$2.5-2.0\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 141.8$ (s, $\mathrm{C}-9 \mathrm{a}$), 139.0 and 133.4 ($\mathrm{s}, \mathrm{Ar} \mathrm{C}$), 130.3, 129.5, and 129.0 (d, $\mathrm{Ar} \mathrm{C)}$, 119.3 (s, C-5a), 117.7 (d, Ar C), 114.3 and 112.5 (s, CN), 112.0 (d, ArC), 72.1 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), 64.0 [d, NCH (bridgehead)], 59.1 (q , $\left.\mathrm{OCH}_{3}\right), 57.1$ and 53.2 [d, $\mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$ and $\mathrm{ArCH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$], 44.6 [s, $\mathrm{C}(\mathrm{CN})_{2}$], 28.0 and $26.9\left(\mathrm{t}, \mathrm{CH}_{2}\right.$), 21.2 ($\mathrm{q}, \mathrm{CH}_{3}$); IR (KBr) $2260(\mathrm{CN}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 357.189\left(\mathrm{M}^{+}\right.$, calcd 357.184). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}\left(M_{\mathrm{r}} 357.456\right): \mathrm{C}, 77.28 ; \mathrm{H}, 6.49 ; \mathrm{N}$, 11.75. Found: C, $76.91 ; \mathrm{H}, 6.58 ; \mathrm{N}, 11.71$.

X-ray Structure Determination of $6 \mathbf{n}$. The crystal structure of $\mathbf{6 n}$ was determined by X-ray diffraction. Crystal data $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$: triclinic, space group $P \overline{1} ; a=15.031$ (1) $\AA, b=8.190$ (2) $\AA, c=6.938$ (1) $\AA, \alpha=79.86(1)^{\circ}, \beta=78.55(1)^{\circ}, \gamma=94.82$ (1) ${ }^{\circ} ; V=817.7$ (3) $\AA^{3} ; Z=2, d_{\text {caled }}=1.20 \mathrm{~g} \mathrm{~cm}^{-3} ; \mu=0.7 \mathrm{~cm}^{-1}$. Reflections were measured in the $\omega / 2 \theta$ scan mode, using graphite monochromated Mo $\mathrm{K} \alpha$ radiation [scan width (ω) $1.40+0.6$ tan $\theta]$. The structure was solved by direct methods and refined with full-matrix least-squares methods. A total of 1583 reflections with $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$ was used in the refinement. The number of parameters refined was 284 [scale factor, extinction parameter, positional parameters of all atoms, and thermal parameters (isotropic for H atoms, anisotropic for others)]. The final R factors were $R=3.6 \%, R_{\mathrm{w}}=4.6 \%$. All calculations were done with SDP. ${ }^{24}$

Acknowledgment. This investigation was supported by the Netherlands Foundation of Chemical Research
(24) Structure Determination Package; Frenz, B. A. and Associates Inc., College Station, TX, and Enraf-Nonius, Delft, 1983.
(SON) with financial aid from the Netherlands Organization for Scientific Research (NWO).

Registry No. 1a, 446-52-6; 1b, 445-27-2; 1c, 68295-43-2; 2a, 123-75-1; 2b, 765-38-8; 2c, 76946-27-5; 2d, 110-89-4; 2e, 109-05-7; 2f, 1484-80-6; 2g, 117607-54-2; 3a, 58028-74-3; 3b, 117677-92-6; 3c, 117677-93-7; 3d, 34595-26-1; 3e, 117607-55-3; 3f, 117607-56-4; 3g, 117607-57-5; 3h, 70243-84-4; 3i, 117677-94-8; 3j, 117677-95-9; 3k, 39911-06-3; 31, 117607-58-6; 3m, 117607-59-7; 3n, 117607-60-0; 3o, 117607-61-1; 3p, 117607-62-2; 3q, 117607-63-3; 4a, 87698-95-1; 4b, 107743-55-5; 4c, 107743-57-7; 4d, 87698-96-2; 4e, 117607-64-4; 4f, 117607-65-5; 4g, 117607-66-6; 4h, 117607-67-7; 4i, 117607-68-8; 4j, 107797-45-5; 4k, 117607-69-9; 41, 117607-70-2; 4m, 117607-71-3; 4n, 117607-72-4; 5a, 117607-73-5; 5b, 107743-56-6; 5c, 107743-58-8; 5d, 117607-74-6; 5e, 117607-75-7; 5f, 117607-76-8; 5g, 117607-77-9; 5h, 117607-78-0; 5i, 117677-96-0; 5j, 107797-46-6; 5k, 117607-79-1; 5l, 117607-80-4; 5m, 117607-81-5; 5n, 117607-82-6; 50, 117607-83-7; 5p, 117607-84-8; 5q, 117607-85-9; 6c, 107743-59-9; 6g, 117607-86-0; 6j, 107797-47-7; 6n, 117607-87-1; 6p, 117607-88-2; 6q, 117607-89-3; 7c, 107743-64-6; 7g, 117607-90-6; 7j, 107797-48-8; 7n, 117677-97-1; 7p, 117677-98-2; 7q, 117677-99-3; 80, 117607-91-7; 8p, 117607-92-8; 8q, 117607-93-9; 9q, 117678-00-9; 10q, 117678-01-0; 2,4'$\mathrm{H}_{3} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$, 117607-94-0; (4-methylphenyl)magnesium bromide, 4294-57-9; malononitrile, 109-77-3.

Supplementary Material Available: Tables of positional and thermal parameters, bond distances and bond angles for $6 n$ (6 pages). Ordering information is given on any current masthead page.

