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Vanadium oxides have recently attracted widespread attention due to their unique advantages and have demonstrated promising
chemical and physical properties for energy storage. This work develops a mild and efficient method to stereoassemble hollow
V2O5@FeOOH heterostructured nanoflowers with thin nanosheets. These dual-phased architectures possess multiple lithiation
voltage plateau and well-defined heterointerfaces facilitating efficient charge transfer, mass diffusion, and self-reconstruction
with volumetric strain. As a proof of concept, the resulting V2O5@FeOOH hollow nanoflowers as an anode material for lithium-
ion batteries (LIBs) realize high-specific capacities, long lifespans, and superior rate capabilities, e.g., maintaining a specific
capacity as high as 985mAh g−1 at 200mA g−1 with good cyclability.

1. Introduction

Featuring high theoretical lithium storage capacity, consider-
able structural versatility and appealing electrochemical reac-
tivity, transition metal oxides (TMOs, e.g.,M

x
O

y
, M=Cu, Fe,

Co, Ni, Mn, etc.) have received tremendous interest for
potential energy storage applications [1–5]. Moreover,
TMOs are endowed with enhanced safety as anode materials
for lithium-ion batteries (LIBs), as the lithium dendrite
growth can be inhibited at a relatively higher lithiation reac-
tion potential. Therefore, TMOs have been widely explored
and designed with expected structures, compositions, and
size [6–9]. Particularly, vanadium oxides can intercalate
more lithium ions owing to the distinct feature of multiple
oxidation states (V2+ to V5+) [10–14]. In practice, despite
the high theoretic capacity as both anode and cathode mate-

rials for LIBs, low electrical conductivity and large volumetric
strains of V2O5 inevitably render poor rate capability and
cycling stability [15–17]. To address these issues, carbon
modification has been one of the most intuitive approaches
to promote the electron transport for numerous TMOs-
based electrode materials [18–20].

Alternatively, developing well-defined structures has also
demonstrated great promise for boosting the electrochemical
properties including enhanced capacity as well as desired sta-
bility [21–24]. For example, hierarchical assemblies consist-
ing of nanosized building blocks, i.e., one-dimensional (1D)
or two-dimensional (2D) subunits, are provided with com-
bined merits of further enlarged contact area with electrolyte
and reduced charge/mass diffusion pathways [25–28]. How-
ever, sacrificial templates associated with multistep proce-
dures are usually involved for carefully designed complex

AAAS
Research
Volume 2020, Article ID 2360796, 9 pages
https://doi.org/10.34133/2020/2360796

https://orcid.org/0000-0002-9921-5284
https://orcid.org/0000-0001-8749-8937
https://doi.org/10.34133/2020/2360796


structures. Furthermore, heterostructures through coupling
versatile species are believed to offer more opportunities for
various areas, which results from regulated electronic struc-
tures and intriguing synergistic effect at well-defined hetero-
interfaces [29–33]. More importantly, rational integration of
functional components with consideration of their intrinsic
redox properties allows tailored electrochemical behaviors
for energy-based applications [34, 35]. To date, efficient con-
struction of heterostructured electrodes based on V2O5 with
tunable complex nanostructures remains a big challenge.

Herein, we demonstrate an efficient and facile method to
stereoassemble dual-phased architectures of V2O5@FeOOH
under a mild condition. Hierarchical V2O5@FeOOH hetero-
structures with well-defined morphology and composition
are composed of highly connected ultrathin nanosheets, fea-
turing well-defined heterointerfaces and multiple lithiation
voltage plateau. Specifically, the V2O5@FeOOH with hollow
nanoflower structures are well presented, enabling efficient
charge transfer, mass diffusion, and self-reconstruction with
volumetric strain. As a proof-of-concept demonstration, the
V2O5@FeOOH hollow nanoflower anode delivers boosted
Li-storage properties including high-specific capacities, long
lifespans, and superior rate capabilities. Remarkably, a
high-specific capacity of 985mAhg−1 at 200mAg−1 is
achieved with good cyclability.

