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Abstract. Mosaics acquired by pushbroom cameras, stereo panoramas, omnivergent mosaics, and spherical mo-
saics can be viewed as images taken by non-central cameras, i.e. cameras that project along rays that do not all
intersect at one point. It has been shown that in order to reduce the correspondence search in mosaics to a one-
parametric search along curves, the rays of the non-central cameras have to lie in double ruled epipolar surfaces.
In this work, we introduce the oblique stereo geometry, which has non-intersecting double ruled epipolar surfaces.
We analyze the configurations of mutually oblique rays that see every point in space. These configurations, called
oblique cameras, are the most non-central cameras among all cameras. We formulate the assumption under which
two oblique cameras posses oblique stereo geometry and show that the epipolar surfaces are non-intersecting double
ruled hyperboloids and two lines. We show that oblique cameras, and the corresponding oblique stereo geometry,
exist and give an example of a physically realizable oblique stereo geometry. We introduce linear oblique cam-
eras as those which can be generated by a linear mapping from points in space to camera rays and characterize
those collineations which generate them. We show that all linear oblique cameras are obtained by a collineation
from one example of an oblique camera. Finally, we relate oblique cameras to spreads known from incidence
geometries.
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1. Introduction For instance, Rademacher and Bishop (1998) intro-
duced multiple center of projection images to facili-
tate image-based rendering. They required that the im-

ages were taken by a smoothly moving camera. They

A complete theory as well as computational techniques
have been elaborated in order to reconstruct three-

dimensional scenes from images acquired by central
cameras (Hartley and Zisserman, 2000). It is human
nature to ask whether any useful multiview theory is
restricted only to central cameras or if it can be ex-
tended by relaxing the requirement that all rays have
to intersect at one point. Besides the pure intellectual
curiosity, yet another motivation stems from the litera-
ture describing mosaics, which can often be viewed as
images taken along rays that do not all intersect at one
point.

*This research was supported by the following projects: GACR
102/01/0971, MSMT Kontakt 2001/09, and MSM 212300013.

mentioned epipolar geometry between such images and
pointed out that, in general, epipolar lines are replaced
by epipolar curves. Gupta and Hartley (1997) analyzed
linear pushbroom cameras, which are formed by a pen-
cil of rays swept at a constant speed along a line that
is perpendicular to the pencil. They proposed a linear
pushbroom camera model and studied relative configu-
rations of two such cameras. Epipolar geometry of two
linear pushbroom cameras in a general position was
defined and it was shown that for two rays to corre-
spond, a cubic constraint has to be satisfied. Concentric
mosaics, concentric symmetric panoramas, or circular
panoramas (Peleg et al., 2001) are formed by rotating a
linear camera—i.e. a pencil of rays—along a circle that
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is tangent to the pencil. Peleg et al. (2001) proposed a
realization of a concentric panorama using a specially
shaped mirror in order to capture stereo panoramic im-
ages of moving scenes. Shum et al. (1999) proposed a
non-central camera called an omnivergent sensor in or-
der to reconstruct scenes with minimal error. We have
shown recently that some non-central cameras provide
a generalization of epipolar geometries (Pajdla, 2001a).
The same idea was independently introduced by Seitz
(2001) and demonstrated on existing mosaicing tech-
niques and some new mosaicing techniques were
proposed.

In this paper, we show an interesting generalization
of the epipolar geometry. Our generalization leads to
non-central cameras, which have pairwise oblique rays.
We show that such cameras can form a stereo geom-
etry with double ruled epipolar surfaces such that the
sets of mutually oblique rays are partitioned into dis-
joint subsets of rays. Each subset is either a line or a
set of lines lying in a double ruled quadric. All rays
in one of the subsets form two one-parametric fam-
ilies of rays. Similarly, each classical epipolar plane
is spanned by two one-parametric pencils of rays, one
pencil from each camera. It is important that each fam-
ily is independent and one-parametric. Only then can
the correspondence problem be solved independently
in each subset by finding a 1D mapping between the
two families of rays. The ordering along the parame-
ter can be used in the same way as the ordering along
epipolar lines.