Stereochemical Aspects of the "tert-Amino Effect". 2. Enantio- and Diastereoselectivity in the Synthesis of Quinolines, Pyrrolo[1,2-a]quinolines, and [1,4]Oxazino[4,3-a]quinolines

Walter H. N. Nijhuis, ${ }^{\dagger}$ Willem Verboom, ${ }^{\dagger}$ A. Abu El-Fadl, ${ }^{\dagger, 8}$ Gerrit J. van Hummel, ${ }^{\ddagger}$ and David N. Reinhoudt*, ${ }^{\dagger}$
Laboratories of Organic Chemistry and Chemical Physics, University of Twente, 7500 AE Enschede, The Netherlands

Received June 20, 1988
Thermal isomerization of the optically pure 2-vinyl- N, N-dialkylanilines, with a methyl or an ethyl substituent $\left(\mathrm{R}^{2}\right)$ at the α-position of the N, N-dialkyl moiety, $4 \mathrm{a}\left(\mathrm{R}^{1}=\mathrm{H}\right), 4 \mathrm{~b}\left(\mathrm{R}^{1}=\mathrm{CH}_{3}\right), 5 \mathrm{a}\left(\mathrm{R}^{1}=\mathrm{H}\right)$, and $6 \mathrm{a}\left(\mathrm{R}^{1}=\mathrm{H}\right)$, affords enantioselectively the optically pure pyrrolo[1,2-a]quinolines 7 a and 7 b and the $[1,4]$ oxazino $[4,3-a]$ quinoline 11, with the methyl or ethyl substituent $\left(R^{2}\right)$ at the bridgehead carbon atom, and the quinoline 13 , respectively. The optical purity of these quinoline derivatives was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of chiral shift reagents. Heating of the optically pure analogues in which R^{2} is a methoxymethyl group (4c and 4d) in refluxing 1-butanol yields, besides the compounds $7 \mathrm{c}, \mathrm{d}$ with the methoxymethyl group at the bridgehead carbon atom, also the regioisomers $8 \mathrm{c}, \mathrm{d}$ and $9 \mathrm{c}, \mathrm{d}$ that are enantiomerically pure. Mixtures of the diastereomers $12 \mathrm{a}, \mathrm{b}$ and $14 \mathrm{a}, \mathrm{b}$ were obtained by cyclization of compound 5 b , with a 3 -ethylmorpholinyl group, and of the acyclic amine $6 b$, respectively, in refluxing 1 -butanol. The compounds 12 a and $14 \mathrm{a}, \mathrm{b}$ were proven enantiomerically pure. The configuration of the compounds $8,9,12$, and 14 was determined by X-ray analysis $[(\pm)-12 a]$ and ${ }^{1} \mathrm{H}$ NMR and ${ }^{1} \mathrm{H}$ NOE difference spectroscopy. These results provide conclusive evidence for the mechanism of these cyclization reactions, which are further examples of the "tert-amino effect". The effect of substituents on the enantio- and diastereoselectivity of the cyclization is discussed.

Introduction

In a previous paper on the $\mathrm{C}-\mathrm{C}$ bond formation via the "tert-amino effect", we have described the influence of steric and electronic effects of substituents on the regioselectivity of the cyclization of 2 -vinyl- N, N-dialkyl-

[^0]anilines, yielding pyrrolo[1,2-a]quinolines and benzo[c]quinolizines. ${ }^{1}$
As a further extension we have investigated the possible synthesis of optically pure quinoline derivatives by thermal conversion of optically pure 2 -vinyl- N, N-dialkylanilines. Moreover, cyclization of chiral 2-vinyl- N, N-dialkylanilines could provide conclusive evidence for the proposed
(1) Nijhuis, W. H. N.; Verboom, W.; Abu El-Fadl, A.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem., preceding paper in this issue.
mechanism of these reactions.
In the literature, methods have been described for efficient asymmetric α-alkylation, e.g. of secondary amines, ${ }^{2}$ of γ-oxo esters, ${ }^{3}$ and of carboxylic acids. ${ }^{4}$ The general feature in these syntheses is that they all require a chiral auxiliary, base or catalyst.
Recently, Seebach et al. ${ }^{5}$ have described a novel method for the synthesis of chiral α-heterosubstituted carboxylic acids via α-alkylation at the chiral center. During this so-called "self-reproduction of chirality", the chirality at the reacting $\mathrm{sp}^{3} \mathrm{C}$ atom is temporary lost. However, the chirality of this center is memorized by a novel chiral center, and conformational effects direct the alkylation of the intermediate. At the original chiral center a highly stereospecific reaction takes place.
In this paper we describe the self-reproduction of chirality, without the use of auxiliary reagents, in the thermal isomerization of optically pure 2 -vinyl- N, N-dialkylanilines to quinoline derivatives.
During this conversion, which takes place via a 1,5 -hydrogen shift and subsequent cyclization, the center of chirality in the starting material is lost in the corresponding dipolar intermediate but reproduced with retention of configuration upon cyclization. In addition, the 1,5-hydrogen shift offers the possibility to introduce a second novel chiral center with $>98 \%$ enantioselectivity.
The enantioselectivity of the cyclization of optically pure 2 -vinyl- N, N-dialkylanilines with a (R)-2-methyl- or (S)-2-(methoxymethyl)pyrrolidine (4), a (R)-3-ethylmorpholine (5), or a (R)-N-ethyl- N-(1-phenylethyl)amino group (6) as N, N-dialkylamino moiety was studied. Successively, we will describe the enantioselectivity of the cyclization of the optically pure pyrrolidinyl compounds $4 \mathrm{a}-\mathrm{d}$ to the pyrrolo $[1,2-a]$ quinolines $7-9$, of the optically pure morpholinyl compounds $\mathbf{5 a}, \mathrm{b}$ to the [1,4]oxazino-[4,3-a]quinolines 11 and 12, and of the optically pure acyclic N, N-dialkylaniline derivatives $6 \mathbf{a}, \mathbf{b}$ to the quinoline derivatives 13 and 14, respectively.