2. Results and Discussion

The facile synthetic procedure of dual-phased hollow archi-
tectures is illustrated in Figure 1. The stereoassembled
V2O5@FeOOH hollow heterostructures are obtained by
using commercial V2O5 as the starting material under a mild
condition (see the Experimental section for details). Specifi-
cally, irregular bulk V2O5 powders (Figure S1) are first
dispersed in deionized water, followed by dropwise addition
of hydrogen peroxide (H2O2) at room temperature to form
a uniform solution. During which, the dissolution of V2O5

with the presence of H2O2 results in the formation of
complex vanadium-based intermediates [36]. Afterward,
the self-assembly of V2O5 nanosheets into well-defined
hierarchical hollow architecture can be realized with the
assistance of iron(III) nitrate nonahydrate
(Fe(NO3)3·9H2O) at 50

°C by controlling the reaction time
(Figures S2-S6). Importantly, Fe(NO3)3 in this case acts as
the shape-directing agent to manipulate the morphology, as
bare 2D nanosheets with large lateral size and smooth
surface can be obtained without the addition of Fe(NO3)3
(Figure S7). Furthermore, Fe(NO3)3 contributes to the
nanoscale heterostructuring with optimized composition
through in situ deposition of FeOOH as well. Lastly, a
reddish-brown V2O5@FeOOH product can be harvested
after a vacuum freeze-drying process.

The morphology and structure of the V2O5@FeOOH
heterostructures are investigated by field emission scanning
electron microscopy (FESEM). As presented by the pano-
ramic image in Figure 2(a), these V2O5@FeOOH particles
exhibit a flower-like sphere structure with high uniformity.
A closer FESEM examination revealed the hierarchical archi-
tecture of V2O5@FeOOH, which are assembled from nano-

sheet subunits with a small thickness of about 10nm
(Figure 2(b)). Interestingly, a well-defined hollow interior of
approximately 300 nm can be clearly observed from the
transmission electron microscopy (TEM) image
(Figure 2(c)). At a higher magnification, the thin character
of these wrinkled nanosheets is suggested by their high trans-
parency under the electron beam (Figure 2(d)). Notably, a set
of diffraction spots well fit the orthorhombic V2O5 lattice
structure, which is viewed along the [010] zone axis accord-
ing to the selected area electron diffraction (SAED) data
(Figure S8). In the high-resolution TEM (HRTEM) image
(Figure 2(e)), the crystalline nanosheet shows typical lattice
spacings of 0.23 nm and 0.20 nm, corresponding to the
(113) and (006) planes of V2O5·1.6H2O. Meanwhile,
notably discontinuous lattice fringes can be observed, which
can be readily attributed to the vertical coverage of
amorphous FeOOH domains. Moreover, scanning
transmission electron microscopy-energy dispersive
spectroscopy (STEM-EDS) elemental mapping images of
V2O5@FeOOH corresponding to the dark-field image
(Figure 2(g)) reveal the homogeneous distribution of V, Fe,
and O (Figure 2(h)). As demonstrated by the EDS line scan
profile in Figure 2(f), both V and Fe signals exhibit
relatively higher intensity at the edge region as compared to
the core region, further validating the formation of hollow
structure.

It is worth noting that the configuration of
V2O5@FeOOH heterostructure can be precisely tuned by
varying the amount of Fe(III) precursor (Figure 3). Interest-
ingly, the flower-like V2O5@FeOOH spheres expanded sig-
nificantly with the increasing amount of Fe(III) precursor.
In sharp contrast to V2O5@FeOOH-1 that is obtained by
using Fe(NO3)3 and V2O5 with a mass ratio of 1 : 1
(Figures 3(a) and 3(b)), V2O5@FeOOH-2 evolves into irreg-
ular assembly of nanosheets, exhibiting open cavities as sur-
rounding 2D building blocks tend to spread out
(Figures 3(c) and 3(d)). Importantly, the hierarchical hollow
structure hardly maintains when further increasing the mass
ratio of Fe(NO3)3 to V2O5 (V2O5@FeOOH-5). Highly inter-
connected 3D architectures can be obtained, which are con-
structed from randomly assembled nanosheets with rough
surfaces (Figures 3(e) and 3(f)). For comparison, bare
FeOOH particles can be obtained by the same procedure
except for the presence of V2O5 (Figure S9).

