults show that the proposed method improves the quality
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Figure 8: Quality performance evaluation of various stereoscopic
coders for “Room” stereo pair.

of the reconstructed target images compared with the re-
sults which a plain BMA method may provide. Also, the pro-
posed stereo coder outperforms some known state-of-the-art
coders.

To further investigate the contribution of the MRF model
to the efficient handling of disparity estimation, its applica-
tion on the subband domain may be tested. This may be done
using BMA or coefficient matching, which may be embedded
into the morphological encoder by using the same structur-
ing element as that of the first-order neighbourhood system.
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