Results ${ }^{6}$

Synthesis of the Optically Pure 2-Vinyl-N,N-dialkylanilines 4-6. The optically pure secondary amines were prepared according to the literature, ${ }^{7-9}$ except (R)-2-methylpyrrolidine. ${ }^{10}$

For the synthesis of (R)-2-methylpyrrolidine we first reacted L-prolinol in chloroform with thionyl chloride to give the HCl salt of (S)-2-(chloromethyl)pyrrolidine (72%) $\left[[\alpha]^{25}{ }_{\mathrm{D}}+11.9^{\circ}\right.$ (c $\left.\left.1.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$. This compound was converted to (S)-2-(chloromethyl)-1-pyrrolidinecarboxylic acid phenylmethyl ester (76%) $\left[[\alpha]^{25} \mathrm{D}-43.5^{\circ}\right.$ (c 2.05 , CHCl_{3})] by treatment with benzyloxycarbonyl chloride in dichloromethane in the presence of triethylamine. Subsequently, the 2 -chloromethyl moiety was reduced to the 2 -methyl group via a radical reaction with tri- n-butyltin hydride and AIBN in refluxing benzene (87%). ${ }^{11}$ The

[^1]Chart I

prepared (R)-2-methyl-1-pyrrolidinecarboxylic acid phenylmethyl ester $\left[[\alpha]^{25}{ }_{\mathrm{D}}-24.9^{\circ}\right.$ (c $2.02, \mathrm{CHCl}_{3}$)] was subsequently treated with $35 \% \mathrm{HBr}$ in acetic acid to yield (R)-2-methylpyrrolidine hydrobromide quantitatively.
The optically pure ${ }^{12}$ benzaldehyde (1a, 1c, 2a, and 3a) and acetophenone derivatives ($\mathbf{1 b}, 1 \mathbf{d}, \mathbf{2 b}$, and $3 \mathbf{b}$) were prepared from the appropriate optically pure secondary amines and 2 -fluorobenzaldehyde or 2 -fluoroacetophenone, respectively, via a nucleophilic substitution of the fluorine atom. ${ }^{1,13,14}$ Subsequently, the compounds 1 and 2 were reacted in a Knoevenagel condensation reaction with malononitrile at room temperature in toluene to yield the starting compounds for cyclization (4 and 5) in good yields (Chart I). ${ }^{1,14}$
In the case of (R)-2-(2 -methyl-1-pyrrolidinyl)benzaldehyde (1a) and the acetophenone derivative 1b the malononitrile adduct could not be obtained pure. After several hours of reaction, mixtures of the condensation products ($4 a$ and $4 b$, respectively) and the cyclized compounds ($\mathbf{7 a}$ and $7 \mathbf{b}$, respectively) were isolated. No attempts were made to isolate compounds $4 \mathfrak{a}$ and 4 b. The condensation of the optically pure acyclic N, N-dialkylanilines $\mathbf{3 a}$ and $\mathbf{3 b}$ took place under these conditions at such a low rate that cyclization accompanied the condensation reaction. By elevating the reaction temperature, ring closure proceeds faster than condensation, and hardly any condensation product was present in the reaction mixture. Also in these cases, no attempts were made to isolate the condensation products $6 \mathbf{a}$ and $6 \mathbf{b}$.

Thermal Isomerization of the Optically Pure 2-Vinyl- $\boldsymbol{N}, \boldsymbol{N}$-dialkylanilines. I: Cyclization of the Optically Pure Pyrrolidinyl Compounds 4a-d. Thermal isomerization of $(R)-[[2-(2-m e t h y l-1-$ pyrrolidinyl)phenyl]methylene]propanedinitrile (4a), generated in situ from 1a and malononitrile, in refluxing 1-butanol gave selectively one enantiomer of the 3amethylpyrroloquinoline 7a. ${ }^{1}$ Cyclization of the phenylethylidene derivative 4b, a compound in which the α carbon atom of the vinyl moiety is a prochiral center, generated in situ from 1 b and malononitrile, afforded $s e$ -

[^2]

a $\mathbf{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
b $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{3}$
c $\mathbf{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$
d $\mathrm{R}^{\mathrm{I}}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$

10
lectively one enantiomer of the trans-3a,5-dimethylpyrroloquinoline $\mathbf{7 b}$, after reaction for 2 h in refluxing 1-butanol.

The observed regiospecificity in this reaction was lost in the ring closure of $4 \mathbf{c}$ having a methoxymethyl substituent. Cyclization of 4 c gave a mixture of $7 \mathrm{c}(46 \%)$ and two diastereomers, $8 \mathbf{c}$ [$1 S$-cis; 19%] and $9 \mathbf{c}$ [$1 S$-trans; 17%] (Chart II). The compounds 7d (33\%), 8d, and 9d (35% and 6%, respectively) were obtained upon cyclization of 4 d .

