
Stereo obstacle detection in challenging environments:

the VIAC experience

Alberto Broggi, Michele Buzzoni, Mirko Felisa and Paolo Zani

VisLab – Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma, ITALY

http://www.vislab.it

{broggi,buzzoni,felisa,zani}@vislab.it

Abstract— Obstacle detection by means of stereo-vision is a
fundamental task in computer vision, which has spurred a lot
of research over the years, especially in the field of vehicular
robotics. The information provided by this class of algorithms
is used both in driving assistance systems and in autonomous
vehicles, so the quality of the results and the processing times
become critical, as detection failures or delays can have serious
consequences. The obstacle detection system presented in this
paper has been extensively tested during VIAC, the VisLab
Intercontinental Autonomous Challenge [1], [2], which has
offered a unique chance to face a number of different scenarios
along the roads of two continents, in a variety of conditions;
data collected during the expedition has also become a reference
benchmark for further algorithm improvements.

I. INTRODUCTION

Fast methods to obtain accurate and dense depth maps

are becoming increasingly common [3], [4], [5], and the

problem of extracting useful information from such a big

amount of data is of great interest. Even without taking

into account algorithmic complexity, giving a definition of

an obstacle is not a trivial task: an option is to determine

a dominant ground surface [6] and consider as an obstacle

anything sticking out of it; anyway, there are situations where

this approach fails (e.g. very cluttered environments with no

clearly visible road area, or lateral slopes). If no assumption

can be done, as it was the case during the VIAC expedition,

it is safer to consider the the ego-vehicle mechanics (e.g.

height, width, maximum traversable slope) to identify areas

that cannot be crossed. The downside of this approach is

its computational weight, which limits the number of points

that can be handled: nevertheless, this paper presents a

parallel processing scheme which allows to run at 10 Hz on

a commercial hardware platform.

A. Hardware configuration

Images used for stereo reconstruction are acquired at a

resolution of 752× 480 pixels by a pair of IEEE1394-A

cameras equipped with 4 mm, 1/3 ” lenses; synchronization

is guaranteed by a hardware trigger signal. The sensors are

mounted right below the solar panel, as can be seen in

Fig. 1-a. Processing is performed on a Mini-ITX board with

an Intel® Core™ 2 Quad Q9100 @ 2.26 GHz processor and

4 GB RAM located on the back of the van (Fig. 1-b).

(a)

(b)

Fig. 1. Highlighted in red, hardware components of the stereo system: (a)
the forward-looking stereo cameras, and (b) the processing unit in the back.

B. The expedition

During VIAC the vehicles crossed a number diverse en-

vironments, ranging from country motorways in Hungary to

busy downtowns in Russia, from the 2900 m Lanquan moun-

tain pass to highway construction areas in China (Fig. 2); the

weather also changed dramatically, from the hot summer of

Ukraine (with an average temperature of 45 °C) to the cold

September in Russia, the pouring rain of China, and snow

on the mountain passes. Not all of what the vehicles had to

face could be anticipated, but that was also the purpose of the

test: to design an algorithm as robust as possible, evaluate

its performance, and improve it afterwards using the data

collected in the most critical scenarios.

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-455-8/11/$26.00 ©2011 IEEE 1599

Fig. 3. System architecture.

Fig. 2. The path followed by the vehicles during VIAC

II. ALGORITHMS

Processing happens following the steps presented in Fig. 3:

• low-level processing — Bayer-patterned images ac-

quired by the cameras are converted to gray-scale, then

lens distortion is corrected [7], and the stereo pair is

rectified. A vertical Sobel filtering is used to improve

the subsequent matching phase [8];

• disparity map generation — stereo reconstruction is

carried out; both correlation-based and Semi-Global

Matching (SGM) [3] approaches have been tested, as

detailed in Sec. II-A;

• disparity map post-processing — two filters are applied

to further enhance the map quality;

• obstacle detection — actual obstacle detection takes

place.

A. Stereo reconstruction

Given the tight development schedule, Disparity Space

Image (DSI) generation was implemented exploiting the

already available window-based SAD correlation technique

described in [9]. As reported in Sec. III, the outcome was

satisfactory; nevertheless, in the months following VIAC an

efficient implementation of the SGM algorithm has been

devised, producing even better results.