The crystal structure of as-synthesized samples is then
determined through X-ray diffraction (XRD) measurement
(Figure 4(a)). For V2O5@FeOOH-1, the diffraction peaks at
8.3°, 25.9°, 31.1°, 34.2°, 46.4°, and 50.3° can be well assigned
to (001), (101), (004), (103), (006), and (200) reflections of
orthorhombic structured V2O5·1.6H2O (JCPDS no. 40-
1296). On the other hand, no characteristic peaks belonging
to FeOOH are detected, which should be attributed to its
amorphous feature [37]. The lower crystallinity of
V2O5@FeOOH-2 and V2O5@FeOOH-5 as indicated by the
disappearing of well-defined diffraction peaks further suggest
the increased content of amorphous phase within the
V2O5@FeOOH hybrids. The chemical composition and
bonding state of V2O5@FeOOH are also investigated by X-
ray photoelectron spectroscopy (XPS). The high-resolution
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Fe 2p spectra (Figure 4(b) and Figure S10) confirm the
presence of Fe species as FeOOH [38, 39], with the
coexistence of Fe2+ and Fe3+ at 710.7/724.8 eV and
712.8/727.8 eV, respectively. The peak intensity for Fe 2p1/2,
2p3/2, and satellite together enlarged from V2O5@FeOOH-1
to V2O5@FeOOH-5, in accordance with the increasing
incorporation of Fe species within the heterostructure
(Table S1). The V 2p region spectra of V2O5@FeOOH are
analyzed, exhibiting characteristic peaks centered at 524.6
and 517.0 eV for V5+ components of V2O5 (Figure 4(c))
[40–42]. Besides, a negative shift of binding energy
(~0.8 eV) for both V 2p1/2 and 2p3/2 bands are achieved as
compared to bare V2O5 (Figure S11), indicating the strong
electronic interaction at the V2O5/FeOOH interfaces.
Meanwhile, the deconvoluted O 1s core level spectra show
two dominant peaks that can be assigned to V-O and Fe-O-
Fe bonds [43], which reveal varied portions of the Fe-O-Fe
at 530.4 eV accordingly (Figure 4(d)).

As a proof of concept, the electrochemical properties of
heterostructured V2O5@FeOOH as LIB anodes are examined
(Figure 5). The initial Coulombic efficiency (CE) is around
50% for V2O5@FeOOH (e.g., 50% for V2O5@FeOOH-1,
53% for V2O5@FeOOH-2, and 43% for V2O5@FeOOH-5),
which can be attributed to the irreversible capacity loss due
to the formation of solid electrolyte interphase (SEI) film
on the electrode surface [44]. After a typical activation pro-
cess for 50 cycles [45], remarkable reversible capacities as
high as 985, 1016, and 1030mAhg−1 at a current density of
200mAg−1 are delivered by V2O5@FeOOH-1,
V2O5@FeOOH-2, and V2O5@FeOOH-5, respectively, reach-
ing the CE of nearly 100%. The desirable Li-storage capacities
surpassing bare V2O5 (635mAhg−1) and FeOOH
(342mAhg−1) manifest the superiority of dual-phased het-
erostructures constructed by 2D building blocks. Different
from V2O5@FeOOH-2 and V2O5@FeOOH-5 with capacity
fading after ca. 100 cycles, 96% capacity is retained for
V2O5@FeOOH-1 after 180 cycles, which can be further

attributed to its well-defined hollow configuration. The 3D
hierarchical structure integrity of V2O5@FeOOH-1 can be
maintained during repeated Li+ insertion and exaction as
confirmed by postmortem FESEM images in Figure S12. Of
note, the cycling stability of V2O5@FeOOH-1 can be
further highlighted at a higher current density of
2000mAg−1, i.e., 494mAhg−1 after 300 cycles with a high
capacity retention of 95% (Figure S13).