The main contribution of the paper is theoreti-
cal. The geometry of two non-central cameras with
non-intersecting epipolar surfaces—oblique stereo
geometry—is introduced and studied. However, it is
also shown that the oblique stereo geometry can be
realized in practice with the use of a catadioptric cam-
era system, which was already proposed and used for
mosaicing (Nayar and Karmarkar, 2000).

The structure of the paper is the following. Nota-
tions and concepts are given in Section 2. Section 3
introduces the notion of visibility closure to interpret
the classical epipolar geometry of two central cam-
eras in a new way, which allows for a generalization.
Section 4 describes the oblique camera. In Section 5,
the geometry of two oblique cameras satisfying natu-
ral requirements is derived. The structure of visibility
closures and the existence of entities corresponding to
epipolar planes and epipoles are discussed. Section 6
gives an example of an oblique stereo-geometry and
describes how to realize it in practice. Linear oblique

cameras are introduced and characterized in Section 7.
Section 8 summarizes the work.

The concept of visibility closure was, for the first
time, introduced in our conference paper (Pajdla,
2001a). The structure of visibility closures of oblique
cameras was first described in another conference pa-
per (Pajdla, 2001b). Here we integrate our preliminary
results into a complete work. We have also improved
some concepts and simplified the proofs so that it would
be easier to generalize the concept of visibility closures
to other non-central cameras. All material regarding
linear oblique cameras is entirely new.

2. Notations and Concepts

Let expA denote the set of all subsets of aset A. A C B
means “A is a subset of B” and A C B means “A is a
proper subset of B”. The three-dimensional real pro-
jective space will be denoted by P* througout the paper.
Space IP3 consists of a set of points, a set of lines, and an
incidence relation “o” satisfying the axioms of three-
dimensional projective space (Mihalek, 1972). Points
are denoted by upper case letters, for instance X. Their
representatives in R* are denoted as upper case bold
letters X. Lines in IP? are denoted by lower case letters,
e.g. [. When we refer to a line generated by points X
and Y we write X V Y or, in the linear representation,
span(XY). By k A I we mean the set of all points that
are incident with lines k and /. We understand the lines
as sets of points and therefore “o” also means “€”. We
say that two lines intersect if there is exactly one point
incident with both. We say that a point lies on a line if
it is incident with the line.

By a camera we understand a subset of the set of
lines in P3, Fig. 1(b). We often refer to the lines of a
camera as to rays. In this paper, the term ray will mean
a non-oriented line and it will be used whenever we
want to stress that a line is a line of a camera.
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Figure 1. (a) A camera is a set of rays in IP?. (b) A central camera
is a set of all rays incident with one point—the projection center C.

(b)



Our notion of a general camera does not impose any
constraint on the rays of the camera. By central camera,
Fig. 1(a), we understand a set of rays in I3 that are all
incident with one point, the center of projection. By
imaging we mean a mapping that assigns rays from
a camera to points in P, Thus, for each point X in
P3, other than the projection center C, a unique ray is
assigned to X by choosing the line X v C. No unique
ray can be assigned this way to the center of projection
but all other points are imaged exactly once.

We say that point X is seen by camera C if there is
aray r € C such that X o r. We say that a point is seen
once by a camera if there exists just one ray from the
camera that is incident with the point. Let C; and C, be
two cameras, i.e. two sets of rays in P3. We say that a
ray r from camera C; is visible from camera C, if each
point of 7 is incident with a ray from C,.

We say thata quadric is properifitis not degenerated,
i.e. it is represented in R* by a full rank matrix.

3. Visibility Closures

Figure 2 shows a diagram of an epipolar plane of two
central cameras. The first resp. the second camera, de-
noted C; resp. Cy, is formed by the set of all lines in
IP? passing through point C; resp. Cs. Let us study the
visibility of rays from one camera by the rays of the
other camera.

