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Abstract. In this paper we introduce a new stereo matching algorithm, in which 

the matching of occluded areas is suppressed by a self-organizing process. In the 

first step the images are filtered by a set of oriented Gabor filters. A complex- 

valued correlation-based similarity measurement, which is applied to the 

responses of the Gabor filters, is used in the second step to initialize a self-orga- 

nizing process. In this self-organizing network, which is described by coupled, 

non-linear evolution equations, the continuity and the uniqueness constraints are 

established. Occlusions are detected implicitly without a computationally inten- 

sive bidirectional matching strategy. Due to the special similarity measurement, 

dense disparity maps can be calculated with subpixel accuracy. Unlike phase- 

difference methods the disparity range is not limited to the modulation wave- 

length of the quadrature-filter. Therefore, there is no need for a hierachical 

coarse-to-fine control strategy in our approach. 

1 Introduction 

Stereo vision is a passive method used to recover the depth information of  a scene, 

which is lost during the projection of  a point in the 3D-scene onto the 2D image plane. 

In stereo vision, in which two or more views of  a scene are used, the depth information 

can be reconstructed from the different positions in the images to which a physical 

point in the 3D-scene is projected. The displacement of  the corresponding positions in 

the image planes is called disparity. The central problem in stereo vision, known as the 

correspondence problem, is to find corresponding points or features in the images. 

This task can be an ambiguous one due to several similar structures or periodic ele- 

ments in the images. Furthermore, there may be occluded regions in the scene, which 

can be seen only by one camera. In these regions there is no solution for the correspon- 

dence problem. Interocular differences such as perspective distortions, differences in 

illumination and camera noise make it even more difficult to solve the correspondence 

problem. Due to these aspects, the correspondence problem is a ill-posed problem 

according to Hadamard [5, 25]. The strategies used in solving the correspondence 

1 This work is supported by a grant from the DFG Graduate Center ,,Parallele Rechner- 
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problem can be divided into three major categories: area-based, feature-based and 

phase-based techniques. The area-based strategies use the intensities of the images to 

match them locally at each pixel [23]. Stereo techniques, which match features derived 

from intensity images rather than image intensities themselves, are called "feature- 

based" [12, 18, 21, 22, 26]. Whereas area-based methods produce dense disparity 

maps, feature-based strategies are only able to calculate disparities at locations where 

features occur. Because of the ill-posed character of the correspondence problem both 

techniques often yield multiple candidates for the match of a feature or an image area. 

Thus additional mechanisms are required to choose the correct match from among all 

the candidates. For this purpose techniques such as relaxation labeling [4, 18, 21, 27], 

regularization theory [3, 10, 11, 19, 25, 29] and dynamic programming [2, 24] are used 

by many researchers to impose global consistency constraints. Techniques in which 

disparity is expressed in terms of phase differences in the output of local band-pass fil- 

ters applied to the images are called "phase-based" methods [7, 8, 15, 28]. The main 

advantage of phase-based techniques is that disparity estimations are obtained with 

subpixel accuracy without a subpixel feature localization. In contrast to area-based or 

feature-based strategies, an additional mechanism for the purpose of disambiguation is 

not necessary because the disparity range is limited to the modulation wavelength of 

the filter. To treat stereo images with a large disparity range, hierachical, strategies 

with multiple resolutions are necessary to obtain correct measurements. In such strate- 

gies the coarse disparity measurements are used as an initialization of the next finer 

level. If no special mechanisms are provided, all techniques of the three categories tend 

to produce wrong disparity estimates in occluded areas. 

