
Stereo Vision-based Autonomous Target Detection and Tracking on an
Omnidirectional Mobile Robot

Wei Luo a, Zhefei Xiao b, Henrik Ebel c and Peter Eberhard d

Institute of Engineering and Computational Mechanics,

University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany

Keywords: Autonomous System, Target Detection, Target Tracking, Stereo Vision, Mobile Robot.

Abstract: In this paper, a mobile robot equipped with an onboard computing unit and a stereo camera for autonomous

target detection and tracking is introduced. This system can figure out an interesting target and track it robustly

in real time. It is based on the ROS framework and can handle multi-resource information, such as RGB

images, depth information, and IMU data. To balance the performance of the machine learning based object

detection algorithm and the algorithm for object tracking, the Hamming distance and the intersection over

union are selected as criteria. The performance of the system is verified in a hardware experiment in two

typical scenarios.

1 INTRODUCTION

Mobile robots are among the vital investigation topics

of robotics research. Mobile robots have been widely

deployed in many applications, such as resource min-

ing (Martins et al., 2018), security patrolling (Lopez

et al., 2017), mapping (Fu et al., 2015) and object

transportation (Kume et al., 2001). To accomplish

these tasks autonomously, one of the critical chal-

lenges is to locate the robot’s target in a complex en-

vironment and to robustly track it or even estimate its

position based on information from onboard sensors.

In some of the previous works, the mobile robots are

equipped with a simple processing unit that cannot it-

self handle in real time complex sensor information

such as laser or image data. Therefore, communi-

cation between the mobile robot and a more power-

ful remote controller is necessary during operation,

which limits the practical application of the mobile

robot in the real world.

With the recent years’ rapid progress of machine

learning, object detection does not need to rely only

on predefined visual cues, such as colors (Li et al.,

2014), shapes (Gode and Khobragade, 2016) or even

templates (Kim et al., 2012), but can also be learned
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from large amounts of labeled data. State-of-the-art

convolutional neural networks such as YOLO (Red-

mon and Farhadi, 2018), SSD (Liu et al., 2016) and

R-CNN (Ren et al., 2017) perform favorably in multi-

class object detection tasks with a high confidence

level, and they can be further used as a backbone for

learning new features or classes using transfer learn-

ing (Shao et al., 2015). Some works even use ma-

chine learning methods not only to detect, but also to

track the objects. However, in general, this requires

high computing power and is thereby a limitation on

the applicability on embedded systems (Chang et al.,

2018).

Different from convolutional neural network

based object detection algorithms, typical object

tracking algorithms in computer science focus on dis-

tinguishing between the target and the background.

The tracking algorithms usually run faster than the

machine learning-based algorithms, and they do not

rely on a specialized processing unit to be real-time

applicable. Several typical algorithms, such as ker-

nel correlation filter (KCF) (Henriques et al., 2015),

scalable part-based background-aware correlation fil-

ter (Fu et al., 2018) and tracking learning detection

(TLD) (Kalal et al., 2012), run extremely fast with

high tracking accuracy. Even so, these tracking al-

gorithms have their own limitations. One of them is

that they need to be provided with initial ground truth

information since they cannot self-reliantly figure out

which target they are tracking. Therefore, they require
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an explicit identification of the initial target position

and can hardly autonomously recover once the target

is lost.

In the area of target detection and tracking, most

of the previous works focus on feature-based object

detection and tracking in the image plane (Li et al.,

2017). In this paper the approach for object detec-

tion and object tracking is modified compared to the

state-of-the-art methods and the system balances the

performance autonomously depending on the selected

criteria. Based on the detection and tracking results,

the omnidirectional mobile robot detects and tracks

the interesting target using a stereo camera and the

onboard processing unit.

The paper is organized as follows. Section 2 de-

scribes the modeling of the mobile robot, the percep-

tion and projection of the stereo camera, and the crite-

ria for the switching between tracking and detection.

In Section 3, the structure of the autonomous target

detection and tracking system and their specific prop-

erties are introduced. In Section 4, two typical scenar-

ios are set up to verify the performance of the whole

system. Finally, discussions and conclusions are pre-

sented in Section 5.

2 DEFINITION AND METHOD

2.1 Modeling of the Omnidirectional

Mobile Robot and its Sensor System

The omnidirectional mobile robots used in this pa-

per are Robotinos from Festo. The Robotino is a

holonomic mobile robot with three omnidirectional-

directional wheels, which have angles of 120◦ be-

tween each other, as illustrated in Fig. 1.