Importantly, rate performance of the V2O5@FeOOH-1
anode was investigated at different current densities from
100mAg−1 to 3000mAg−1 (Figure 5(b)). Reversible capaci-
ties of 992, 947, 906, 856, 714, 519, and 366mAhg−1 are
achieved at current densities of 100, 200, 300, 500, 1000,
2000, and 3000mAg−1, respectively. Cyclic voltammetry
(CV) profiles at different scan rates from 0.2 to 1.0mVs−1

were therefore recorded to verify the electrochemical kinetics
of V2O5@FeOOH-1 for Li-storage (Figure 5(c)). Negligible
peak shifts are observed as the scan rates increase, suggesting
small polarization as well as desirable kinetics of
V2O5@FeOOH-1 at high rates. The relationship of log (i,
peak current) versus log (v, scan rate) was plotted to give
the fitted values of slope b (Figure S14), which provides
insights into the charge storage mechanism according to

the power-law formula i = avb [46]. Specifically, a b value of
0.5 represents an ideal diffusion-controlled process, whereas
1.0 indicates a surface capacitive-controlled one. The
calculated b values are 0.74 for anodic peak 1 and 0.83 and
0.72 for the cathodic peaks 2 and 3, respectively,
demonstrating a partial capacitive-controlled behavior of
V2O5@FeOOH-1. Quantitative analysis further reveals that
the ratios of capacitive contribution gradually improve
upon increasing the scan rates (Figure 5(d), see calculation
details and Figure S15 in Supplementary Materials), which
reaches 67.16% at 1.0mVs−1 (Figure S16). The considerable
pseudocapacitive contributions can be readily attributed to
the presence of abundant amorphous domains and
numerous grain boundaries on the surface of highly

Figure 1: Schematic illustration for the stereoassembled V2O5@FeOOH hollow heterostructure.
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exposed nanosheets. These electrochemically active sites are
undoubtedly favorable for boosting Li-storage capacity and
especially rate performance of V2O5@FeOOH-1 hybrid.
Furthermore, Nyquist plots demonstrated reduced charge
transfer resistances (Rct) of V2O5@FeOOH-1 (114.7Ω) as
compared to FeOOH (125.5Ω), and V2O5·nH2O (181.0Ω),
which was fitted according to the equivalent circuit

(Figure S17 and Table S2). Moreover, the plot slope of Z ′

vs. ω−1/2 can be obtained to illustrate the speed of lithium
diffusion, which is calculated to be 83.7 for V2O5@FeOOH-1,
171.3 for FeOOH, and 128.2 for V2O5·nH2O (Figure S18).
Therefore, the lithium diffusion coefficients at 25°C are
calculated to be 5:98 × 10−14, 5:28 × 10−15, and 2:55 × 10−14 c

m2 s−1 for V2O5@FeOOH-1, FeOOH, and V2O5·nH2O,
respectively. The results indicate that the V2O5@FeOOH-1
hybrid can provide more accessible pathway for charge

transfer due to the sufficient heterointerface and accelerated
lithium diffusion, resulting in enhanced Li-storage
performance.

Additionally, Li-storage performance of V2O5@FeOOH-1
are superior to that of many other reported vanadium-based
oxide materials (Table S3). The substantially optimized
electrochemical properties can be ascribed to the rational
construction of V2O5@FeOOH heterostructures with well-
defined 3D configurations featuring intriguing interfaces and
synergistic effects. Specifically, the V2O5 nanosheets in the
first place serve as ideal building blocks with promoted
Li+/electron transport owing to their ultrathin feature. After
introducing amorphous FeOOH, the Li intercalation process
can be readily tailored due to the distinct lithiation voltage
plateau of FeOOH and V2O5 as schematically illustrated in
Figure 5(e). Upon discharge, the lithiation of V2O5 occurs at
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a higher voltage (2.5-1.4V) [47], during which the volumetric
expansion can be effectively restrained owing to the presence
of amorphous FeOOH as surface buffers. Afterwards,
FeOOH further contributes considerable capacity at lower
voltages (1.4-0.4V) [48], which is also confined within the
inner space provided by interconnected nanosheets. Apart
from the strain self-reconstruction enabled by the synergy
between V2O5 and FeOOH, the hollow configuration is
highly appealing for strain accommodation and cycling
stability during repeated lithiation and delithiation. More
importantly, extra Li+ storage sites together with diffusion
channels are created where the presence of amorphous
FeOOH domains induce abundant grain boundaries of V2O5

and substantial interfacial area, contributing to boosted
reaction activity and enhanced Li-storage capacity.