In order to generate a Disparity Space Image D the Semi-

Global Matching algorithm performs an energy minimization

step. The energy function E(D) that has to be globally

minimized consists of two terms: the pixel-wise matching

cost Edata(D) and the smoothness constraint Esmooth(D):

E(D) = Edata(D)+Esmooth(D) (1)

The Edata(D) term is the sum of all pixel matching costs

C for the disparities of D:

Edata(D) = ∑
p

C(p,Dp) (2)

Instead of using mutual information as the pixel-wise

matching function, as it is done in [3], the Hamming distance

of the Census transform of a 5×5 window cropped around

p has been exploited, since it provides similar results [12],

[4] while reducing the overall computational burden.

The Esmooth term adds a small penalty P1 to all pixels q

in the neighborhood Np of p, for which the disparity varies

from p by one, and a higher penalty P2 if the difference is

greater:

Esmooth = ∑
q∈Np

P1T[|Dp−Dq|= 1]+ (3)

∑
q∈Np

P2T[|Dp−Dq|> 1]

with

T[x] =

{

1 if x is true

0 otherwise
(4)

The global minimization of E(D) is a NP complete

problem, that SGM approximates by computing the values of

E(D) along 1D paths from 8 directions towards each pixel

using dynamic programming. The costs L′r of each path r

are aggregated as described in Eq. 6 for each pixel p and

disparity d:

L′r(p,d) =C(p,d)+min(L′r(p− r,d),

L′r(p− r,d−1)+P1,L
′
r(p− r,d +1)+P1, (5)

min
i

L′r(p− r, i)+P2)

The final disparity value for each pixel is then determined

by a winner-takes-all strategy applied to the values of L′r.

To further improve the results sub-pixel interpolation is per-

formed as well as a median filter and a left-right consistency

check.

In order to fully exploit the parallel processing capabilities

of modern multi-core CPUs and reach real-time frame rates,

1600

TABLE I

SGM PERFORMANCE METRICS

Algorithm Hardware platform
Image size

[px]
Max disparity

[px]
Time
[ms]

Disparity
bandwidth
[s−1×106]

Gehrig ECVW10 [4] Intel® Core™ i7 975 EX @ 3.3 GHz 640×320 128 224 117
Hirschmüller
ISVC10 [10] NVIDIA® GeForce™ 8800 Ultra

640×480
320×240

128
64

238
76

165
64

Gehrig ICVS09 [11] Xilinx® Virtex-4 FX140 2×340×200 64 40 218
Nedevschi IV10 [5] NVIDIA® GeForce™ GTX 200 512×383 56 19 578

this paper Intel® Core™ i7 920 @ 3.20 GHz 640×320 128 27 970

a multi-threaded, SIMD processing scheme has been devised.

The most time-consuming step of the SGM algorithm is path

accumulation, since it must be performed for each pixel,

disparity, and path: to speed up the processing, for each path

direction the pixels are split into several independent slices

that are processed in parallel; moreover only the accumulated

value is saved into memory, while temporary data needed

for incremental processing is kept into the CPU registers1.

Finally, when computing the results of Eq. 6 the Intel® SSE

instruction set is also used, outputting 16 disparity values at

a time.

Table I presents a comparison of some state of the art SGM

implementations, as reported in the respective papers. Testing

conditions differ significantly, so the last column contains

the achieved disparity bandwidth measured in number of

values computed per second; the hardware platforms are also

heterogeneous, both in terms of architecture and performance

(e.g. the graphics card used in [5] is about twice as fast

as the one used in [10]). The approach presented in this

paper runs about eight times faster than the top-scoring CPU

implementation on similar hardware, and twice as fast as the

best GPU implementation, which uses just four accumulation

paths and a single P coefficient when computing Esmooth.

B. DSI post-processing

The generated disparity map is post-processed to fix

possible spurious values; this is especially useful when using

correlation-based stereo, where local minima are more likely

to introduce noise.

A first filter analyzes a 3× 3 window around each DSI

element, checking that its disparity value is close to a

sufficient number of neighbors, and marks it as invalid in

case this condition is not satisfied. After this step has been

performed, invalid pixels whose neighborhood has a variance

lower than a fixed threshold are assigned the average value

of the surrounding elements.