Without the occurrence of occluded regions in the images, stereo matching is a one to 

one mapping of the two images. In general, however, there may be several objects in 

the scene with different distances in relation to the cameras which cause discontinuity 

in disparity and occlusions near intensity edges defining the boundaries of different 

object surfaces. Constraints such as uniqueness, smoothness or ordering of the dispar- 

ity, which are utilized to simplify the matching process are invalid assumptions in 

occluded regions. If occlusions are not specially treated in the matching process, they 

may be incorrectly matched with regions in the other image. Although occlusions are 

one of the essential reasons for wrong matches in stereo analysis, there are only a few 

approaches which treat them explicitly. One way to avoid correspondence errors in 

occluded areas is a bidirectional or dual matching process [14, 16, 20, 31]. In this 

approach matching is carded out from the left to the right and from the right to the left 

image in two separate, but identical processes. Occluded areas, which are indicated by 

the mismatch between the two disparity maps, are marked in so called occlusion maps 

and they are excluded from further calculations. This technique is based on the 

assumption that the match with features or pixel intensities in occluded areas is not as 

good as the match with the correct regions in the matching process, which is carried 

out in the other direction. Due to interocular differences, this need not be generally 

true. Another disadvantage of these techniques is the high computational complexity 

of the bidirectional matching process. 

In our approach we use a complex-valued similarity measurement applied to the output 

of oriented Gabor filters [9]. Similar to phase-based methods, this measurement is very 
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robust with respect to interocular differences and provides dense data. Due to the cor- 

relation-based similarity measurement the disparity range is not limited, so coarse-to- 

fine control strategies are not required. We use the real part of this measurement to ini- 

tialize a self-organizing process based on the pattern recognition equation introduced 

by Haken [13]. To each image point and to each possible disparity we assign a vari- 

able, which satisfies a non-linear evolution equation. The continuity constraint is 

established by a local cooperative coupling of the variables. All variables are involved 

in a competition so that after reaching the steady state of the dynamical process the 

variables with non-zero values represent the disparities at the image points. Contrary to 

the approach used by Reimann and Haken [27] the competition is arranged in a way 

that variables in occluded regions are prevented from winning the competition. Due to 

the special symmetry property of the similarity measurement no computationally 

intensive bidirectional match is required. After the correct disparities are determined 

by the self-organizing process, the imaginary part of the similarity measurement is 

used to improve the disparity estimation to subpixel accuracy. 

2 Initial  Process ing 

2.1 Gabor Filters 

Since Sanger [28] proposed the use of the phase information in the output of local 

Gabor filters for binocular disparity measurements, many phase-based methods, which 

use quadrature-pairs of band-pass constant-phase filters, have been developed [7, 8, 15, 

28]. The reason for the growing interest in these techniques are their numerous desir- 

able properties. Disparity estimates are obtained with subpixel accuracy, dense dispar- 

ity maps can be calculated, and no special treatment of the ambiguity of the 

correspondence problem is required. Furthermore, the measurements are robust with 

respect to smooth illumination differences between the two images because phase is 

amplitude invariant. In order to exploit some of these desirable properties, we decom- 

pose the images in the first step using a set of orientated Gabor filters. 

Let r(x) be the complex-valued result of the two-dimensional convolution of a Gabor 

filter g(x) with an image i(x) at the coordinate x = [x l, x2] T. 

r(x) = g(x) �9 i(x) (1) 

The Gabor filter g(x) is tuned to an orientation ~ and to a spatial frequency k o. 

1 r  
1 -Sx ax jk~x 

g(x) = 2---~-~ab e e (2) 

where j 2 = _ 1 and 

A =RPRT=[c~ 2 021[c~ sint~]. (3) 

/sin 0 cos~pJ b- [_-sin 0 cosCJ 
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The spatial support of the filter and the bandwidth respectively depend on the parame- 

ter matrix P. 

2.2 Similarity Measurement 

There are some reasons why we do not use the phase-difference of the Gabor filters 

directly for disparity estimation: The basis for phase-difference methods consists of 

the Fourier shift theorem. But because of the local spatial support of the filters used in 

practice, the Fourier shift theorem does not strictly apply. Furthermore, the limited dis- 

parity range requires some form of coarse-to-fine control strategy, in which an initial 

guess is provided from coarser levels to bring the images into the disparity range of the 

next finer level. This common strategy may fail if the coarsest channel yields a poor 

estimate. In this case the process may converge to an incorrect disparity. To prevent 

errors due to phase-instabilities, which may occur when the filter output passes 

through the origin in the complex plane and to avoid coarse-to-fine control strategies, 

we use a correlation-based approach, which preserves the desirable properties of 

phase-based techniques. 