3. Conclusions

In summary, a novel hollow V2O5@FeOOH heterostructured
nanoflower has been stereoassembled via an efficient and
mild method. These nanoflowers composed of well-
connected ultrathin nanosheets demonstrate superior advan-
tages including enlarged electrode-electrolyte contact, facili-
tated charge transfer, and accelerated mass diffusion for
LIBs. Owing to the multiple lithiation voltage plateau and
well-defined heterointerfaces, the hollow V2O5@FeOOH
nanoflowers deliver excellent lithium storage properties with
a high reversible capacity (985mAhg−1 at 200mAg−1 after
180 cycles) and remarkable cycling stability (95% capacity
retention at 2000mAg−1 after 300 cycles). It is expected that
the present result can be further extended to optimize other
TMO-based materials and shed lights on the development
of future energy applications.

4. Material and Methods

4.1. Preparation of V2O5@FeOOH Hollow Heterostructures.
0.364 g commercial V2O5 powder was mixed with 25mL DI
water and 5mL H2O2 (30wt%) under stirring for 2 h to form
a dark-red solution at room temperature. Fe(NO3)3·9H2O
was then added to the above mixture under stirring,
accompanied with water bath at 50°C overnight. The
reddish-brown precipitates were collected by centrifugation
and washed with water and ethanol several times. Finally,
V2O5@FeOOH was obtained by a freeze-drying process.
By varying the amount of Fe(NO3)3·9H2O, a series of
V2O5@FeOOH heterostructures were prepared and
denoted as V2O5@FeOOH-1, V2O5@FeOOH-2, and
V2O5@FeOOH-5. Take V2O5@FeOOH-2 as an example,
the mass ratio of Fe(NO3)3·9H2O to V2O5 is 2 : 1.

4.2. Preparation of V2O5·nH2O. 0.364 g commercial V2O5

was dispersed in 25mL DI water under stirring, followed by
the addition of 5mLH2O2 (30%) to form a dark-red solution.
After aging at room temperature for 2 h, the mixture was
maintained at 50°C under stirring overnight to form a hydro-
gel. Finally, V2O5·nH2O was collected after a freeze-drying
process.

4.3. Preparation of FeOOH. 0.364 g Fe(NO3)3·9H2O was first
dissolved in 25mL DI water containing 5mL H2O2 (30%)
under stirring at room temperature. The solution was then
maintained at 50°C overnight. The precipitates were rinsed
with water and ethanol several times by centrifugation.
Finally, the as-obtained product was collected after freeze-
drying overnight.

4.4. Materials Characterization. FESEM (JEOL, JSM-7600F)
and TEM (JEOL, JEM-2100F) coupled with EDS spectros-
copy were used to investigate the morphology, structure
and composition of the as-obtained samples. Crystal phases
of the obtained samples were identified using XRD (Rigaku,
SmartLab with Cu Kα radiation). XPS (Thermo-VG Scien-
tific, ESCALAB 250) was employed to characterize the com-
positions and valence states of the products.

4.5. Electrochemical Measurements. The electrochemical
measurements of the as-prepared active materials were per-
formed according to previously reported procedures [49].
Specifically, CR2032-type coin cells were assembled in an
argon-filled glove box with the contents of moisture and oxy-
gen less than 0.5 ppm. 70wt% of the product (e.g.,
V2O5@FeOOH-1, FeOOH, and V2O5·nH2O) was mixed with
20wt% multiwalled carbon nanotube and 10wt% polyvinyli-
dene difluoride into NMP to prepare the working electrode.
The as-obtained slurry was uniformly pasted on the Cu foil
with a mass loading of about 1mg cm−2 and dried under vac-
uum at 60°C for 24 h to remove the solvent. For the LIBs test,
the lithium metal foil was used as the counter/reference elec-
trode, 1.0M LiPF6 dissolved into a mixture of ethylene car-
bonate (EC), dimethyl carbonate (DMC), and ethyl methyl
carbonate (EMC) (EC/DMC/EMC, 1 : 1 : 1, v/v/v) was used
as electrolyte, and Celgard 2400 membrane was used as the
separator. The galvanostatic charge-discharge tests at various
current densities were conducted with a battery testing sys-
tem (NEWARE, CT-4008) under a voltage range of 0.01 to
3.0V. The CV curves were obtained on a Bio-logic (VMP-
300) electrochemical workstation.
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