The second filter uses IMU information to compute the

vehicle trajectory between the previous and current frame

acquisition, and checks the corresponding disparity maps for

consistency. At time T each point pi(u,v,d) of the depth

map DT is projected into the corresponding world point

pw(xw,yw,zw) [13], which is in turn projected back into

DSI coordinates using virtual cameras corresponding to the

1Disparity search ranges of up to 128 are supported; over this threshold
not enough XMM CPU registers are available

position and orientation of the stereo rig at time T −1 with

respect to the current reference system; this process generates

the depth map DT
T−1, which can be directly compared to

DT−1, computed at T −1. Each pixel of DT
T−1 is analyzed,

and considered valid only if at least one of the pixels of DT−1

within a 3× 3 window has a disparity value close enough.

As it can be seen in Fig. 4-b,c this kind of filter is effective

at canceling random noise, which is unlikely to be consistent

across frames, but by its very design it leads to suppression

of fast-moving objects; therefore the removal threshold must

be tuned taking into account the maximum relative speeds

of obstacles that need to be detected.

C. Obstacle detection

Since no assumptions could be made on the road in-

frastructure quality and the kind of traffic to expect, the

obstacle detection algorithm design followed the approach

first described in [14]. This technique defines a criterion to

cluster points into obstacles based on their layout in space

and on the physical characteristics of the ego-vehicle, namely

its height Hmax, the minimum relevant obstacle height Hmin

and the maximum traversable slope θmax. Given two points

pw1 and pw2 these constraints are used to define a truncated

cone in space, with the vertex corresponding to pw1, as

depicted in Fig. 5: if pw2 falls within the cone it is labeled

as an obstacle, and pw1 and pw2 are said to be compatible.

Fig. 5. Compatibility criterion used during the clustering phase. Point pw2

is considered an obstacle since its position relative to pw1 leads to a path
which is not traversable by the ego-vehicle.

To reduce the number of comparisons to perform, compati-

bility checks are carried out in image coordinates, rather than

in the world: this is done by projecting the truncated cone

back onto the image using camera calibration information,

thus (approximately) obtaining a trapezium, and checking

whether the constraint is valid for the disparity points con-

tained within it. Iterating on the disparity space image from

1601

(a) Input DSI. (b) Smoothing filter. (c) Motion filter.

Fig. 4. Disparity filters; colors encode disparity values. The smoothing stage removes isolated spurious values and fills the holes in uniform areas, while
the motion filter removes inconsistent pixels, like the purple ones in the middle of the image. In this case filtering succeeds at suppressing most of the
noise due to an instant misalignment of the stereo rig caused by a bump in the road.

bottom to top, and from left to right, it is possible to correctly

cluster the whole data set. During the clustering phase each

region is assigned a unique label; to ensure that a single

obstacle does not get split into multiple adjacent regions the

following strategy is adopted: let lw1 and lw2 be the labels

of points pw1 and pw2 respectively, then

• if lw1 6= unde f ined and lw2 = unde f ined, lw2← lw1

• else if lw1 = unde f ined and lw2 6= unde f ined, lw1← lw2

• else if lw1 6= lw2 all the points with label lw2, plus pw2,

are relabeled as lw1

The final result is saved into two dual representations:

• an image, having the same resolution of the depth map,

where each pixel value corresponds to a label ID;

• a vector of regions, each containing the list of its points.

Even using DSI coordinates the computational load asso-

ciated with the clustering phase is considerable, especially

when using the dense depth map produced by the SGM

matching algorithm. In order to fully exploit the parallel pro-

cessing capabilities of the target hardware platform, a multi-

resolution, multi-threaded analysis scheme was devised.

The original DSI, along with its associated 3D world

points vector, is split into N images, each containing only

points corresponding to a predefined range of distances on

the X axis, as illustrated in Fig. 6.

Fig. 6. DSI partitioning. Separate depth maps are created, each corre-
sponding to a slice of world points, then the maps are analyzed in parallel
on different CPU cores.