With the convolution of the product of the left filter response rl(x) and a spatial shifted 

complex conjugate version of the right filter response rr(X) with a small real valued 

window w(x), we obtain a local, complex-valued measurement Plr(X, d) of the similar- 

ity between the filtered images. This measurement is normalized to the local energy of 

the filter responses: 

w(x) * rl(X)rr(X + d) 
Pit(x, d) = (4) 

~[w(x) * Irl(x)l 2 ~[w(x) �9 Irr(X + d)l 2 

where the disparity d = [d 1, d2] T acts as a two-dimensional spatial displacement of the 

right filter response. Due to the epipolar constraint, the vertical component of the dis- 

parity is zero if the conventional parallel axis stereo geometry is used. If a non-parallel 

axis stereo geometry is used, the images can be easily transformed into parallel axes 

images by rectification [1]. In this case the convolution in (4) can be reduced to a one- 

dimensional convolution. The window w(x) is chosen to be a one-dimensional gaussian 

with a support equal to the horizontal support of the Gabor filter. 

The real and the imaginary parts of (4) can be expressed in terms of magnitude Ir(x)l 
and phase ~(x). 

w(x) . ]rl(x)llrr(X + d)lcos(tPl(X)-tPr(X + d)) 
Re{ Pit(X, d) } = 

Jw(x)  * Irl(x)l 2 Jw(x)  * [rr(X + d)[ 2 (5) 

w(x) , Ir~(x)llrr(X + d)lsin(~Pl(X)-%(x + d) ) 
Im{ Plr(X, d) } = 

~/w(x) * Irl(x)l 2~[w(x) , [rr(X + d)l 2 

If the filter responses are locally similar, we expect a low phase difference. In this case 

there is a peak in the real part and we expect to find a zero-crossing in the imaginary 
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part due to the approximately linear phase of the Gabor filter output. The peaks in the 

real part of the similarity measurement act as candidate disparities d between the two 

images with pixel accuracy. Unlike some other approaches, which use the superposi- 

tion of similarity measurements applied to several filter channels tuned to different fre- 

ql:encies as a kind of voting strategy [7], we use the real part of the measurement to 

initialize a self-organizing process to disambiguate the disparities. The zero-crossings 

of the imaginary part in the proximity of correct disparities are used to obtain subpixel 

accurate disparity estimations, which is described in chapter 4. 

A further important property of the similarity measurement, which is central to the 

detection of occlusions, is the following identity between the measurement, which is 

done from the fight image to the left image and the measurement which is done in the 

opposite direction. 

Plr(X, d) = Prl(X + d, -d)  (6) 

3 Correspondence by Self-organization 

3.1 Related Work 

One of the essential problems in stereo matching is that the correct correspondence 

may not be the one of the highest similarity. The reason for this is that the images may 

differ due to noise or distortions. Furthermore there may be points or areas in the 

image, which match equally well with several points or areas in the other images. 

These ambiguities, which are characteristic for ill-posed problems, can only be 

resolved by using natural constraints, which are general assumptions of the physical 

world. The most important constraints usually used in stereo vision are the uniqueness 

and the smoothness of the disparity map over the two-dimensional image plane first 

postulated by Marr and Poggio [21]. There are many approaches, which use these con- 

straints to define energy functions, the global minimum of which is used to determine 

the correct correspondences. Strategies used to find the global minimum are, for 

instance, standard regularization theory [11, 25, 29] or stochastic relaxation [3, 10, 19]. 

To disambiguate the correspondence problem Reimann and Haken [27] use a kind of 

relaxation labeling algorithm. Similar to some other approaches of this category [4, 18] 

they assign a real-valued, time dependent variable ~(x, d, t) to each image coordinate 

x and to each possible disparity d. These variables, which are called binocular neurons, 

are involved in a dynamical process, which is described by coupled nonlinear evolu- 

tion equations. The activity of these neurons is initialized by the output of an area- 

based matching technique. To satisfy the uniqueness constraint, the neurons are 

involved in a competition, which can be won only by one neuron at each image point. 