The subscript I indicates the inertial frame of ref-

erence. The coordinate system with subscript b is lo-

cated in the middle of the mobile robot. Meanwhile,

a stereo camera is fixed on the top of the mobile robot

with camera coordinates marked with the subscript c.

With this model, the kinematic relationship be-

tween the wheel rotation speed ωi and the global ve-

locity ṙrrI can be defined by

ṙrrI(t) =
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Figure 1: Robot geometry and employed coordinate sys-
tems.

where Rw is the wheel radius, and L is the distance

between the rotation center of the Robotino and the

centers of the wheels. The angle θI(t) is the rotation

angle around the zb-axis. The constant g := 1/16 is

the gear ratio.

Using odometry, one can obtain the position of the

robot over a particular time interval [tk, tn] by means

of

rrrI(tn) =





xI(tk)
yI(tk)
θI(tk)



+
∫ t=tn

t=tk





ẋI(t)
ẏI(t)
θ̇I(t)



dt. (2)

However, due to wheel slip and other disturbances, an

error is introduced that will be integrated over time

and it is thus expected to increase with time. There-

fore, to gain a more precise localization of the robot

in the experiment, some additional data can be fused

using a Kalman filter. One localization information

comes from an external camera with the support from

ARToolKit. To that end, on top of the robot, a pre-

defined marker is attached and its location and ori-

entation are determined relative to a marker fixed on

the ground that represents the inertial frame of refer-

ence. The second data source for data fusion can be

obtained from the inertial measurement unit (IMU) of

the ZED Mini stereo camera. This camera has a built-

in IMU which has the same coordinate system as the

left camera, seen in Fig. 1, and it can provide the ac-

celeration along the camera axes.

2.2 Perception and Projection

In this paper, a stereo camera is utilized for observ-

ing the environment and detecting the target. Com-
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pared with a single camera, the stereo camera does

not only provide a 2D image but also a depth image,

which can be used to estimate the 3D position of the

target (Sharma et al., 2018).

The relationship between the target position in the

inertial frame and the pixel position in the image co-

ordinate frame is illustrated in Fig. 2.

tttc(xt,c,yt,c,zt,c)

tttI(xt,I,yt,I,zt,I)
xc

ximg

yimg

tttp

xp

yp

(wimg,himg)
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oc

camera

yc

zI yI

xI

Figure 2: Target projection in pixel-, camera- and inertial
coordinate frames.

Subsequently the applied target detection or track-

ing algorithms deliver the target’s position (u,v) in the

image frame (ximg,yimg) in pixel units. This pixel po-

sition can be transformed into the image coordinate

frame through the equations

xt,p = (u−
wimg

2
) cP,

yt,p = (v−
himg

2
) cP,

(3)

yielding the target position tttp, and where cP is the

pixel size by resolution and wimg and himg are the

numbers of pixels in horizontal and vertical direc-

tions, respectively.

Furthermore, the stereo camera provides depth in-

formation corresponding to pixel coordinates in the

form (u,v,d). The value of d is the distance between

the object and the camera plane. Therefore, the pro-

jection of the target in camera coordinate xc is equal to

d. Thus, according to the triangle similarity, the target

position tttc to the camera coordinates can be estimated

through
xt,c = d,

yt,c =−
xt,p

f
xt,c,

zt,c =−
yt,p

f
xt,c,

(4)

where f is the focal length of the stereo camera. Con-

sidering the offset and rotation between camera frame

and inertial frame, the target position tttI in the inertial

frame can be obtained by




xt,I

yt,I

zt,I



= RRRIb



RRRbc





xt,c

yt,c

zt,c



+ rrrcamera,b



+ rrrm, I

(5)

in which RRRIb is the coordinate transformation from the

mobile robot frame to inertial frame, and RRRbc denotes

the rotation matrix between the mobile robot frame

and the camera frame, which is an identity matrix ac-

cording to the coordinate system definition in Fig. 1.

Furthermore, the position of the camera frame in the

robot frame is given by rrrcamera,b, while the robot po-

sition in the inertial frame is denoted by rrrm,I.