The enantiomeric purities ($\geq 98 \%$) of $7 a-d, 8 c, d$, and $9 \mathrm{c}, \mathrm{d}$ were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (200 and 500 MHz) with chiral shift reagents. ${ }^{15,16}$ In order to determine the absolute configuration of $\mathbf{7 d}$ by X-ray analysis, this compound was brominated with N-bromosuccinimide (NBS) in carbon tetrachloride at room temperature to give a compound brominated at C-7 [10: ${ }^{1} \mathrm{H}$ NMR $\delta 7.33$ (s, $1 \mathrm{H}, \mathrm{H}-6), 7.27$ and $6.52(\mathrm{AB}, 2 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-8$ and $\mathrm{H}-9$)] in a yield of 78% (Chart II). Determination of the absolute configuration of 10 by X-ray analysis ${ }^{6}$ showed that cyclization had taken place with retention of configuration at the chiral center, with the methoxymethyl group at the bridgehead carbon atom and the methyl group at the new chiral center in trans position. Hence, 7d has the $3 \mathrm{a} R$-trans configuration.
In both other two isomers ($\mathbf{8 d}$ and 9 d) formed by cyclization of 4 d the hydrogen atom at the bridgehead carbon atom (H-3a) is at the same face of the molecule as $\mathrm{H}-5$ (determined by ${ }^{1} \mathrm{H}$ NOE difference spectroscopy). The crystal structure of 9 d was determined by X-ray analysis. ${ }^{6}$ Due to the lack of anomalous scatterers, the absolute configuration could not be determined. Assuming that the original chiral center with the methoxymethyl group is retained the configuration is $1 S-(1 \alpha, 3 \mathrm{a} \beta, 5 \alpha)$. In this isomer
(15) The optical purities of $7 \mathrm{a}, \mathrm{b}$ and $7 \mathrm{c}-9 \mathrm{c}$ were determined by using 1.0 equiv of $\mathrm{Yb}(\mathrm{hfc})_{3}$ and 1.0 equiv of AgFOD. The spectra of the racemic $7 \mathrm{a}, \mathrm{b}$ and $7 \mathrm{c}-9 \mathrm{c}$ showed a splitting of the methyl group at C-3a (7a) and at C-5 ($\mathbf{7 b}$) or a splitting of the methoxy singlet in the case of $7 \mathrm{c}-9 \mathrm{c}$.
(16) In ref 6 it was mentioned that the optical purity of 7d was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using $\mathrm{Yb}(\mathrm{tfc})_{3}$. Recently, we have found that better results were obtained with $\mathrm{Yb}(\mathrm{hfc})_{3}$ or a mixture of $\mathrm{Yb}(\mathrm{hfc})_{3}$ and AgFOD. The $500-\mathrm{MHz}$ spectra of the racemic 7d, 8 d , and 9 d in the presence of 1.5 equiv of $\mathrm{Yb}(\mathrm{hfc})_{3}$ or 0.75 equiv of $\mathrm{Yb}(\mathrm{hfc})_{3}$ and 0.75 equiv of AgFOD showed two doublets whereas $7 \mathrm{~d}, 8 \mathrm{~d}$, and 9 d obtained from the optically pure starting material showed one doublet of $\mathrm{CH}_{3}-5$.

Figure 1. X-ray crystal structure of (土)-12a.
Chart III

$11 R^{1}=R^{2}=H$
12a $\mathrm{R}^{1}=\mathrm{H}: \mathrm{R}^{2}=\mathrm{CH}_{3}$
12b $\mathbf{R}^{1}=\mathrm{CH}_{3}: \mathrm{R}^{2}=\mathrm{H}$
(9d) all hydrogen atoms at the chiral centers are at the same face of the molecule.

The relative configuration of the products obtained by cyclization of $4 \mathbf{a}-\mathbf{c}$ were determined (${ }^{1} \mathrm{H}$ NMR and NOE difference spectroscopy), and from the results obtained by cyclization of $\mathbf{4 d}$ we assigned the absolute configuration of $\mathbf{7 a}, \mathbf{7 b}, 7 \mathrm{c}, 8 \mathrm{c}$, and $\mathbf{9 c}$ as depicted (Chart II).

On the basis of these results we conclude that there are two characteristic features in the formation of the pyrroloquinolines 7-9. Firstly, in these product molecules the hydrogen that is transferred ($\mathrm{H}-5$) and the bridgehead substituent (H or R^{2}) are at the same face of the molecule. Secondly, in the formation of 7a-d, the cyclization takes place with retention of configuration of the original chiral center.

II: Cyclization of the Optically Pure Morpholinyl Compounds 5a and 5b. Thermal isomerization of (R) -2-[[2-(3-ethyl-4-morpholinyl)phenyl]methylene]propanedinitrile (5a) gave selectively one enantiomer of $11\left[{ }^{1} \mathrm{H}\right.$ NMR $\delta 3.39$ (br dd, $1 \mathrm{H}, J=11.8$ and $3.7 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{eq}}$), 3.23 (ddd, $1 \mathrm{H}, J=11.8,11.7$, and $4.4 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{az}}$), 2.03 and 1.72 $\left(\mathrm{ABX}_{3}, 2 \mathrm{H}, J_{\mathrm{AB}}=14.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 57.5$ [s, $\left.\mathrm{NC}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right]$ (Chart III) in a yield of 75% and with an optical purity of more than $98 \% .{ }^{17}$

This stereoselectivity was lost in the reaction of the phenylethylidene derivative $5 \mathbf{b}$. Heating of $\mathbf{5 b}$ in refluxing 1-butanol (30 h) gave a mixture of two diastereomers of 12, which could not be separated by column chromatography. The ${ }^{1} \mathrm{H}$ NMR $\left[\mathrm{C}_{6} \mathrm{D}_{6} ; \delta 1.39\right.$ and $1.37[\mathrm{~d}, J=6.7$ $\left.\mathrm{Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right], 0.85$ and $\left.0.72\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right]$ and ${ }^{13} \mathrm{C}$ NMR [CDCl $3 ; \delta 43.0$ and $42.3\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 38.0$ and 35.8 [d, $\left.\mathrm{ArCH}\left(\mathrm{CH}_{3}\right)\right]$] spectra of the reaction mixture revealed

[^3]

$13 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
14a $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
14b $\mathbf{R}^{1}=\mathrm{CH}_{3} ; \mathbf{R}^{2}=\mathrm{H}$
that two compounds were formed, with the ethyl substituent at the bridgehead carbon atom (C-4a) (90% yield, ratio 7:3). Unfortunately, we were not able to isolate one of the two isomers by fractional crystallization. The optical purity of 12 a ($>95 \%$), could be determined using the mixture of $12 \mathrm{a}, \mathrm{b}$ and chiral shift reagents, ${ }^{17}$ while the optical purity of $\mathbf{1 2 b}$ could not be determined in this way (coinciding peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum). Upon fractional crystallization of the racemic mixture of 12a and 12b, obtained from racemic 5b, we could obtain the major diastereomer pure [(土)-12a]. X-ray analysis revealed that in this compound the ethyl group at $\mathrm{C}-4 \mathrm{a}$ and the hydrogen atom at C-6 are at the same face of the molecule (Figure 1).