The depth maps are then sub-sampled in order to further

reduce the number of comparisons to perform: ideally con-

stant spatial resolution can be achieved [15], but in practice

it is more convenient to fix a single resolution for each

stripe; using the hardware setup described in Sec. I-A, the

partitioning has been experimentally chosen as follows:

• 0 – 5 m → 4× sub-sampling

• 5 – 15 m → 2× sub-sampling

• 15 – 30 m → full resolution

• 30 m – ∞ → full resolution

After this step each slice is processed independently in

parallel, leading to N sets of labels; the sets are then copied

back on a single, full-resolution map, upscaling the sub-

sampled clusters, while checking that the extrapolated points

are similar enough to the original ones, in order to avoid

introducing blocky artifacts near depth discontinuities.

A final pass is still needed to ensure that all labels are

properly merged, since an obstacle spanning across a slice

boundary is still split in two distinct labels, as shown in

Fig. 7. Each point in each cluster is checked to determine

whether the value within the labels image corresponds to

the one saved within the regions vector, and in case they are

different, the two points sets are merged together and the

labels image is updated accordingly.

III. RESULTS

This section presents both algorithm outputs and process-

ing times, using some of the images acquired during VIAC

as a reference.

A. Performance

In order to produce a quantitative estimation of the algo-

rithm performance two of the three metrics presented in [16]

have been computed on a 1000 frames sequence acquired

in the downtown of Kiev (Ukraine) on August, 5, 2010

approximately at 14:00 local time. While this data represents

only a tiny fraction of the whole trip it is quite representative

of typical driving conditions in city traffic.

The first metric is the false correspondences ratio m f c =
N f c/N, where N f c are the number of DSI points inside a

volume defined by the road plane, the width and height of

the ego-vehicle and a safety time gap of 1 s multiplied by

the ego-velocity, and N the total number of valid DSI points.

1602

(a) Input DSI. (b) Labels before merging. (c) Merged labels.

Fig. 7. Obstacles labeling on a steep road when driving uphill. First points are clustered according to their relative pose, in parallel, on multiple CPU
cores, then the labels are merged and filtered to produce the final obstacles list. Note that despite the slope the vehicle is facing, no false detection is
triggered even without performing any explicit modeling of the ground.

The second metric is the leader vehicle lateral position

measurement, defined as ml p = |l pmeasure− l pgroundtruth|, with

the ground truth being generated by direct LIDAR measure-

ments of the preceding vehicle.

Table II contains the computed values, both for the

correlation-based and SGM stereo matching algorithms; as a

reference, the values reported in [16] have also been inserted

in the table, although they refer to a different dataset.

TABLE II

PERFORMANCE METRICS

This paper Steingrube ICVS09 [16]

Algorithm m f c [%] ml p [m] m f c [%] ml p [m]

Correlation Stereo 3.0 0.15 1.02 0.13

SGM 0.0153 0.11 0.98 0.11

The results are very similar; only the m f c value for the

SGM reconstruction case changes significantly, probably

because of the different amount of data the test has been

run on.

B. Processing time

The algorithms have been benchmarked using the se-

quence described in Sec. III-A on two different hardware

platforms: the first is a desktop PC equipped with an

Intel® Core™ i7 920 @ 3.20 GHz processor and 6 GB RAM,

while the second is the industrial PC installed on the VIAC

vehicles, described in Sec. I-A. Table III contains the pro-

cessing times breakdown of the whole algorithm pipeline on

both systems, with a side-by-side comparison of the SGM

and correlation-based stereo approaches. Images have been

scaled to a resolution of 500×320 pixels, keeping the total

processing time under 100 ms in all cases but one.

Some examples of the algorithm outputs are presented in

Fig. 8.

IV. CONCLUSIONS AND FUTURE WORK

The obstacle detection system presented in this paper was

successfully employed during VIAC, effectively negotiating

a wide variety of scenarios; the approach was proven ef-

fective even in presence of steep climbs and off-road areas.

At the end of the expedition the algorithm has been further

TABLE III

PROCESSING TIMES

Processing Time [ms]

Algorithm
step

Intel® Core™ i7 920 Intel® Core™ 2 Quad Q9100
SGM SAD SGM SAD

Preproc. 2.9 2.9 4.9 5.0

DSI 21.5 5.8 60.2 7.8

DSI filt. 2.8 2.8 6.5 6.7

Obstacle det. 32.1 25.2 59.2 54.1

Total 59.3 36.7 130.8 73.6

enhanced by the introduction of a high performance SGM

implementation for the depth mapping stage. Calibration still

remains a critical issue, since obstacle detection heavily relies

on having correct world coordinates, although the filters

described in Sec. II-B greatly reduce the errors introduced

by vibrations.

