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Abstract— This paper presents a stereo vision system for vehicle detec-

tion. It has been conceived as the integration of two different subsystems.

Initially a stereo vision based system is used to recover the most relevant

3D features in the scene; due to the algorithm’s generality, all the vertical

features are extracted as potentially belonging to a vehicle in front of the

vision system. This list of significant patterns is fed to a second subsystem

based on monocular vision; it processes the list computing a match with a

general model of a vehicle based on symmetry and shape, thus allowing the

identification of the sole characteristics belonging to a vehicle.

The system presented in this work derives from the integration of the

research work developed by the University of Parma (Italy) and I.N.S.A. of

Rouen (France). The two subsystems have been integrated into the GOLD

software and are currently under testing using the ARGO experimental

vehicle.
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I. INTRODUCTION

A widely used approach for vision-based vehicle detection is

the search for specific patterns [1], for example: shape [2, 3,

4], symmetry [5, 6, 7, 8], texture [9], the use of an approximant

contour, or the use of a specific model [10, 11].

In these cases, the processing can be entirely based on monoc-

ular vision. Anyway, a major problem still remains open: while

the vehicle detection can be effective, the distance of detected

vehicles cannot be accurately computed without the aid of other

sensors, unless a flat road is assumed. Moreover, in the case of

single image processing, noisy patterns on the scene (e.g. hor-

izontal signs, concrete textures, or other artifacts on the scene)

can potentially confuse the vision system introducing supple-

mentary edges or textures and leading to incorrect results.

This paper introduces a stereo vision feature detection algo-

rithm specifically tailored for Vehicle Detection. Compared to a

traditional stereo-vision algorithm the discussed approach is not

aimed at a complete 3D world reconstruction but to the mere

extraction of features potentially belonging to a vehicle, namely

only 3D vertical edges. The list of features is intended to be used

by a monocular vision system that performs Vehicle Detection

by means of a match with a vehicle model. Anyway, in this case

the system can draw advantages from having additional infor-

mation on edges’ distances from the camera and from working

on actually vertical characteristics, i.e. without misinterpreta-

tions caused by artifacts or road infrastructures. Therefore, be-

sides a more reliable detection, also an accurate estimation of

vehicle distance can be obtained.

The system presented in this work derives from the integra-

tion of the research work developed by the University of Parma

(Italy) and I.N.S.A. of Rouen (France). Both systems have been
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integrated into the GOLD software and tested on ARGO, an ex-

perimental vehicle equipped for testing vision algorithms and

autonomous driving [12].

This paper is organized as follows. Section 2 introduces the

system used for developing the stereo vision algorithm, while

section 3 describes the system used for testing the algorithm.

Section 4 details the algorithm for the extraction of the features

which will be used for vehicle detection as described in sec-

tion 5. Section 6 ends the paper presenting some final remarks.

II. DEVELOPMENT SET-UP

The I.N.S.A. of Rouen has designed a passive stereovision

sensor made up of a rigid body, two similar lenses and two Philip

VMC3405 camera modules whose centers are separated by 12.7

cm (figure 1). An Imaging Technology PC-RGB frame grab-

ber, installed into a Pentium III 800 MHz with Windows OS,

controls these two cameras, and acquires simultaneously two

images (720× 568 or 720× 284 pixels). Furthermore, the two

camera-lens units are set up so that their optical axes are parallel

and, in order to respect an epipolar constraint, the straight line

joining the two optical centres is parallel to each images hori-

zontal line. In order to respect these geometry constraints, lenses

with sub-pixel geometry distortion have been applied. The New-

ton ring method has been used to verify the geometric paral-

lelism of the two optical axis. Finally, collinearity of images’

lines is set up by micrometer screw with sub-pixel precision :

the calibration procedure is based on the use of two reference

targets whose position is known. Based on this configuration,

depth information is given in meters by:

Z =
f × e

p×δ
(1)

where e is the distance between the two optical centres, p is

the width of the CCD pixel, f is the focal length of the two

lenses, δ is given in pixels and is the horizontal disparity of

two stereo-corresponding points. Let PL and PR be two stereo-

corresponding points of a 3D point P of an object. Let (XL,YL),
(XR,YR) and (X ,Y,Z) be their coordinates. (XL,YL) and (XR,YR)
are given in pixels, (X ,Y,Z) is given in meters. Then, due to the

epipolar configuration YL = YR and δ = (XR −XL).