Obviously in the formation of the [1,4]oxazino[3,4-b]quinolines 12 from 5 b, besides the compound in which the hydrogen that is transferred is at the same face of the molecule as the substituent at the bridgehead carbon atom (12a), also a minor isomer in which these substituents are related trans (12b) is formed.

III: Cyclization of the Optically Pure Acyclic Compounds 6a and 6b. The acyclic tertiary amine 6a, prepared in situ from 3a and malononitrile, resulted upon heating in refluxing 1 -butanol in the selective ring closure at the benzylic carbon atom [${ }^{1} \mathrm{H}$ NMR $\delta 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left.\delta 65.2\left[\mathrm{~s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)\right], 42.4\left(\mathrm{t}, \mathrm{NCH}_{2}\right)\right]$, to give the quinoline derivative 13 in a yield of 73% (Chart IV) with an optical purity of $\geq 98 \%$. ${ }^{17}$

Heating of $\mathbf{6 b}$ in refluxing 1-butanol also affords ring closure at the benzylic carbon atom. However, in this case two diastereomers were obtained (ratio of $3: 1$), which could not be separated ${ }^{1}{ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 2.29[\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{NC}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}$], $1.63\left[\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \operatorname{ArCH}\left(\mathrm{CH}_{3}\right)\right] ;$ (minor isomer) $\delta 1.89\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{NC}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right.$], 1.74 [d, 3 $\left.\left.\mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)\right]\right] .{ }^{1} \mathrm{H}$ NOE difference spectroscopy revealed that in the major isomer both methyl groups at the chiral centers (C-2 and C-4) are at the same face of the molecule (14b) while in the minor isomer H-4 is at the same face of the molecule as the methyl group at C-2 (14a). The optical purity of both compounds was shown to be $\geq 98 \%$. ${ }^{17}$

Discussion

In our studies on the mechanism of the thermal isomerization of the 2 -vinyl- N, N-dialkylanilines to pyrrolo-[1,2-a]quinolines we have shown that the rate-determining step comprises an intramolecular 1,5-hydrogen transfer. In view of the charge separation that takes place, it seems likely that the migrating hydrogen atom is partially negatively charged. ${ }^{18}$

Cyclization of the pyrrolidinyl compound 4 a , the morpholinyl compound 5a, and the acyclic amine $6 \mathbf{a}$ with the R configuration afforded selectively the optically pure
(18) Groenen, L. C.; Verboom, W.; Nijhuis, W. H. N.; Reinhoudt, D. N.; van Hummel, G. J.; Feil, D. Tetrahedron 1988, 44, 4637.

Scheme I

pyrroloquinoline (R)-7a, the oxazinoquinoline (S)-11, and the quinoline $(R)-13$, respectively, with retention of configuration of the original chiral center. In the formation of these compounds, the chirality at the carbon atom with the methyl (4a and 6a) or the ethyl substituent (5a) is lost after the intramolecular hydrogen transfer. However, in the cyclization step the original chiral center is formed enantioselectively because the chirality in the starting compound (e.g. (R)-4a) is memorized in the form of an unique chiral "anticlockwise" helical dipolar intermediate. Hence, in the case of formation of the compounds (R)-7a, (S)-11, and (R)-13 the carbanion is forced to add to the iminium double bond from the side the hydrogen is transferred (Schemes I-III). In the same way optically pure $(R)-7 \mathrm{c}$ is formed starting from (S)-4c.

From the above-mentioned experiments with optically pure $4 \mathrm{a}, 4 \mathrm{c}, 5 \mathrm{a}$, and 6 a we conclude that firstly, in the dipolar intermediate, the carbanion adds to the iminium double bond exclusively from one side, viz. from the side the migrating hydrogen is transferred. Secondly, there is no equilibration of the helical dipolar intermediate.

Besides 7c also two regioisomers, 8 c and 9 c , were formed by cyclization of $\mathbf{4 c}$, since the 1,5 -hydrogen shift will not take place exclusively from the carbon atom adjacent to nitrogen bearing the methoxymethyl substituent, because of the sterically more hindering and the inductive elec-tron-withdrawing effect of the methoxymethyl substituent. ${ }^{1}$

In the products obtained by cyclization of $\mathbf{4 b}$ and $4 \mathbf{d}$, compounds in which the α-carbon atom of the vinyl moiety is a prochiral center, the hydrogen atom that underwent a 1,5-hydrogen shift is at the same face of the molecule as the substituent at the bridgehead carbon atom, as was proven by ${ }^{1} \mathrm{H}$ NOE difference spectroscopy. Moreover, cyclization of 4 d to $\mathbf{7 d}$ takes place with retention of configuration at the chiral center, with the methoxymethyl group at the bridgehead carbon atom and the hydrogen atom that underwent a 1,5 -hydrogen shift at the same face of the molecule, and exclusively ($3 \mathrm{a} R-$-trans)-7d is formed, as was concluded from X-ray analysis of the brominated derivative $10 .{ }^{6}$

Determination of the absolute configuration of $9 \mathbf{d}$ by X-ray analysis ${ }^{6}$ confirmed that the hydrogen atoms at the bridgehead carbon atom (H-3a) and at the benzylic position ($\mathrm{H}-5$) are cis.