To get smooth disparity maps, each neuron is cooperatively connected to a small local 

area U representing the same disparity. The dynamics of the self-organizing process 

are described by the so-called coupled pattern recognition equations: 
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f 
t) = ~ , (x ,  d) - (B + C) ~ ~2(X, d ' ,  t) - C~2(x, d, t) d, 

l d'~d 
(7) 

+ ~ D(x')~(x', d, t) ~ (x ,  d, t) 
X ' E  U J 

where the parameters B, C are positive constants. The first term 3.(x, d) represents an 

exponential growth of the amplitude ~(x, d, t) that depends on the area-based similar- 

ity between the images. The second term leads to a competition of all neurons at the 

same image point and the third term restricts the amplitude of ~(x, d, t). The fourth 

term represents the cooperative coupling, which is weighted by D(x), of variables with 

the same disparity in a small local area in the image plane. It can be shown that only 

one of the variables at each image point reaches a non-zero stable fixed point and wins 

the competition in this way, while all of the other variables take the value zero. If we 

neglect the fourth term, we get the original pattern recognition equation introduced by 

Haken [13]. In this case the variable with the highest initial value always wins the 

competition. By adding the fourth term to the pattern recognition equation, variables, 

which have a strong cooperative area U, may win the competition even if they were ini- 

tially smaller. 

3.2 Initialization 

In our approach, we use a modified version of the self-organizing process introduced 

by Reimann and Haken to disambiguate the disparity estimates resulting from the 

peaks in the real part of the similarity measurement defined in (4). For this purpose the 

variables of the dynamical process are initialized at the time t = 0 by a function f 

depending on the real part of the similarity measurement: 

~(x,d,t  = O) = f(~,~ciRe{Plr,(x,d)} ) (8) 
l 

where the subscript i denotes the similarity measurements, which are applied to several 

filter channels. These channels are tuned to different orientations (e.g. -30  ~ 0 ~ 30 ~ ) 

but to the same spatial frequency k 0. The channels i can be weighted individually by 

the parameters c i. The functionfis used to map the values of the real part of the simi- 

larity measurement to a positive range by truncating the negative values. In the follow- 

ing sections the variables are involved in a special self-organizing process, in which 

natural constraints are exploited to solve the correspondence problem. 

3.3 Treatment of Occluded Regions 

Since there is no special treatment of occlusions in the approach of Reimann and 

Haken, an initialization of a variable in an occluded area with a non-zero value always 

results in a wrong disparity estimation, because there is no solution of the correspon- 
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dence problem in this area. In order to prevent those correspondence errors, we define 

a new competition in a self-organizing process, which suppresses variables in occluded 

image regions. 

Occlusions can be detected by a similarity measurement, which is carried out from left 

to right and vice versa. Figure 1 shows a random dot stereogram, in which a square 

area marked by the black frame is inserted in the images with a relative shift of ten pix- 

els. The image point marked by the white point in the left image does not occur in the 

right image. The similarity measurement, which is carried out from left to right at this 

point shows a peak in the real part, which corresponds to the position marked by the 

black point in the right image. Due to its high similarity measurement this wrong dis- 

parity would probably win the competition. As a result of (6) the real part of the simi- 

larity measure carried out from right to left must show the same peak at the disparity 

with the opposite sign at the corresponding position in the right image. But in this mea- 

surement there is additionally a higher peak, which corresponds to the match with the 

correct image area in the left image marked by the black point. If the values of this 

measurement are also included in the competition, the disparity with the highest peak 

in this measurement is likely to win. 

Fig. 1. a) and b) Random dot stereogram, c) Real part of the left-to-right similarity function of 

an occluded area marked by the white point in the left image, d) Real part of the right-to-left 

similarity function at the position marked by the black point in the right image, which 

corresponds to the maximum in c) 
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To prevent the match of occluded areas with other image points, we include both direc- 

tions of the similarity measurement in the competition. By exploiting equation (6), 

which is also valid for the variables ~(x, d, t), the new competition term is given by: 

~2(x, d', t) + ~2(x + d - d ' ,  d ' ,  t )  (9) 

d ' ~ d  

Contrary to other bidirectional matching techniques [14, 16, 20, 31] the occlusion 

detection in our approach is done implicitly by a matching process, which is carried 

out in only one direction. Therefore, an explicit calculation of a computationally inten- 

sive bidirectional match is not necessary. Without loss of generality we refer in the fol- 

lowing part only to the match, which is done from left to right. 