Let us choose arbitrary ray r; € Cy, r; #e. The set
U, of all rays from C, intersecting r; spans the epipolar
plane. Symmetrically, the set U; € C; of rays intersect-
ing some r, € Uy, , # e, spans the same epipolar plane
because both C; and C; lie in the epipolar plane. Any
epipolar plane can be thus viewed as the set of points
that are double-covered by the setof lines U = U; U U,,
U; €C; and U, C(C,, such that each line from Uj is
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Figure 2. Epipolar geometry of two central cameras, see text.
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visible from U, and vice versa. We define visibility
closure to formalize the above concept.

Definition 1 (Visibility closure). We say that set
U=U, U U, U CC, U, CC, is a visibility closure
of rays in cameras C;, C, iff it holds that

VkeU,VXeP? Xok: 3lelU, suchthat Xol
VkeU, VXeP Xok: A eU; suchthat Xol
()

The empty set is a visibility closure.

Let us again look at the structure of visibility closures
of two central cameras. First, there is one one-line clo-
sure consisting of the line e joining camera centers Cj,
C; in Fig. 2. The line e contains exactly those points
in space that project into epipoles and which cannot
be reconstructed by intersection of rays from cameras
Cy, C. Secondly, there is a fan of planar closures—
epipolar planes—all intersecting in line e. Finally, the
largest closure is formed by C; U C,. The closures are
partially ordered by the inclusion: line {e} C rays span-
ning epipolar planes € C; U C,.

We will show that the notion of visibility closure is
well-defined even for other arrangement of rays than
the one provided by two central cameras. We can show
that our visibility closure is the set theoretical closure
(Hazewinkel, 1995) under the following assumption.

Assumption 1 (about unique visibility). Let it hold
that for each of the two cameras all points in P that
are incident with aray of one of the cameras are incident
with exactly one ray from both of them.

Let us define the operation that creates visibility clo-
sures from sets of rays and show that it is the set-
theoretical closure.

Definition 2. Let C;, C, be two cameras satisfy-
ing Assumption 1. Let us define the operation ~—
exp(CiUCy) — exp(Cy U (Cp) that assigns to a
set of lines LCCyUC, the smallest (ordered
by the set-theoretical inclusion) visibility closure
U € exp(C; UC,) containing L. Let furthermore B =0.

To show that the above definition is correct, we need
to prove the following lemma.
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Lemmal. Let A, B betwo visibility closures in cam-
eras Cy, C, satisfying Assumption 1. Then, AN B and
A U B are also visibility closures in Cy, C,.

Proof: Empty AN B is a visibility closure by the
definition. A nonempty A N B contains at least one
line. Let WLOG me€ ANBNC;. Since m is in A,
which is a visibility closure, all points of m are in-
cident with a line from A NC,. Let us call the set of
those lines L. Since m is also in B, which is a visi-
bility closure, all points of m are incident with a line
from B NC,. Let us call the set of those lines M. It
follows from Assumption 3 that there is exactly one
line in C, incident with each point of m. Therefore
L=MandsinceLC ANCyand L =M C B NC,,then
L C AN BNC,. Thus, every point on every line from
AN BNC is incident with a line from A N B NC, and
vice versa. The set AN B is a visibility closure in
Cl, Cz.

The set AU B satisfies (1) because both A and B
satisfy (1). O

It follows from Definition 1 that ¥ is a visibility closure.
From Assumption 1 it follows that C; U C, is also a
visibility closure. Thus, for each L € C; U C, there
is a visibility closure—C; U C,—containing L. Let us
take Vy, the set of all visibility closures that contain L.
The set (yy ¢y, V contains L, is smaller or equal to
all elements in V;, and is a visibility closure according
to Lemma 1. Thus ~ is well defined on C; U C,.
Seeing that operation ~  is correct, we are at the
position to formulate and prove the following theorem.

Theorem 1. The operation — is the set theoretical
closure in Cy, C,.

Proof: We have to show (Hazewinkel, 1995) that (1)
AUB=AUB,2QACA () J=0,(4)A = A, for
all A, B € C; UC,. Properties (2), (3), and (4) follow
trivially from Definition 2. Let us show that (1) holds.

First of all, DCE=DCE for each D,CC
Cy UC, because Vr C Vp and all V € Vg contain D,
where Vp resp. Vg is the set of all visibility closures
containing D resp. E. It is clear that the smallest set
from Vg is greater or equal to the smallest set from Vp.