The position of the vinyl moiety in compounds 4-6 determines the stereochemistry of 7-9 and 11-14. ${ }^{1}$ X-ray

Scheme II

Chart V

15

16
analysis of $4\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right)$ showed that the vinyl moiety points away from the amino group (Scheme I). ${ }^{18}$

From these experiments we conclude that, besides the exclusive addition of the carbanion to the iminium double bond from the side the hydrogen was transferred and the nonequilibration of the helical dipolar intermediate, the 1,5 -hydrogen shift proceeds enantioselectively in a suprafacial manner (Schemes I-III).

The diastereoselectivity of the reaction was lost in the cyclization of 5 b to yield a mixture of ($4 a S$-trans) $\mathbf{- 1 2 a}$ and (4aS-cis)-12b. Whereas in the synthesis of the pyrroloquinoline derivatives (7a-d), with the substituent R^{2} at the bridgehead, the hydrogen shift only takes place in one conformation (Scheme I), in the case of formation of 12a and 12 b the hydrogen shift must take place in two different conformations (Scheme II).

We can explain this result by assuming that there is an interchange of the position of the vinyl group $(A \Leftrightarrow B$; Scheme II), because of steric hindrance caused by the substituent R^{1} at the ethyl group. The hydrogen migration then takes place from a conformation (B) in which the substituent R^{1} points away from the amino group. In the dipolar intermediates generated from A and B (Scheme II), leading to the diastereomers 12 a and 12 b , respectively, the newly created chiral center has the opposite geometry.

In order to determine the role of the ethyl substituent, the unsubstituted morpholinyl compound 15 was cyclized to 16 in refluxing 1-butanol (yield 83%) (Chart V). X-ray analysis of 16 (Figure 2) revealed that the hydrogen atom that underwent a 1,5 -hydrogen shift is at the same face of the molecule as the hydrogen atom at the bridgehead carbon atom. No trace of a product in which these hydrogen atoms are trans was noticed. This means that, in this case, the hydrogen shift takes place in only one conformation.

Figure 2. X-ray crystal structure of 16.

In the chiral dipolar intermediates generated from 5b, the carbanion is forced to add to the iminium double bond from the side the hydrogen is transferred because the upper side is shielded by the ethyl group.

The ring closure of the acyclic tertiary amines 6 a and 6b takes place exclusively at the benzylic carbon atom because of the better stabilization of the iminium double bond in the dipolar intermediate when the benzylic hydrogen migrates compared to a migration of one of the methylene hydrogen atoms of the ethyl group.
Cyclization of 6a gives selectively one enantiomer of 13, while 6 b yields a diastereomeric mixture of 14 a and 14 b . In view of the results of the thermal conversion of $4 \mathbf{a}-\mathbf{d}$ and $5 \mathbf{a}, \mathrm{~b}$, we assume that the cyclization of $6 \mathbf{a}$ and $\mathbf{6 b}$ proceeds in the same way as that of 5 a and $5 \mathbf{b}$. The hydrogen shift also can take place in two conformations (C and D, Scheme III) and the addition of the carbanion to the iminium double bond is stereospecific due to shielding of that side of the dipolar intermediate from which the hydrogen was transferred. Hence, (R) - 13 is formed enantioselectively, and ($2 R$-cis)-14a and ($2 R$-trans)-14b are formed optically pure.

The formation of 12 and 14 also takes place with conservation of chiral information in the dipolar intermediate, like in the formation of 7-9, although the hydrogen transfer occurs in two different conformations and consequently is not stereospecific. As a consequence, compounds 12 and 14 are not formed diastereoselectively. However, the original chiral center is reproduced on cyclization to give 12a,b and 14a,b.

Table I. Optical Rotations of the Compounds la-d, 4c,d, $7 \mathrm{a}-\mathrm{d}, 8 \mathrm{c}, \mathrm{d}$, and 9c,d

compd	$\begin{aligned} & {[\alpha]^{25} \mathrm{D}, \operatorname{deg}} \\ & \left(c, \mathrm{CHCl}_{3}\right) \end{aligned}$	compd	$[\alpha]^{25}{ }_{D}, \mathrm{deg}$ (c, CHCl_{3})	compd	$\begin{aligned} & {[\alpha]^{25}{ }^{D}, \mathrm{deg}} \\ & \left(c, \mathrm{CHCl}_{3}\right) \end{aligned}$
1a	$\begin{array}{r} -513 \\ (0.19) \end{array}$	4d	$\begin{array}{r} +397 \\ (3.5) \end{array}$	8c	$\begin{array}{r} -193 \\ (1.2) \end{array}$
1b	$\begin{array}{r} -482 \\ (0.7) \end{array}$	7a	$\begin{array}{r} +323 \\ (0.31) \end{array}$	8d	$\begin{array}{r} -158 \\ (0.2) \end{array}$
1 c	$\begin{array}{r} -542 \\ (4.4) \end{array}$	7b	$\begin{gathered} +33 \\ +(0.8) \end{gathered}$	9 c	$\begin{array}{r} +17 \\ (0.4) \end{array}$
1d	$\begin{array}{r} -499 \\ (1.22) \end{array}$	7 c	$\begin{array}{r} +77.5 \\ (2.0) \end{array}$	9 d	$\begin{aligned} & -29.5 \\ & (0.17) \end{aligned}$
4 c	$+59(1.75)$	7d	$\begin{array}{r} +42.5 \\ (0.4) \end{array}$		

In conclusion, convincing evidence is provided for the mechanism of these reactions and we have shown that by proper choice of the chiral N, N-dialkylamino group and of the substituents R^{1} and R^{2} we can form pyrrolo[1,2a]quinolines, [1,4]oxazino[$3,4-a$]quinolines, and quinoline derivatives enantiomerically pure with self-reproduction of chirality, without the need of any auxiliary reagent, and with the creation of an additional chiral center.