3.4 Treatment of Matches between Occlusions 

If a cooperative term as in (7) is used with a competitive term as shown in (9) a match 

of occluded image regions with areas seen from both views can be prevented even if 

the wrong match is locally higher than the correct match done in the opposite direc- 

tion. Unfortunately, an object may produce occluded areas in both images, which 

occur on different sides of the object. So, if the established disparity range is large 

enough and a match between this occluded areas can be calculated, it is probable that a 

variable will win the competition, which represents a correspondence between the 

occluded areas. To treat this type of wrong correspondence, we consider a cyclopean 

camera, which was introduced by Julesz [16]. From the point of view of a cyclopean 

camera, the reconstructed 3D-coordinates of the correspondence between these 

occluded areas are found either in front of or behind the object that produces these 

occlusions. The cyclopean image coordinates x c of a variable at the coordinates x in the 

left image and with disparity d are given by: 

d 
x c = x + ~ (10) 

In this cyclopean image the variables representing the object and the correspondence 

between the occlusions have the same image coordinates. In order to suppress corre- 

spondences between occlusions, we extent the self-organizing process once again by 

involving all variables in the same competition, which show the same cyclopean image 

coordinates. This strategy can be implemented by using the following competition 

term: 

~.~ ~ 2 ( x , d ' , t ) + ~ 2 ( x + d - d ' , d ' , t ) + ~  2 x +  - , d ' , t  

d" ~ d  

(11) 

Because occluded areas are unlikely to match better in large image areas than correct 

correspondences, matches between occlusions are suppressed by this technique. The 

dynamical behavior of the resulting self-organizing process is given by: 
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~(x, d, t) = t A  - C~2(x, d, t) 

3--~A,~ ~ (x, d ,  t) + ~2(X + d -  d', d', t) + - d', 
(12) 

= F{x, d, t} 

where the parameters A, B, C, D are positive constants. The terms that lead to the com- 

petition and to the cooperative coupling are normalized to the amount of involved vari- 

ables N, M. For reasons of simplicity we choose the coupling constant D to be equal to 

all variables in the cooperative area U and the exponential growing term to be indepen- 

dent of the similarity measurement. In practice this self-organizing process can be eas- 

ily implemented as an iterative algorithm if the differential equations are integrated 

numerically. 

3.5 Properties of the Self-organizing Process 

The parameters in equation (12) have to be chosen suitably in order to establish a com- 

petition and to insure the stability of the fixed points of the system. The fixed points 

~ r ( X ,  d) of (12) satisfy the condition ~r(X, d, t) = 0. There are three possible solu- 

tions for the fixed points: 

~r,(x, d) = 0 

(13) 

~r2/3(x, d) = + _ ~ ( ~ d )  

where F(x, d) is given by: 

F(x, d) = (a  + Dx ,~U ~r(x' 'd) 
(14) 

~-N d~,~ d~r ( X, d') + + d - d', + ~ - -~, a j 

By initializing the process with positive values, it can be shown (see appendix A) that 

the negative fixed points in (13) are never reached, thus we only consider the fixed 

points ~r~(X, d) and the positive fixed points ~r2(X, d). 
Under certain conditions a competition can take place, in which variables with a strong 

cooperative support and a high initial value are likely to win (see appendix B). The 

winner of the competition is the variable that takes the stable fixed point solution 

~r2(X, d). This fixed point should be reached only by one variable whereas all other 

variables, which are involved in the competition, should decrease to the fixed point 

solution ~r,(X, d). Furthermore, the parameters have to be chosen in a way that the sta- 
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bility of the fixed points is guaranteed under certain circumstances (see appendix A). 

The influence of the variables in the cooperative area on the self-organizing process is 

steered by the parameter D. 