2.3 Criteria for Autonomous Switching

between Tracking and Detection

As usual, the tracking algorithms consume less com-

puting power compared with machine learning-based

object detection methods. Hence, to achieve satisfac-

tory sampling rates, it is crucial that one executes the

tracking algorithm most of the time as long as it works

properly. However, the tracking algorithm may be

mislead by other objects appearing in the view of the

camera. For instance, when an other object is mov-

ing through the image and even just briefly blocks the

target in the view of the mobile robot, or when the

target moves behind some obstacles, the tracking al-

gorithm may identify a wrong object and may never

recover. Therefore, these situations need to be auto-

matically recognized by the robot, so that it can em-

ploy an object detection algorithm to reacquaint the

target. However, the object detection algorithms have

a lower update rate than the tracking algorithms and

should hence only be executed when necessary to ob-

tain optimal performance.

To that end, it is necessary to figure out some cri-

teria to make a switching from tracking to detection

and vice versa according to the target state during the

mission. In this paper, the intersection over union and

the Hamming distance are chosen to handle this prob-

lem.

2.3.1 Intersection over Union

The intersection over union (IoU) is a typical criterion

for object detection in computer science. Usually, it

compares the estimated result with the ground truth

and returns the difference as a loss criterion. In the ap-

plication of this paper, there is no ground truth prede-

fined manually. The comparison takes place between
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the target zone in the current image frame and the

previously estimated target zone in the image frame.

To estimate the IoU, one calculates the ratio between

the area of the intersection and the area of union of

the two target zones. The intersection area is marked

with a chess board pattern in the example illustrated

in Fig. 3. The ratio is given by using the following

equation for two target zones

IoUi =
target zonei ∩ target zonei-1

target zonei ∪ target zonei-1

, IoUi ∈ [0,1].

(6)

target zonei-1

target zonei

Figure 3: The intersection and the union areas between the
image frame i and image frame i−1.

Typically, the result from Eq. 6 should be close

to 1, if the system has a high update rate, and hence,

in two subsequent images, the estimated target should

be located in a similar pixel position. When the sys-

tem tracks the wrong object, the predicted location of

the target may vary rapidly and reduce the IoU signif-

icantly. With this criterion, one can effectively detect

an unusual tracking performance and indicate to the

system to reinitialize by means of target detection.

2.3.2 Hamming Distance

Apart from calculating the position change of the tar-

get zone, the content of the zone should also be in-

spected. In this paper, the Hamming distance is used

as another criterion for judging the performance of

the system (Hamming, 1950). The Hamming distance

in this paper calculates the summation of the differ-

ence between two target images’ feature maps pixel

by pixel. If two images have a relatively large Ham-

ming distance, these two images may have recorded

different objects, which means the system has tracked

a wrong target.

To generate the feature map, the perceptual hash

(pHash) algorithm is utilized. First of all, the original

target zone is compressed into a relatively small size,

for instance 8×8 pixels, and converted from RGB to

the monochrome form. Then, the pHash algorithm

computes the features of the compressed target image

depending on the discrete cosine transform (Ahmed

et al., 1974). After gathering the image feature for

each pixel, the pHash algorithm creates an empty fea-

ture map with the same size as the compressed target

image, and then it marks the pixel with 1 in the fea-

ture map when the feature value on this pixel is above

the average of the whole image features.

3 AUTONOMOUS TARGET

DETECTION AND TRACKING

SYSTEM

3.1 Hardware Setup

In this paper, an autonomous target detection and

tracking system is built based on the omnidirectional

mobile robot Robotino, see Fig 4.

NVIDIA TX2

antenna
Robotino

marker

ZED Mini

Figure 4: Hardware setup.

In the front of the Robotino a ZED Mini stereo

camera from Stereolabs is mounted on an acrylic plat-

form. It can simultaneously provide RGB images,

depth image and point clouds at around 100 Hz, as

well as the acceleration information at up to 800 Hz.

Furthermore, an NVIDIA TX2 with a J120 carrier

board from Auvidea is attached on the acrylic plat-

form. This module has an embedded GPU unit and

can handle directly the trained neural network using

GPU-accelerated libraries. By combing the designed

hardware, the streamed data from the ZED Mini cam-

era as well as all necessary algorithms can be run in

real-time directly onboard. Additionally, a marker is

placed on top of the Robotino and the localization sys-

tem, that is based on ARToolKit, can send the robot’s

real-time position wirelessly through LCM (Huang

et al., 2010) or ROS.

3.2 System Setup

Based on the hardware above, the autonomous tar-

get detection and tracking system is deployed and or-
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ganized under the ROS environment. There are five

main functional blocks, and each functional block is

named ‘node’ in ROS. The whole system setup is il-

lustrated in Fig. 5.