Experimental Section

Melting points were determined with a Reichert melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra (CDCl_{3}) were recorded with a Bruker WP-80 spectrometer, unless stated otherwise, and ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ were recorded with a Nicolet NT $200-\mathrm{WB}$ spectrometer ($\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard). Mass spectra were recorded with a Varian Mat 311A spectrometer and IR spectra with a Perkin-Elmer 257 spectrophotometer. Optical rotations were determined with a Perkin-Elmer 241 polarimeter.

Elemental analyses were carried out by A. Christenhusz of the Laboratory of Chemical Analysis of the University of Twente.

2 -Fluorobenzaldehyde and 2 -fluoroacetophenone are commercially available (Janssen). (S)-2-(Methoxymethyl)pyrrolidine is commercially available (Merck) or was synthesized, just as (S)-2-(hydroxymethyl)pyrrolidine, according to the literature. ${ }^{7}$ (R)- N-Ethyl- α-methylbenzenemethanamine was synthesized from (R)- α-methylbenzenemethanamine (Janssen). ${ }^{8}$ (R)-3-Ethylmorpholine was prepared according to the literature. ${ }^{9}$ The chiral shift reagents used were purchased from Aldrich and from Janssen.

The experimental and spectral data of the optically pure compounds 1a-d, 4a-d, 7a-d, 8c,d, and 9c,d are as given for the corresponding racemic compounds. ${ }^{1}$ The optical rotations of these compounds, except for $4 \mathbf{a}$ and $\mathbf{4 b}$, are summarized in Table I. In the case of reaction of (R)-2-methylpyrrolidine hydrobromide with 2 -fluorobenzaldehyde or 2 -fluoroacetophenone one extra equivalent of potassium carbonate was added.
(S)-2-(Chloromethyl)pyrrolidine Hydrochloride. A solution of (S)-(+)-2-(hydroxymethyl)pyrrolidine ($40 \mathrm{~g} ; 0.4 \mathrm{~mol}$) in chloroform (120 mL), at $-4^{\circ} \mathrm{C}$, was saturated with HCl , dried by bubbling through a $\mathrm{H}_{2} \mathrm{SO}_{4}$ trap. Then thionyl chloride (58 mL , 0.8 mol) was added dropwise at $-4^{\circ} \mathrm{C}$. The temperature was slowly raised to $20^{\circ} \mathrm{C}$, and the reaction mixture was refluxed for 2 h . The chloroform and excess of thionyl chloride were removed under reduced pressure, and methanol (300 mL) and a small quantity of active charcoal were added to the residue. The mixture was refluxed for 1 h and filtered through Celite; this operation was repeated three times. After removal of the methanol, the orange oil was crystallized by addition of some ethanol, yield 72%; $\mathrm{mp} 137-138^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+11.9^{\circ}$ (c $1.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(S)-2-(Chloromethyl)-1-pyrrolidinecarboxylic Acid Phenylmethyl Ester. A solution of (S)-2-(chloromethyl)pyrrolidine hydrochloride ($10 \mathrm{~g} ; 65 \mathrm{mmol}$) in dichloromethane (100 mL) was cooled to $0^{\circ} \mathrm{C}$. Triethylamine ($12.8 \mathrm{~g} ; 125 \mathrm{mmol}$) was added, and subsequently a solution of benzyloxycarbonyl chloride (16.5 g ; 65 mmol) in dichloromethane (20 mL) was added dropwise over a period of $4-5 \mathrm{~h}$. The mixture was stirred for 15 h at room temperature. Subsequently, the solvent was removed under reduced pressure, and the residue was taken up in diethyl ether $(200 \mathrm{~mL})$ and washed with $2 \mathrm{~N} \mathrm{HCl}(3 \times 100 \mathrm{~mL})$. The organic layer was filtered through Celite and concentrated. The residue
was taken up in dichloromethane (50 mL) and dried (MgSO_{4}). The solvent was removed to give an oil, which was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yield $76 \% ;[\alpha]^{25} \mathrm{D}-43.5^{\circ}$ (c 2.05, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 7.34(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right.$), 4.25-3.95 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}$), 3.8-3.4 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$ and NCH_{2}), 2.2-1.7 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR $\delta 154.8$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 136.7 (s, Ar C), 128.5, 127.9, and 127.8 (d, ArC), 66.9 (t, ArCH_{2}), 58.4 (d, NCH), 47.2 and $45.3\left(\mathrm{t}, \mathrm{NCH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 28.5$ and $23.7\left(\mathrm{t}, \mathrm{CH}_{2}\right)$; mass spectrum, $m / e 253.086$ (M^{+}, calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClNO}_{2} 253.087$); IR (KBr) $1702(\mathrm{C}=0) \mathrm{cm}^{-1}$.
(R)-2-Methyl-1-pyrrolidinecarboxylic Acid Phenylmethyl Ester. A solution of (S)-2-(chloromethyl)-1-pyrrolidinecarboxylic acid phenylmethyl ester ($7.6 \mathrm{~g} ; 30 \mathrm{mmol}$) and a small quantity of AIBN in benzene (75 mL) was added dropwise to a refluxing solution of tri- n-butyltin hydride ($16 \mathrm{~g} ; 53.5 \mathrm{mmol}$) in benzene $(75 \mathrm{~mL})$. The reaction mixture was refluxed over a period of 3 days. After removal of the solvent, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ y yield $87 \% ;[\alpha]^{25} \mathrm{D}-24.9^{\circ}$ (c $2.02, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.34(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 5.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right.$), 4.3-3.8 (m, $1 \mathrm{H}, \mathrm{NCH}), 3.7-3.3\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.2-1.5(\mathrm{~m}, 4 \mathrm{H}$, CH_{2}), $1.18\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 154.8(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 137.3 (s, Ar C), 128.4 and 127.7 (d, Ar C), 66.5 ($\mathbf{t}, \mathrm{ArCH}_{2}$), 53.2 (d, NCH), 46.5 (t, NCH_{2}), 33.0 and $23.5\left(\mathrm{t}, \mathrm{CH}_{2}\right.$), $20.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$; mass spectrum, $m / e 219.125$ (M^{+}, calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ 219.126); IR (KBr) $1698(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
(\boldsymbol{R})-2-Methylpyrrolidine Hydrobromide. To (R)-2 methyl-1-pyrrolidinecarboxylic acid phenylmethyl ester (2.19 g ; 10 mmol) was added a solution of HBr in glacial acetic acid (35%) $(10 \mathrm{~mL})$. The solution was stirred until no more gas deceases $(\approx 15$ $\min)$. Subsequently, diethyl ether (50 mL) was added, and the salt was decanted. This was repeated thrice, to afford (R)-2methylpyrrolidine hydrobromide quantitatively, which was used without further purification.