Itholdsthat A € AU B and B € A U B and therefore
it follows from the previous paragraph that A € A U B
and B € A U B thus yielding AU B € AU B.

The set A U B is a visibility closure by Lemma 1.
It contains both A and B and therefore it is a visibility
closure containing AUB. The set A U B is, according to

Definition 2, the smallest visibility closure containing
AU B and therefore AUB C AU B. O

The above theorem justifies the choice of the name
“visibility closure”. The visibility closure of any A can
be obtained as the set-theoretical closure ~ of some
set of lines in C; U C», e.g. as A.

Visibility closures are partially ordered by the set-
theoretical inclusion. We say that a nonempty visibility
closure is atomic if it does not contain any smaller
nonempty closure. The following lemma about atomic
closures will be necessary for proving an important
theorem later.

Lemma 2. Let! be a ray in a pair of cameras satis-
fying Assumption 1. Then [ is atomic.

Proof: The closure / is not empty because it contains
1. If [ is not atomic, then there is a visibility closure A,
@C AcCI.EitherlcAorl ¢ A IflcA, then]l C A
since [ is the smallest visibility closure containing .
However, A C [andthus/ ¢ A.Thereforel/ €\ A C I.
Let us denote the set / \ A by B.

We ought to show that B is a visibility closure. First,
let us show that no ray from A has a common point
with a ray from B. Let WLOG k€ ANC,. Since A
is a visibility closure, there is at least one m € C, for
all X e P3, X ok, such that X o m. By Assumption 1,
through each point of a ray in A passes exactly one ray
from C,. Therefore, all rays from C, incident with X
are in A and none of them are in B because AN B = (.
Secondly, let WLOG pe BNC;. Theset AUB =1
is a visibility closure and thus every point on p is on
some g € AU BNC,. Ray ¢ is not in A since p € B
has a point in common with g. Therefore, g € BN C;.
Thus all points on every ray from B NC; are incident
with a ray from B N C, and vice versa, which makes B
a visibility closure.

The fact that B C [ is a visibility closure and contains
[ is in contradiction with / being the smallest visibility
closure containing /. Therefore, there is no nonempty
visibility closure A C [. O

4. Oblique Cameras

The geometry of central cameras is characterized by the
requirement that all camera rays intersect at one point.
When generalizing to a non-central camera, there is a
plethora possible constraints to impose on the rays of
the camera. We may require all the rays to intersect a



circle like it is in case of a circular panoramas (Peleg
et al., 2001) or a line as it is for a pushbroom cam-
era (Gupta and Hartley, 1997). Let us concentrate on
cameras that image all points in space exactly once.

Definition 3 (Oblique camera). We say that set C is
an oblique camera if

VX eP?3eC suchthat Xol. 2)

The above requirement is sufficient to provide our cam-
era with a geometrical structure that justifies the name
“oblique camera”.

Observation 1. Two rays of an oblique camera are
either identical or oblique.

Proof: Let k,[ be two rays of an oblique camera.
Line k does not intersect line / because if k intersected
[ there would be a point in P? imaged by two rays from
one camera what contradicts (2). o

The oblique cameras are exactly on the opposite side
of the spectrum of cameras to central cameras. While all
rays of a central camera intersect at a projection center,
there are no intersecting rays in any oblique camera.

The structure of an oblique camera is not completely
fixed by the above requirement and it is also not clear
whether there is any such camera. In what follows, we
will first assume to have two different oblique cameras
and will study their possible visibility closures. Then,
we will show that oblique cameras with oblique stereo
geometries exist.

5. Oblique Stereo Geometry

We will show that by adopting the following constraint
on the relationship between the rays of two oblique
cameras, interesting visibility closures are obtained.

Assumption 2 (about two oblique cameras). Let us
assume that the rays of oblique cameras C; #C, are
in such a configuration that for each three mutually
distinct rays [y, [, [z from C; resp. C, the following
holds. If there is one ray in C, resp. C, that intersects
l1, 1, I3 simultaneously then all lines from P3, which
intersect [y, [, I3 simultaneously, are in C; resp. C;.