Fig. 2. a) and b) 50% Random dot stereogram, c) Disparity map without occlusion treatment, d) 

Disparity map generated by a self-organizing process with an extended competition defined by 
equation (9). e) Disparity map generated by using equation (12) 

Figure 2 shows a random dot stereogram in which a rectangular area is inserted in the 

images with a relative displacement, which is equal to the width of the inserted rectan- 

gle. The results of the self-organizing process with different competition terms but 

equal parameters are shown by the disparity maps below the stereogram. The gray val- 

ues in the disparity maps represent the disparities of the variables, which have reached 

the fixed point solution ~r2(x, d). If there is no variable at an image point that has 

reached the solution ~. (x, d) the disparity remains undefined. These areas are marked 

black in the disparity maps. The disparity range was chosen to be twice as large as the 

width of the displaced rectangle. The left disparity map shown in figure 2c is calcu- 

lated by a self-organizing process defined in (7). Because there is no special treatment 

of occlusions, the disparities on the right of the rectangle, represent false, accidental 

matches of the occluded area, because there are no correct correspondence partners in 

the right image. 

The disparity map shown in figure 2d is generated by using an extended competition 

term defined in (9). In the occluded area only those variables have reached the fixed 

point ~r~(X, d), which represent matches with the occluded region in the right image. 

Because the disparities of these wrong matches are negative in this example, they are 

darker than the disparity of the rectangle. In the black areas none of the variables, 

which represent a match between the occluded areas in both images, have been initial- 

ized to a non-zero value by the function defined in (8). The disparity map in figure 2e 

is obtained by using the new self-organizing process introduced in (12). Due to the 

competition term defined in (11), all variables in the occluded area have been sup- 

pressed, and no disparity value has been calculated. 
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Fig. 3. Time dependent behavior of variable values at different image points, a) Image area 

without ambiguous matches. The variable with the highest initial value wins the competition, b) 

Image area with ambiguous matches. Due to the local cooperative coupling, a variable wins the 

competition, which was not the initially highest one. c) Competition in an occluded image area. 

No variable reaches the non-zero fixed point 

The competition of variables lying at the same cyclopean image coordinates, which is 

established by (11), is related to the disparity gradient limit first proposed by Burt and 

Julesz [6]. In several approaches an approximation of the disparity gradient limit is 

used to disambiguate the correspondence problem (see for example [26]). Usually the 

disparity gradient is approximated by: 

= d p - d q  (15) 

D pq I Xp _ x.___.~q I 

where Xp/q are the cyclopean image coordinates of the points p, q and dp/q the corre- 

sponding disparities. A match is only permitted if the disparity gradient is lower than a 

certain limit. For Dij < 2 the disparity gradient limit is equal to the ordering constraint, 

which is often used in approaches using dynamic programming techniques (see for 

example [2]). In the steady state of our self-organizing process described in (12) there 

is at most one variable at the same cyclopean image point that reaches a non-zero fixed 

point. Therefore, matches are only prevented in our approach if their disparity gradient 

is infinity. This restriction of the disparity is much weaker than the ordering constraint 

or the disparity gradient limits used in practice. 

4 Disparity Estimation with Subpixel Accuracy 

As mentioned in chapter 2.2 the imaginary part of the similarity measurement intro- 

duced in (4) can be exploited to obtain a disparity estimation with subpixel accuracy. 

Due to the approximate linear phase of the Gabor filter, we expect to find a zero-cross- 

ing in the imaginary part of the similarity measurement close to a peak in the real part. 

After the self-organizing process has reached the steady state we interpolate the imagi- 

nary part at the position of variables with non-zero values, because they are likely to 

correspond to a peak in the real part of the similarity measurement. Then we use the 

position of the zero-crossings in the imaginary part as the new subpixel accurate dis- 
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parity estimations. By using this technique we are able to obtain subpixel accurate dis- 

parity estimations without blurting of the discontinuities in the disparity map. The best 

results are obtained when the imaginary part of the similarity measurement is used, 

which gets its input from the filter orientation, in which the highest magnitude of the 

filter response occurs. Figure 4 shows a stereogram of white noise, in which one image 

is a copy of the other image, which is stretched horizontally by 10%. 