ROS
PC

ARToolKit

localization

NVIDIA TX2

node

YOLO ZED

target info robot control

node node

node node

Robotino
(hardware)

Figure 5: System setup.

To obtain the mobile robot’s global position, an

external PC which connects a camera fixed to the ceil-

ing is required. Based on the ARToolKit, this node

calculates the Robotino’s pose using the markers in

the test field and broadcasts the robot position and ori-

entation at 10 Hz in the ROS network.

The ZED node is modified from the official ZED

ROS package. It is a hardware correlative node,

which is connected with the ZED Mini camera and

advertises the RGB images, the depth images, the

point clouds and the IMU data topics in ROS for other

nodes during the operation.

To detect the target during the operation, a ma-

chine learning framework called YOLO is utilized as

a backbone. YOLO is one of the state of art object de-

tection frameworks and it has shown its performance

for ImageNet/Coco datasets (Redmon and Farhadi,

2018). Meanwhile, it balances well the recogni-

tion speed and the prediction accuracy compared with

other object detection algorithms. These features are

essential not only for traditional object detection tasks

in computer science but also in robotics, since the

robot is sensitive to operation delays. Without loss

of generality, in the context of this paper, the tar-

get to be detected and tracked is also a Robotino.

Initially, the publicly available, pre-trained YOLO

model cannot recognize Robotinos since a Robotino

does not appear in the open dataset. Therefore, based

on the pre-trained YOLO model and newly collected

Robotino images, the modified YOLO model using

transfer learning methods is trained for the demon-

stration. The YOLO node is recomposed on the basis

of (Bjelonic, 2018). It imports the compressed RGB

image from the ZED node and determines whether

there is a target in front of the mobile robot, and then

broadcasts the target’s position in the image coordi-

nate system as well as the estimated confidence into

the ROS network.

The main component in this system is the target

info node. In this node, the necessary data are asyn-

chronously collected from the YOLO node and the

ZED node, respectively. To handle the data and ob-

tain the target information for the further process, two

threads are parallelly set up in this node. One main

thread handles the target related information and es-

timates the target position in the inertial frame. The

other thread serves as an action server and responds

to all external requests for target states.

In the main thread, a target estimation algorithm

is executed to obtain the target position in the im-

age frame, see Algorithm 1. At first, the algorithm

waits for the initial target detection from the YOLO

node, since the tracking algorithm always requires a

ground truth for the initialization. Once it gets a con-

firmation, the cropped target image will be passed

on to the tracking algorithm, where, in this paper,

the KCF algorithm is utilized as a standard track-

ing method (Henriques et al., 2015). In each loop,

the process will update the target’s features depend-

ing on the current vision from ZED node. Compared

with using only the tracking method, at the end of

each loop, the performance of the tracking method is

checked by means of the Hamming distance and the

intersection over union of the current and the last tar-

get image. If the evaluation is beyond the allowed

limits, the process will require a reinitialization for

the tracking algorithm. Since only object detection

can figure out the target from the camera image, the

process will ask the YOLO node about the target’s po-

sition depending on the YOLO result. If YOLO can

find the current target position, the process will take

the new position to reinitialize the tracking algorithm.

If both YOLO and KCF have totally lost the target,

the node marks a label to warn the other components

in system that there is no available target position cur-

rently. In the action thread, the results from the main

thread will be further processed to obtain the distance

to target and the target position in the global frame

according to the task requirement.

The last component is to control the Robotino

hardware depending on its global localization, the tar-

get states, and the depth image from the ZED node.

This node consists of two threads simultaneously. The

driving thread sends the robot’s current global local-
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Algorithm 1: Target Estimation Algorithm.

1: // Initialization

2: repeat

3: inquiring the first target confirmation;

4: until KCF is initialized

5: // Main while loop

6: while mission in process do

7: if reInit = 0 then

8: updateKCF();

9: hashcur = pHash(imagecur);

10: distance = HammingDistance

(hashcur, hashprev);

11: iou result = IOU(imagecur, imageprev);

12: if distance or iou result over the threshold

then

13: reInit = 1;

14: else

15: hashprev = hashcur;

16: end if

17: else

18: if YOLO result available then

19: reInitKCF();

20: reInit, fail times and lost target = 0;

21: else if fail times under the limitation then

22: fail times++ and reInit = 0;

23: else

24: lost target = 1;

25: end if

26: end if

27: end while

ization to the action server into the target info node

and waits for the response. Once the target’s pixel

position and the global localization are provided, the

node connects to the Robotino using the Robotino

API and drives the robot hardware. If there is any

obstacle, detected from the depth image, in front of

the robot by the second thread, the object detection

function will lead the robot to avoid the obstacle if

necessary.