Let us show the structure of visibility closures for
oblique cameras satisfying Assumption 2.
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5.1.  Structure of Visibility Closures

Visibility closures of oblique cameras satisfying
Assumption 2 are subsets of the set of all lines in P3.
Therefore, it will be useful to restate the following clas-
sical geometrical theorem (Hilbert and Cohn-vossen,
1999).

Theorem 2 (Double ruled surfaces in P3). Let
ki, ko, k3 be three mutually oblique lines in P3. Then,
the set of all points that lie on all lines intersecting
ki, ky, k3 form a proper double ruled quadric. Lines
k1, ka, k3 lie in one ruling while the lines intersecting
them lie in the other. Both rulings are generated by any
three mutually distinct lines from the other ruling. Ev-
ery line from one ruling intersects all the lines from the
other ruling. Proper double ruled quadrics and planes
are the only double ruled surfaces in three-dimensional
real projective space. The proper double ruled quadrics
are either a hyperboloid of one sheet or a hy-
perbolic paraboloid in Euclidean three-dimensional
space.

Proof: See Hilbert and Cohn-Vossen (1999) and
Knarr (1995). U

Applying Theorem 2 to oblique cameras in the con-
figuration satisfying Assumption 2 yields the following
lemma.

Lemma3. Anatomic visibility closure in two oblique
cameras satisfying Assumption 2 is either a ray or a
proper double ruled quadric.

Proof: Let U =U,;UU,, where U; CC;, U CC, be
an atomic visibility closure of a ray belonging to an
oblique camera satisfying Assumption 2. Closure U is
nonempty. Let WLOG [ € U;. Then, either [ € U, or
[ ¢ U,.

Let [ € U,. Then [ = [ according to Definition 1.

Let!/ ¢ U,,Fig.3(a). Then, according to Definition 3,
through all points of / passes a line from U,. Let us take
three different lines from U, that intersect /, Fig. 3(b).
It follows from Observation 1 that they are mutually

lely L LCUy
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Figure 3. The illustration for the proof of Lemma 3, see text.



166 FPajdla

oblique. They are intersected by / and therefore due to
Assumption 2, the set L of all lines that are simulta-
neously intersecting the three chosen lines is a subset
of Uy, Fig. 3(c). The points incident with all lines L
form a proper double ruled quadric as follows from
Theorem 2, Fig. 3(d). Again thanks to Assumption 2,
the set M of all lines that simultaneously intersect
any three distinct lines from L is a subset of U, and
therefore all points incident with lines in M form the
same proper double ruled quadric according to The-
orem 2. Therefore I = L U M since each point of [
is intersected by a line from the proper double ruled
quadric. O

Putting Theorem 1, Lemma 2, and Lemma 3 to-
gether yields the following theorem, which character-
izes the structure of intersection closures of oblique
cameras.

Theorem 3. A visibility closure of rays in a pair of
oblique cameras satisfying Assumption 2 is a union
of mutually disjoint lines and proper double ruled
quadrics.

Proof: The visibility closure of a nonempty set L
of rays is not empty. It follows from Theorem 1 that
the visibility closure L is given by Uvier 1. Tt follows
from Lemma 2 that the closure [ is atomic. Atomic
closures are either lines of proper double ruled quadrics
as follows from Lemma 3. Two distinct atomic closures
have no line in common. o

5.2.  Epipoles, Epipolar Lines, Epipolar Surfaces

Let U = U, UU,, where U; €C; and U, € C, be a vis-
ibility closure in a pair of oblique cameras satisfying
Assumption 2. We see from Theorem 3 that there are
two kinds of atomic closures in U.

The atomic closures of the first kind are lines that are
themselves visibility closures. No point on such lines
can be reconstructed by intersecting a line from U; with
a line from U,. The line /, which is a visibility closure,
is in U; as well as in U,. Since there is only one line
in each U; that passes through a point in space, there is
no line in U, other than /, that would intersect a line
from U, at a point on /.

The atomic closures of the second kind are proper
double ruled quadrics. Each of their points can be re-
constructed as an intersection of a line from U; with a
line from U,.