III. TESTING SET-UP

In order to extensively test the system developed in laboratory

by I.N.S.A., it was integrated into the ARGO prototype vehicle

of the University of Parma [13].

ARGO is an experimental autonomous vehicle equipped with

a stereovision system and automatic steering capabilities. It is

able to determine its position with respect to the lane, to com-

pute road geometry, to detect generic obstacles and pedestrians

on the path, and localize a leading vehicle.
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Fig. 1 The sensor of I.N.S.A. installed into ARGO.

The images acquired by a stereo rig placed behind the wind-

shield are analyzed in real-time by the computing system located

into the boot. The results of the processing are used for a number

of driving assistance functions and to drive an actuator mounted

onto the steering wheel.

The system is able to maintain the full control of the vehi-

cle’s trajectory, and two functionalities can be selected: Road

Following, the automatic movement of the vehicle inside the

lane, and Platooning, the automatic following of the preceding

vehicle, which requires the localization and tracking of a target

vehicle.

Initially only the I.N.S.A. sensor was installed on the ARGO

vehicle to test the hardware system in real outdoor scenarios

and in different conditions of light, weather and traffic. Thanks

to these experiments the feature extraction algorithm has been

enhanced and strengthened.

Subsequently, the algorithm was integrated into the GOLD

system. GOLD is the software that provides ARGO with intel-

ligent capabilities. It includes Generic Obstacles and Lane De-

tection, the two functionalities originally developed, and it in-

tegrates two other functionalities: Vehicle Detection and Pedes-

trian Detection. The feature extraction algorithm previously im-

plemented in Rouen has been ported to the GOLD system and is

currently included as an additional functionality. The final ob-

jective is the integration of this algorithm into the Vehicle De-

tection functionality as a preprocessing procedure, as explained

in section 5.

The integration into the GOLD system allowed to test the al-

gorithm also on the images acquired by the ARGO vision sys-

tem. The stereoscopic system used on ARGO to sense the sur-

rounding environment consists of two synchronized low cost

cameras able to acquire pairs of grey level images simultane-

ously. The resolution of the images they provide is 768× 576

or 768× 288 pixels. To permit the detection of far objects, the

two cameras were placed inside the vehicle at the top corners of

the windshield, so that the longitudinal distance between them

is maximum (95 cm). This distance is therefore significantly

larger than the I.N.S.A. system’s baseline. Moreover, while the

two cameras of the I.N.S.A. sensor are set up so that their op-

tical axes are parallel, the cameras installed on ARGO can be

independently moved with respect to their pan, tilt and roll an-

gles, only their distance is fixed. Hence a minor precision can

be obtained in having parallel optical axes.

Since the process is based on stereo vision, camera calibra-

tion plays a fundamental role in the success of the approach.

The ARGO calibration process is based on a grid with a known

size painted onto the ground. Two stereo images are captured

and used for the calibration. The image coordinates of the in-

tersections of the grid lines are manually provided by the user.

These intersections represent a small set of points whose world

coordinates are known to the system: this mapping is used to

compute the calibration parameters. The small number of ho-

mologous points, the human imprecision which may affect their

coordinates, and the low resolution of the portion of the images

representing far away intersections limit the accuracy of this cal-

ibration procedure, in particular with respect to the precision

achieved by the I.N.S.A. calibration process.

IV. 3D FEATURES EXTRACTION

Within the framework of road obstacles detection, road en-

vironment can be modeled by a class Road and a class Ob-

stacle. In order to feed the vehicle detection functionality, 3D

edge shapes are first constructed from 3D sparse maps, then they

are identified as road edges or obstacles edges. Finally, the 3D

shapes of the class Obstacle are extracted.

A. Construction of 3D edge shapes

A.1 Construction of 3D sparse maps

The algorithm of 3D sparse maps construction is a line by

line processing designed for the configuration of the vision sen-

sor of the INSA of Rouen. In the first step of the algorithm,

the edge points of the right and left images are segmented by

self-adaptive and mono-dimensional operator, the declivity. In a

second step, the edge points of the right image are matched with

the edge points of the left image, using a dynamic programming

method. The matching algorithm provides depth information

(equation 1), based on the positions of the left and right edge

points. The result of the matching algorithm is a 3D sparse map.