Fig. 4. a) + b) Stereogram generated with white noise, c) + e) Disparity map and disparity 

function with pixel accuracy, d) + 0 Disparity map and disparity function with subpixel 

accuracy, g) Real and imaginary part of the similarity measurement 

If  the disparity is calculated by interpolating the zero-crossings in the imaginary part 

of the similarity measurement as shown in figure 4g, the root mean square of the quan- 

tization errors can be reduced in this example by 60%. 

5 Experimental Results 

The current algorithm has been tested on a number of real and artificial image pairs. In 

this section some of the results are presented. The parameters were chosen identically 

for all examples to A = 0.4, B = 1.0, C = 0.01, and D = 0.61. The cooperative area U 

was chosen to be a square area of 5x5 pixel. To reduce the computational expenditure, 

the horizontal disparity range was restricted to Idll _< 15 pixel. The presented natural 

image pairs had been rectified, thus no vertical disparities had to be calculated. The 

Gabor filters were tuned to a modulation frequency of k 0 = ~ / 2  and had a bandwidth 

of 0.6 octaves. The images were filtered by three channels tuned to the orientations 

( -30  ~ 0 ~ 30~ The values of the superposed similarity measurements of the filter 

channels were truncated by their negative results and normalized to the number of 
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channels by the function f to initialize the variables of the self-organizing process. 

Detected occlusions are marked black in the disparity maps. The disparity maps are 

registered in the right image coordinates. 

Fig. 5. a) Left and b) right image of the "Pentagon" stereo pair. c) Disparity map 

Fig. 6. Rectified a) left and b) right image of an old car tire. d) Disparity map 

Fig. 7. a) Left and b) right image of a 50% random dot stereogram with four square areas of 
different disparity, c) Disparity map 

6 Conclusion 

In this paper we have outlined a new method for the estimation of disparities in stereo 

image pairs. In our approach we have combined some desirable properties of existing 

techniques such as the subpixel accuracy of phase-based techniques and the robustness 

and the high parallelization potential of cooperative approaches. Furthermore, we have 
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implemented a new method of detecting occlusions in stereo images, which are one of 

the most important error sources in stereo matching. Due to a complex-valued, correla- 

tion-based technique, which is applied to the output of oriented Gabor filters, the algo- 

rithm is robust to smooth illumination differences between the images and provides 

dense, subpixel accurate disparity estimations. The continuity constraint and an 

extended version of the uniqueness constraint are applied in a self-organizing process. 

Because of this new technique occlusions are detected implicitly and no disparity esti- 

mates are calculated in this areas. As shown in some examples the algorithm produces 

reliable results in artificial and natural images, even if there are large occluded areas or 

disparity gradients in them. 

Future work will include a fast, parallel implementation of this algorithm for the pur- 

pose of distance measurement and obstacle avoidance in order to navigate an autono- 

mous robot manipulator. 

Appendix A: Stability of the Fixed Points 

To guarantee the stability of the fixed points, we have to consider the functional matrix 

of the linearized system. The non-zero elements of the matrix are: 

t)F(x,d,t)l~r = F(x ,d) -  3C~(x ,d)  
~(x, d, 

O~(x,d,,t)F(x,d,t)I~, = -2B~r(x,d')~r(x,d)/3N for d" ~d 

~ ( x  + d -  d', d', t) F(x' d, t)l~ r = -2B~r(X + d -  d', d')~r(X, d) /3N for d" ~ d(16) 

F(x,d,t)l~" _2B~r(x +d d" ) = ~2 - ~'  d" ~r(X, d) /3N for d' ~ d 

O{(x', d, t) "F(x' d, t)lg, = {r(X, d) for x' ~ U 

We now consider the stability of the fixed points under several different conditions. In 

the first case, we assume all variables of the competition to take the fixed point solution 

~r~(X, d) = 0. The variables of the cooperative area may take any value. Under this 

conditions the functional matrix has a diagonal sub-block of the form: 

d, = A  D , 
O{(x,d, t) F(x' t)]{, 1 + ~lx,~u~r(X,d) (17) 

Due to the fact that A and D are positive constants and all variables are positive, this 

kind of fixed points is not stable, because the eigenvalues of this sub-block are positive. 