We see that a pair of oblique cameras can be con-
structed as follows. There are two rulings on each
proper double ruled quadric. Thus, on each quadric we
assign lines from one ruling to one camera and the lines
of the other ruling to the other camera. An oblique cam-
erais fixed once we make thi assignment on each proper
double ruled quadric. Many different cameras, which
are not projectively equivalent, can be constructed by
exchanging the rulings between the cameras on each
of the quardrics. All lines in each ruling can be pa-
rameterized along a line from the other ruling since
every line from one ruling intersects all the lines in the
other.

Analogically to the classical epipolar plane, the set
of rays emanating from one oblique camera and span-
ning a proper double ruled quadric is in a one-to-one
correspondence with a line. Thus solving for a corre-
spondence inside one quadric visibility closure of two
oblique cameras, i.e. finding correspondences between
the ray sets U; and U, in one U, amounts to finding a
correspondence between points of two lines. It can be
done exactly the same way as it is done for epipolar
lines in a pair of central images.

While the notion of epipolar lines in central images
has a symmetrical notion in oblique images, there is no
equivalent notion for epipoles. An epipole in a central
camera C| is the image of the center of a second camera
C,, i.e. the image of a point in space that is on more
than on ray of C,. There are no epipoles in oblique
stereo geometry since every point is on exactly one ray
of an oblique camera.

6. Example of Oblique Stereo Geometry

Theorem 3 characterizes nonempty visibility closures.
However, is there any arrangement of lines in P? such
that they might form two oblique cameras satisfying
Assumption 2? Figure 4 shows one such example. The
figure shows two lines, / and &k, and a set of rota-
tional hyperboloids of one sheet with axis /. The hy-
perboloids fill the space between [ and k.. Line ko lies
in the plane at infinity and therefore it is, in a Euclidean
space of the figure, depicted as a circle. One oblique
camera is for example formed by the set of all rulings
depicted by black lines while the other is depicted by
gray lines. Both cameras contain the lines / and ko,
which are the only one-line visibility closures of the
arrangement.

All hyperboloids as well as the two lines form the
set of quadrics Q = {Q(s) | s € [0, 1] C R}inP? with



Figure 4. Two sets of lines—black and gray—that form oblique
cameras satisfying Assumption 2.

Q(s) defined as

s—1

where X € R*\0 stands for a vector from the linear
representation of P3. Quadrics Q(s) defined by (3) are
lines for s =0 and s = 1, and double ruled rotational
hyperboloids for s € (0, 1). For each point X € P there
is exactly one s € R such that Q(s) contains X.

The lines that form oblique cameras that coincide
with the lines of rulings of the hyperboloids in Q can
be written as

X =y X o =y
X
I} = span Y , I = span Y “4)
Z Z —w
w —Z w —Z

for all points X = (x, y, z, w)” € R*\0 (Pajdla, 2001b).
The lines /1, I, form the reguli of quadrics Q. The lines
[; form camera Cy, lines /, form camera C,.

All other arrangements of lines that are obtained
from the above example by a collineation also form
two oblique cameras satisfying Assumption 2 since
collineations preserve incidence.

Stereo with Oblique Cameras 167

Figure 5. The arrangement of lines from Fig. 4 can be generated
by rotating two lines along a set of concentric circles.

6.1. Realization

The arrangement of lines depicted on Fig. 4 can be
realized by rotating two intersecting lines /;, I along
concentric circles that lie in a plane perpendicular to
the line /, see Fig. 5. The center of circles is at the point
C where [ intersects the plane. The angle o between /],
[, is zero for the zero radius, and therefore [, [, merge
together to one line /. It equals 7 for the infinite radius,
and therefore the lines merge together to one line k. If
the angle is neither zero nor 7, the set of lines obtained
by rotating /,, [/, forms a rotational hyperboloid of one
sheet with one ruling generated by /; and the other
by 12.

It is impossible to realize an oblique camera that
would see whole IP? as in the above example. However,
it is possible to realize a set of rays containing just
the rays of a subset of the set of visibility closures.
The following camera has been proposed by Nayar and
Karmarkar (2000) in order to obtain complete spherical
mosaics.