The evaluation of this result obtained from the processing of a

pair of images of an inside scene is : 92.6% of the right edge

points are associated with a left edge point. And among these

associations 98% are correct [14].

A.2 Improvement of 3D sparse maps

Using criteria related to road environment, the improvement

algorithm matches right edge points that have not been matched.

It also detects and corrects wrong edge points associations. Be-

cause road environment is structured, the edges of road scenes

are smooth 3D shapes. In the first step of the improvement algo-

rithm, 3D shapes are built based on the result of the segmenta-

tion on the right image and the result of the matching algorithm.

In a second step, we suppose that most of edge points associa-

tions are correct. And if the coordinates of a 3D point belonging

to a 3D shape don’t validate a smoothing criteria, then this 3D

point is the result of a wrong edge points association. In the last

step, a left edge point validating a smoothing criteria is searched

for each right edge point that has not been matched or that has

been wrongly matched. In the following sections, the steps of

the improvement algorithm are described.

Construction of 3D shapes: an actual 3D edge shape can be

constructed using its projections in the right and left images.



The construction of 3D shapes starts with the construction of

their projections in the right image. The result of the matching

algorithm provides the estimations of their projections in the left

image.

Characteristics of 2D right shapes construction: by means of

a line by line processing, 2D right shapes are made based on

right edge points so that:

• a right edge point belongs to one and only one 2D right shape

• a 2D right shape starting at line ls and ending at line le (le ≥
ls), has one and only one point on each line between ls and le

Algorithm of 2D right shapes construction : At the first line of

the right image, each edge point that has a stereo-correspondent

generates a 2D shape. For each edge point of other lines of the

image, the following steps are performed.

step 1 : Let dr be a right edge point whose coordinates in the

right image are (l, p). The set R is constructed with edge points

whose coordinates in the right image are (l − i, p+ j), with j ∈
{−2,−1,0,1,2} and i ∈ {1,2}.

step 2 : A priority level is computed for each set {dr,drR} with

drR ∈ R. The priority level evaluates the extension by dr of the

shape to which drR belongs to. For this computation

• we use the coordinates of dr and drR in the right image. And if

the stereo-correspondents of dr and drR both exist, then we use

their coordinates in the left image

• we take into account the characteristics of the 2D shapes con-

struction

step 3 : The highest priority level of shape extension is consid-

ered. Let S be the shape that must be extended.

step 4 : If a highest priority level of extension of a shape has

been computed, then dr and eventually a point at line (l−1) ex-

tend S. Otherwise, if dr has a stereo-correspondent, it generates

a new 2D shape.

Detection of wrong edge points associations: let Sr and Sl be

respectively the projection in the right image and the estimation

of the projection in the left image of an actual 3D shape. At the

beginning of the detection algorithm, we supposed that all edge

points associations of all 3D shapes are certain. Then, the de-

tection algorithm is applied on each 2D shape Sl , and is divided

in two steps.

Step 1 : The first step aims to detect uncertain edge points asso-

ciations. It is applied on each point dl of Sl that is not the first

point of Sl . Let (l, pdl
) be the coordinates in the left image of dl .

If there is a point dl p of Sl whose coordinates in the left image

are (l−1, pdl
+ j) with j ∈ N −{−∈,−∞, ′,∞,∈}, then {dr,dl}

and {drp,dl p} are uncertain edge points associations.

Step 2 : The second step aims to detect among the uncertain

edge points associations the ones that are wrong edge points as-

sociations. It is applied on each point ul of Sl whose association

with its right stereo-correspondent ur is uncertain. Let {crp,cl p}
and {cr f ,cl f } be two certain 3D points. cl p and cl f belong to

Sl and their coordinates in the left image are (l − ip, pp) and

(l + i f , p f ) with ip ∈ {1,2}, i f ∈ {1,2} and (ip + i f ) ≤ 3. If cl p

and cl f exist a constraint is defined between ul , cl p and cl f . If

a smoothing criteria is validated then {ur,ul} is a certain 3D

point. Otherwise, {ur,ul} is a wrong 3D point. If cl p or cl f

doesn’t exist then {ur,ul} is a wrong 3D point.