In the future, to obtain a better obstacles segmentation,

optical flow could be employed; anyway, an efficient imple-

mentation needs to be found in order to keep processing time

under control even on conventional hardware.

V. ACKNOWLEDGMENTS

This work has been supported by the European Research

Council (ERC) within the Open intelligent systems for Fu-

ture Autonomous Vehicles (OFAV) Advanced Investigators

Grant. Thanks to the cooperation with Piaggio®, the vehicles

selected for VIAC are Piaggio® Porter Electric Power.

REFERENCES

[1] A. Broggi, L. Bombini, C. Stefano, P. Cerri, and R. I. Fedriga,
“Sensing requirements for a 13,000 km intercontinental autonomous
drive,” in Procs. IEEE Intelligent Vehicles Symposium 2010, La Jolla,
CA, USA, June 2010, pp. 500–505.

[2] VIAC http://viac.vislab.it.

[3] H. Hirschmüller, “Accurate and Efficient Stereo Processing by Semi-
Global Matching and Mutual Information,” in Intl. Conf. on Computer

Vision and Pattern Recognition, vol. 2. San Diego, CA, USA: IEEE
Computer Society, June 2005, pp. 807–814.

[4] S. Gehrig and C. Rabe, “Real-time semi-global matching on the cpu,”
in ECVW10, 2010, pp. 85–92.

[5] I. Haller, C. Pantilie, F. Oniga, and S. Nedevschi, “Real-time semi-
global dense stereo solution with improved sub-pixel accuracy,” in
Procs. IEEE Intelligent Vehicles Symposium 2010, San Diego, CA,
USA, June 2010, pp. 369–376.

1603

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Some sample outputs in different scenarios. (a) – (c) a busy motorway in Kiev, (d) – (f) country roads with woods and uphill sections, (g) a deserted
mountain motorway in Kazakhstan, (h) a raindrop on the right camera and (h) an upcoming tractor.

[6] A. Wedel, H. Badino, C. Rabe, H. Loose, U. Franke, and D. Cremers,
“B-spline modeling of road surfaces with an application to free-space
estimation,” Intelligent Transportation Systems, IEEE Transactions on,
vol. 10, no. 4, pp. 572 –583, 2009.

[7] F. Devernay and O. Faugeras, “Straight lines have to be straight,”
Machine Vision and Applications, vol. 13, pp. 14–24, 2001.

[8] H. Hirschmüller and S. Gehrig, “Stereo matching in the presence of
sub-pixel calibration errors,” in Intl. Conf. on Computer Vision and

Pattern Recognition, Miami, FL, USA, 2009, pp. 437–444.

[9] M. Felisa and P. Zani, “Incremental Disparity Space Image computa-
tion for automotive applications,” in Procs. IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems, St.Louis, Missouri, USA, Oct. 2009.

[10] H. Hirschmüller and I. Ernst, “Mutual information based semi-global
stereo matching on the gpu.” in ISVC (1) 08, 2008, pp. 228–239.

[11] S. K. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power stereo
vision engine using semi-global matching,” in Proceedings of the

7th International Conference on Computer Vision Systems: Computer

Vision Systems, ser. ICVS ’09. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 134–143.

[12] H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching
costs on images with radiometric differences,” PAMI, vol. 31, no. 9,
pp. 1582–1599, September 2009.

[13] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518,
2004.

[14] R. Manduchi, A. Castano, A. Talukder, and L. Matthies, “Obstacle de-
tection and terrain classification for autonomous off-road navigation,”
Auton. Robots, vol. 18, no. 1, pp. 81–102, 2005.

[15] S. Nedevschi, R. Danescu, R. Schmidt, and T. Graf, “High accuracy
stereovision system for far distance obstacle detection,” in Procs. IEEE

Intelligent Vehicles Symposium 2004, Parma, Italy, June 2004.
[16] P. Steingrube, S. K. Gehrig, and U. Franke, “Performance evaluation

of stereo algorithms for automotive applications,” in Proceedings of

the 7th International Conference on Computer Vision Systems, ser.
ICVS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 285–294.

1604