Let us have a conical mirror observed by a telecentric
lens (Watanabe and Nayar, 1996) in the direction of
the mirror rotation axis o as shown in Figs. 6 and 7.
Let furthermore the mirror be such that all the parallel
rays going through the telecentric lens are reflected to
the rays that are perpendicular to the mirror axis thus

Figure 6. 'The two lines from Fig. 5 can be generated by selecting
four pixels from an image of the scene reflected by a conical mirror.
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Figure 7. Two sets of rays forming hyperboloidal closures can be
realized by rotating catadioptric camera consisting from a telecentric
optics and a conical mirror.

spanning plane o perpendicular to o. As the radius r
of the cylinder grows, the plane moves away from the
tip of the conical mirror. If one had an infinitely large
mirror as well as the telecentric lens, the moving plane
would fill the whole half-space.

On each cylinder, denoted by C in Fig. 6, of parallel
rays we can select four rays, e.g. [y, [{ and I, I}, such
that/;, I} as well as I, I/ reflect into the same line in o
The angle between the lines in o can be made arbitrary
by the choice of the rays on C. Thus, by selecting four
proper rays from each cylinder, one can obtain couples
of rays lying in planes perpendicular to line o.

The subset of the set of visibility closures is then
obtained by rotating the mirror around the line /, which
intersects the axis o at the point 7'. There are only those
closures that intersect the volume swept by the rotating
mirror. Only the points, which are not contained in the
swept volume, are seen.

7. Linear Oblique Cameras

The example given above is not the only example
of an oblique camera. In mathematical literature, e.g.
in Buekenhout (1995), oblique cameras are called
spreads. A spreadis aset of lines (i.e. sets of points) that
partitions the points of the space. Spreads were studied
in finite as well as infinite projective spaces in connec-
tion with translation planes (Knarr, 1995; Hirschfeld,
1998). Spreads in IP? are characterized by certain map-
pings over affine planes, which are called transversal
(Knarr, 1995). There is a spread for each transversal
mapping and there are many different spreads, which
are not projectively equivalent.

Figure 8. A spread can be generated by a mapping o over set
Schs of points as the set of lines {X V o (X)| VX € S).

Central cameras assign lines to points in space by
connecting the points with a projection center C. Imag-
ing can be thus viewed as a mapping 7 from points
of the space to the lines of the space X S xvec.
The mapping 7 is, in a linear representation of the
projective space, a linear singular mapping that can
be represented by a 4 x 4 real matrix P of rank three
(Hartley and Zisserman, 2000). The right null-space
of P corresponds to the projection center C. In other
words, central cameras assign rays to points by linear
mappings in the linear representation of the projective
space.

Spreads can also be constructed such that to each
point X in the space a unique line / is assigned by a
linear mapping. We shall say that a mapping o : S C
P — P3, generates a spread over the set of points S
if the set of lines {X v o (X) | VX € S} is a spread, see
Fig. 8. It is interesting to look at those spreads, which
are generated by collineations over P>,

Not all collineations in IP* generate spreads over P
For instance, no collineation that has a fixed point,
let say X, generates a spread because X V o (X) =X,
which is not a line. Thus no ¢ in P, which generates
a spread, has one-dimensional invariant subspace. On
the other hand, o must have enough two-dimensional
invariant subspaces such that each point of the space is
exactly in one such subspace. The intersection of any
two two-dimensional invariant subspaces has to be the
zero vector because otherwise there would be a one-
dimensional invariant subspace. Therefore, if a line /
is generated as [ = X V o (X) for some X € P?, then it
holds true that Y o/ = o (Y) ol for all Y incident with
[, see Fig. 9.

The following theorem characterizes collineations
that generate spreads over IP? in terms of the matrices
of the corresponding linear mappings over R*.



Figure 9. Collineation ¢ maps every point Y from the line
X Vv o (X) back to the line.

Theorem 4. A collineation o : P> — P? represented
by the matrix S € R*** generates a spread over P3 if
and only if

S & ()

for some o € R, where = stands for the matrix similar-
ity [2].