Correction of wrong edge points associations: the correction

algorithm is applied on each point wr of Sr that has not been

matched or wrongly matched. Let (l, p) be its coordinates in

the right image. Let {crp,cl p} and {cr f ,cl f } be two certain 3D

points. crp and cr f belong to Sr and their respective coordinates

in the right image are (l−1, pp) and (l +1, p f ). If {crp,cl p} and

{cr f ,cl f } both exist, then we look for a left edge point wl that

has not been matched or wrongly matched so that a constraint

defined between wl ,cl p and cl f validates a smoothing criteria. If

wl exists, then wl is the correct left stereo-correspondent of wr.

B. Identification of 3D shapes

In order to identify the 3D shapes previously computed as

road edges or obstacles edges, two methods cooperate. The

first one selects 3D shapes by thresholding the disparity value

of their 3D points. The second one selects 3D straight segments

by thresholding their inclination angle. From these two selec-

tion results, 3D shapes that are obstacles edges are identified.

The 3D shapes that don’t belong to the class Obstacle, belong to

the class Road.

B.1 3D shapes selection by thresholding disparity values

Using the principles of the Inverse Perspective Mapping [15],

each pixel of an image can be associated to a disparity value,

provided that the position, the orientation, the angular aperture

and the resolution of the camera are known, and supposing that

the road is flat. The orientation of our right camera allow us

to associate each line l of the right image to a disparity value

disp(l). The function disp represents the disparity of the road

and is used as a threshold function to select 3D points from the

improved 3D map : if the disparity of a correct 3D point {dr,dl}
of line l is higher than disp(l), then {dr,dl} is selected because

it is supposed to belong to an obstacle.

Finally, sets of selected 3D points are constructed so that the

three following propositions are validated.

Proposition 1 : the 3D points of a set belong to the same 3D

shape S3D.

Proposition 2 : the 3D points of a set follow one another in S3D.

Proposition 3 : a set has a minimal number of points.

The constructed sets are portions of the 3D shapes constructed

in section IV-A.2. They are the 3D shapes selected.

B.2 3D segments selection by thresholding inclination angle

As road environment is structured, the 3D shapes constructed

in section IV-A.2 can be approximated by means of one or sev-

eral 3D straight segments. By an iterative partition method, 3D

shapes are decomposed into 3D segments. In order to select 3D

segments that belong to road obstacles, we suppose that the road

is flat, then we calculate and threshold the inclination angles of

3D segments. For this calculation, we use the equations of the

projections of each 3D segment in the right and left images. The

equation of the right projection is calculated in (RrXrYr) (fig-

ure 2), and the equation of the left projection is calculated in

(RlXlYl). They are :

xr = mr × y+br xl = ml × y+bl (2)

with mr,ml ,br,bl calculated by a least square method. Note that

the improvement of 3D sparse maps is of paramount importance

for the calculation of ml and bl , and so for a reliable estimation



of the inclination angle. Using geometry propriety, the tangent

of the inclination angle of a 3D segment is given by the equa-

tion 3.

tanβ =
py

(

(bl −br)+ h
2
(ml −mr)

)

√

p2
x

(

(mrbl −mlbr)−
w
2
(mr −ml)

)2
+ f 2(mr −ml)2

(3)

px and py are the width and height of the CCD pixel, f is

the focal length of the two lenses, and w×h is the resolution in

pixels of the cameras. The 3D segments whose inclination angle

is higher than a threshold angle are selected.

Fig. 2 The inclination angle β of a 3D segment.

B.3 Selection of obstacles edges

Let F1 be the set of 3D shapes that have been selected by

thresholding the disparity value of their 3D points. Let F2 be the

set of 3D segments that have been selected by thresholding their

inclination angle. And, let F be the set of 3D shapes identified

as edges of obstacles. In a first step of the construction of F , F

contains the 3D shapes of F1 ∩F2 that has a minimum number

of point. In a second step, an array T of dimension h is filled

with the lowest disparity values of the 3D shapes of F . h is

the height in pixels of the image, and the lowest disparity value

of a 3D shape dispmin is defined as the lowest disparity value

of its certain 3D points. Here again, the improvement of 3D

sparse map is of paramount importance. For each 3D shape and

for each line l with l ≥ 0 and l ≤ lmax, if dispmin < T (l) then

T (l) = dispmin. lmax is the line that verifies disp(lmax)≤ dispmin

and disp(lmax +1) > dispmin with the function disp calculated in

the section IV-B.1. In the last step, the array T is used to extend

F with the 3D shapes of F1 ∪F2 : if a 3D shape S3D of F1 ∪F2,

has a minimum number of certain 3D points whose disparity is

higher than the threshold values defined in T , then S3D extends

F .