Thus not all of the variables, which are involved in the same competition process, can 

take the fixed point so lu t ion  ~rt(X, d )  -- 0 if they were initialized by a non-zero value. 
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If one of the variables takes the solution ~r~(X, d), whereas all other variables in the 

same competition process may take any non-negative value, the fundamental matrix 

has a diagonal sub-block, which is given by: 

t).F(x, d, t) l~r ' = F(X, d) (18) 
~ ( x ,  d, 

This fixed point is only stable if F(x, d) is negative, otherwise it is unstable. Therefore, 

the variables are unable to take negative values if they are initialized by positive or zero 

values. Thus, the negative fixed point solution of (13) is never reached. We want to 

choose the parameters in a way that this kind of fixed points is stable if one variable in 

the competition process reaches the fixed point solution ~r2(X, d), which is given by 

(13). This leads to the inequality: 

B 2 
A - ~-~r2(X, d) < 0 (19) 

The value of ~r2(X, d) can be approximated by the worst case, in which no variable in 

the cooperative area takes a non-zero value. The non-zero fixed point is then given by 

~r.(X, d) = A ~ .  Under these conditions the parameters B, C, and N must fulfill the 

foflowing inequality: 

B 
C < 3-N (20) 

The fixed point ~r2(X, d) should be stable if all other variables in the competition pro- 

cess have reached the fixed point solution ~r (x, d). In this case the non-vanishing ele- 

ments of this sub-block of the functional matrix are given by: 

t)F(x, d, t)[~, 2 = -2F(x ,  d) 
~ ( x ,  d, 

(21) 

d, = D~r2(x,d) for x ' ~  U O{(x',d, t) F(x'  t)lg,~ 
From the negative diagonal elements of this sub-block it follows using the theorem of 

Gerschgorin, that the eigenvalues of this sub-block are negative when the sum of the 

non-diagonal elements in each row is smaller than every diagonal element (see for 

example [30]). This is generally true if at least half of the variables in the cooperative 

area have reached also the fixed point solution ~r2(X, d). 

Appendix B: Further Parameter Restrictions 

To enable a competition, in which the variable with the greatest support of the cooper- 

ative area and with the highest value grows stronger than the other involved variables, 

the parameters need a further restriction. 

Let ~(x l, d 1, t) be the variable with the highest value in the competition and with the 

highest cooperative support u(x 1, d 1, t) = ~., ~(x', d 1, t), 
X' E U 1 
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~(x 1, d l, t) > ~(x, d, t) Vd ~ d 1 and x ~ Xl, x I - -  d 1 - d, x 1 2 ' 

then follows from (12): 

~(x 1, dl ,  t)(A B B 2 D t ) ) >  - ~-~s + ~ - ~  (Xl, d l ,  t) - C~2(Xl , dl ,  t) + ~tU(Xl, dr,  

(23) 

~(x,d,t)CA_ B B 2 D d,t)) ~-~s + ~-~ (x, d, t) - C~2(x, y, t) + ~u(x,  

where s is the sum of  the squares of  all variable values involved in the competition. 

s = '~"~z_, 2(Xl , d ' ,  t) + ~2(x 1 + d I - d ' ,  d ' ,  t) + ~2 Xl + 2 - "2' d ' ,  t (24) 

d' 

Because the sum s is equal to all involved variables and the cooperative support of  

~(Xl, d 1, t) is higher than the support of the other involved variables, the inequality 

(23) is fulfilled, if  the following inequality is valid: 

( ~ N -  C)~2(Xl, dl, t) > ( 3 ~ -  C)~2(x, d, t). (25) 

Under the assumption made above this results in the parameter restriction: 

B 
~-~ > C.  (26) 

This inequality is always fulfilled if the stability of  the fixed point ~rl(X, d) is guaran- 

teed for the worst case discussed in appendix A (see equation (20)). 
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