Proof: A line has to be assigned to all points of space
and therefore S must be regular. Each spread contains at
least two non-intersecting lines. The lines are mapped
to themselves by o. Therefore, a basis can be cho-
sen from subspaces corresponding to the two lines in
which S is block diagonal. The basis consists of four
vectors chosen such that two vectors are in either line.
By requiring that for each / = X A o (X) holds true that
Yol = o(Y)ol forall Y incident with /, see Fig. 9, the
collineation o is obtained in the form (5). See Pajdla
(2001c¢) for more details. O

As pointed out by Kohout (2001), the spread gener-
ated by (5) does not depend on the parameter «. The
parameter only affects the action of the collineation in-
side the lines of the spread. The spread itself, i.e. the
set of lines, remains the same for all values of «. It is
therefore natural to formulate the following theorem.

Theorem 5. A spread generated over P? by a
collineation with the matrix similar to (5) for some
a €R can be generated over P* by the collineation
with the matrix similar to (5) for « = 0.

Proof: Denote the matrix of the collineation that gen-
erates the spread by S. Then, by Theorem 4, there ex-
ists a basis B, in which the generating matrix can be
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written as (5) for some real «. Denote the generating
matrix as Sg(a). It is enough to show that for each
X €P3, and any o €R it holds true that X, Sp(0)X,
Sp(a)X are of rank two. For any given real ¢, we can
find coefficients «, 1, —1, which are not all zero, such
that «X 4+ Sp(0)X — Sp(w)X = 0. O

Note that when transforming X € IP? into X’ € P3 by
a collineation P as X' =PX, the line span(X SX) is
transformed into span(X’, PSP~'X’) because

span(X, SX) = span(P~'X’, SP7'X/)
=P 'span(X',PSP7!X"),  (6)

which is equivalent to transforming the points of P* by
a collineation P, by which S goes to PSP~

We can see that Theorem 5 is important because it
says that all spreads generated over IP3 by collineations
can be obtained by a collineation from the spread gener-
ated over IP? by (5) for a = 0. By comparing the action
of the matrix (5) for &« = 0 with the lines (4), we clearly
see that all linear oblique cameras can be obtained by a
collineation from the example described in Section 6.

8. Summary and Conclusions

We have generalized the notion of a camera by replac-
ing the requirement that all the rays of a camera inter-
sect at one point. Instead, we have introduced oblique
cameras, for which it holds that no two rays from one
camera intersect.

We have introduced the notion of visibility clo-
sures to interpret epipolar planes as one-parametric
visibility closures of rays of two central cameras.
When adopting Assumption 2 about the rays of two
oblique cameras under scrutiny we arrived at gener-
alized one-parametric closure spaces. We have shown
that in such a case the generalization of epipolar planes
leads to proper double ruled quadrics—in Euclidean
space either a hyperboloid of one sheet or a hyperbolic
paraboloid. Such surfaces can be parameterized by one
parameter along a line, the same way as the rays in
epipolar planes can be parameterized along epipolar
lines. It was therefore natural to introduce the notion
of oblique stereo geometry for the arrangement of non-
intersecting rays allowing for one-parametric closures.

From the practical point of view, it is important that
there is an arrangement of rays in P that allows for two
oblique cameras with nontrivial one-parametric inter-
section closures. We have also proposed a technical
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stereo geometry with rays intersecting at

central cameras point

pushbroom cameras  line

circular panorama circle

KT LA

oblique cameras

Figure 10. All stereo-geometries are “between” the central and
oblique stereo geometry.

realization of an oblique camera pair having a subset
of such visibility closures.

We mentioned that our oblique cameras are known
in mathematical literature as spreads. Linear oblique
cameras were defined to be analogical to central linear
cameras. The characterization of collineations gener-
ating spreads was given.

We believe that oblique stereo geometry is an inter-
esting theoretical concept because all non-central cam-
eras lie between the central camera and oblique cam-
erasy, Fig. 10. Similarly, all stereo geometries, namely
those produced by various mosaicing techniques, lie
between the classical epipolar geometry and oblique
stereo geometry.
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