C. Experimental results

Figure 3 shows some experimental results of the extraction

of 3D edge shapes identified as edges of obstacles. Column (a)

shows the segmentation results of the right image superimposed

on the original image. Column (b) displays the improved sparse

depth map. The higher the grey level the lower the depth. Col-

umn (c) displays the results of the construction of 3D shapes.

Column (d) presents the results of the extraction of obstacles’

3D edge shapes, superimposed on the acquired images.

The average processing time of a pair of stereo images on a

PC Pentium III 450 MHz with Linux is 960 ms. It is important

to be noticed that the code has not been optimized yet.

V. EXPLOITING 3D FEATURES IN THE VEHICLE

DETECTION FUNCTIONALITY

This sections briefly presents the vehicle detection scheme

originally implemented on the ARGO vehicle [8], and describes

how the stereo-based feature extraction process described in this

paper can help this functionality.

The platooning functionality (the automatic following of the

preceding vehicle) developed in the last few years by the group

of Parma University and tested on the ARGO experimental ve-

hicle was originally based on the localization of ahead obsta-

cles, but it was demonstrated not to be robust enough to allow

smooth vehicle following. A specific vision-based functionality

was therefore explicitly designed to support automatic platoon-

ing, based on the localization of the ahead vehicle only.

The relative position, speed, direction of the vehicle to be fol-

lowed is computed by analyzing a monocular sequence of im-

ages coming from a single camera; then a refinement of this data

is computed by a high-level matching of some selected features

in a stereo view of the same scene. In other words, the main lo-

calization process is performed with low-level techniques (based

on the processing of collections of pixels), while the refinement

is done using a higher level stereo matching technique. The

main advantage of this approach is that, though less compu-

tationally expensive (the main processing is done on a single

image), it is still able to recover 3D information by using stere-

ography at a later stage. Unfortunately, the use of monocular

images (with a lower information content than stereo frames) in

the low-level process may lead to incorrect labelling of impor-

tant features.

Vehicle detection is in fact based on the following steps:

1. grey-level symmetry detection

2. horizontal and vertical edges extraction

3. edges symmetry detection

4. localization of vehicle’s bottom and top borders

5. check on size and distance using perspective constraints as-

sociated with a correct camera calibration

6. search for the same bounding box in the other stereo view in

order to compute a correct distance.

The above steps work correctly in many situations, but there

are cases in which an unfriendly environment may lead the al-

gorithm to false detections. For example, figure 4 shows some

false detections.

In the above situations and in some other cases in which ob-

jects at different distances may be erroneously grouped together,

the stereo-based feature extraction process previously described

may help. Since it is able to discriminate 3D vertical edges and

compute edges’ distance from the camera, this knowledge can

be exploited in the computation of edges symmetries. In other

words, some features may be filtered out so that symmetries can

be computed only on edges that actually represent 3D vertical

objects, and edges that do not lie at similar distances will not



(a) (b) (c) (d)

Fig. 3 Experimental results : (a) edge points of the right image, (b) improved 3D sparse map, (c) 3D edge shapes, (d) 3D edge shapes of obstacles

be matched together. Moreover a first check on vehicle’s size

with respect to its distance can be performed at this early stage:

candidates of vehicles’ left and right vertical edges can be fil-

tered out if they represent an object too narrow or too large with

respect to a vehicle lying at the distance estimated by the stereo-

based procedure.



Fig. 4 Situations in which a mere monocular processing may yield to false detections: original images (on the left) and brighter versions (on the right) of them

with superimposed the wrong result.

VI. CONCLUSIONS

This work presents the results of a joint research collaboration

between the University of Parma and I.N.S.A. of Rouen. The

cooperation is aimed at integrating sensors and algorithms for

vehicle detection and testing them on a real vehicle prototype.

The stereoscopic sensor and algorithm initially developed by

the French party were first tested on the ARGO vehicle. Then a

tighter integration of the two systems allowed to test the feature

extraction algorithm using images coming from the sensors of

ARGO. Thanks to the promising and encouraging results, the

final target will be the integration with the vehicle detection ca-

pability already available on ARGO.
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