4 EXPERIMENT

To verify the performance of the autonomous target

detection and tracking system, two scenarios are set

up in the experiment. There are two Robotinos in the

field. One is the tracking robot, which is equipped

with the autonomous detection and tracking system,

the other is the target robot which moves along an ar-

bitrary trajectory during the experiment.

To test the stability of the proposed system, the

target robot follows a predefined square trajectory,

while the tracking robot should lock onto the target

robot, maintain it in the center of the view, and esti-

mate its global position in the first scenario. In Fig. 6,

four image outputs, which are recorded by the ZED

left camera from the experiment are illustrated. In

Fig. 6a, the object detection and tracking perform

similarly, therefore, the algorithm updates the target

position using the tracking algorithm. In some cases,

the object detection algorithm may not recognize the

target robot, e.g., under low light or low contrast con-

ditions, for instance, in the scene in Fig. 6b. In this sit-

uation, the system can update solely using the track-

ing algorithm. When the tracking algorithm cannot

properly track the target, as seen in Fig. 6c, the system

evaluates the performance of the tracking algorithm

and autonomously corrects the tracking result using

the detection algorithm and reinitialize the tracking

model, see Fig. 6d. Meanwhile, both the referenced

trajectory recorded by the ARToolKit and the esti-

mated trajectory target position from the system are

illustrated in Fig. 7. The performance of the position

estimation is evaluated through the root mean square

error (RMSE) through

RMSE =

√

∑i(xref,i − xest,i)2 +(yref,i − yest,i)2

n
. (7)

During the experiment, the system can stably lock

onto the target robot and the RMSE of the position

estimation in the experiment is around 0.1 m.

In the second scenario, the dynamic performance

of the proposed system is verified. In this task, the

tracking robot needs to detect and follow the target

robot, while avoiding obstacles at the same time. In

the middle of the scenario, there are two obstacles that

may block the target robot from the tracking robot’s

view. Therefore, the system has the ability to re-

gain the target position and resume the tracking pro-

cedure once the target is lost. The scenario setup and

the trajectories of both robots and the estimated tar-

get are illustrated in Fig. 8. At the beginning of the

experiment, the tracking robot will turn to the target

and shorten the distance between itself and the target,

once the target is found. After a short movement, the

system detects the obstacle in the view, which may

cause a collision. Therefore, the system drives the

tracking robot away from the obstacle preferentially.

Furthermore, for testing the performance and robust-

ness of the system, the target robot moves and tries

to hide behind the obstacle, as seen in Fig. 9. If the

target is out of the camera range, e.g., the scene in

Fig. 9b, the system analyzes the feedback from the

target info node and drives the tracking robot to go to

the last estimated target position in the global coordi-

nate frame. Then, it executes a search process until

the target robot appears again in the view.
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(a) Both algorithms find the target. (b) YOLO fails in detection.

(c) KCF cannot properly track the target. (d) The reinitialization is executed based on
YOLO results.

Figure 6: Four image outputs from the first scenario, as recorded by the left ZED camera.
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Figure 7: Trajectories of the estimated target position and
the real target position in the first scenario.
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Figure 8: Trajectories of the tracking robot, the target robot
and the estimated target robot position in the second sce-
nario.

(a) The target robot moves and hides itself.

(b) The target is beyond the view of the camera.

Figure 9: Two image outputs from the second scenario.

5 CONCLUSIONS

In this paper, an autonomous target tracking and de-

tection system is designed and implemented on an

omnidirectional mobile robot. Based on the eval-

uation of the Hamming distance and the intersec-
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tion over union, the system orchestrates the detec-

tion and tracking algorithms within the ROS environ-

ment. During the experiment, the system can guide

the tracking robot to find the target robustly in real

time. Furthermore, with the stereo vision, the system

also has the ability to estimate the target’s position

using depth information which can drive the robot to

track and get close to the target. In future work, more

criteria can be chosen and tested within the system.

Furthermore, it seems promising to train a recurrent

neural network to potentially gain a better detecting

and tracking performance.
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