General Procedure for the Synthesis of the Morpholinyl Compounds 2a,b and the Acyclic Amines 3a,b. To a solution of 2-fluorobenzaldehyde or 2 -fluoroacetophenone (1 equiv) and (R)-3-ethylmorpholine or (R)- N -ethyl- α-methylbenzenemethanamine (1.15 equiv) in DMF (1 mL per millimole fluoro compound) was added potassium carbonate (1.15 equiv), and the mixture was heated for several hours at $152^{\circ} \mathrm{C}$. When the reaction was complete, as followed from TLC, the reaction mixture was allowed to cool. The crude reaction mixture was taken up in water and extracted with ethyl acetate. The combined organic layers were washed with a saturated aqueous solution of ammonium chloride and subsequently dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure, and the residue was purified by column chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(R)-2-(3-Ethyl-4-morpholinyl)benzaldehyde (2a): reaction time 48 h ; oil; yield 25%; $[\alpha]^{25} \mathrm{D}-295^{\circ}\left(c 3.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 10.49$ (s, $1 \mathrm{H}, \mathrm{CHO}$), 7.95-7.05 (m, $4 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), 4.1-3.5 and 3.3-2.8 ($\mathrm{m}, 7 \mathrm{H}, \mathrm{NCH}_{2}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{NCH}$), $1.6-1.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.74(\mathrm{t}$, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 191.6$ (s, CHO), 154.5 (s, Ar C-2), 134.7, 129.1, 123.8, and 122.0 (d, Ar C), 130.8 (s, Ar C-1), 69.8 and 67.1 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}$), 61.6 (d, NCH), $52.1\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 20.4$ (t , $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $10.3\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}) 1688(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 219.126$ (M^{+}, calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} 219.126$).
(R)-1-[2-(3-Ethyl-4-morpholinyl)phenyl]ethanone (2b): reaction time 72 h ; oil; yield 23%; $[\alpha]^{25} \mathrm{D}-62^{\circ}$ (c $0.32, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.6-7.0(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), 4.05-3.45 and 3.3-2.8 (m, 7 $\mathrm{H}, \mathrm{NCH}_{2}, \mathrm{NCH}, \mathrm{CH}_{2} \mathrm{O}$), 2.66 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.6-1.3$ ($\mathrm{m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.74\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.8$ ($\mathrm{s}, \mathrm{C}=0$), 149.5 (s, Ar C-2), 137.9 ($\mathrm{s}, \mathrm{Ar} \mathrm{C}-1$), 131.5, 128.7, 123.9, and 121.7 (d, Ar C), 70.0 and 67.2 (t, $\mathrm{CH}_{2} \mathrm{O}$), 61.2 (d, NCH), 51.9 ($\mathrm{t}, \mathrm{NCH}_{2}$), $30.3\left(\mathrm{q}, \mathrm{CH}_{3}\right.$), 20.4 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 10.5 ($\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (KBr) $1681(\mathrm{C}=0) \mathrm{cm}^{-1}$; mass spectrum, $m / e 233.142\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2} 233.142$).
(R)-2-[Ethyl(1-phenylethyl)amino]benzaldehyde (3a): reaction time 48 h ; oil; yield 15%; $[\alpha]^{25}{ }_{\mathrm{D}}+231^{\circ}$ (c $1.2, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\delta 10.72$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$), $7.95-7.0(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 4.32$ [q, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)$], $3.25-2.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.29$ [d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)$], $0.87\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 192.3$ (d, CHO), 153.5, 143.2, and 133.8 (s , Ar C), 134.3, 128.5, 128.4, 128.0, 127.1, 124.7, 124.2, and 121.2 (d, Ar C), 64.3 (d, NCH$), 45.2\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 20.5\left[\mathrm{q}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)\right], 12.6\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (KBr) $1688(\mathrm{C}=0) \mathrm{cm}^{-1}$; mass spectrum, $m / e 253.148\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ 253.147).
(\boldsymbol{R})-1-[2-[Ethyl(1-phenylethyl)amino]phenyl]ethanone (3b): reaction time 72 h ; oil; yield 13%; $[\alpha]_{\mathrm{D}}^{25}+73^{\circ}\left(c 0.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.5-7.0(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 4.32[\mathrm{q}, 1 \mathrm{H}, J=6.85 \mathrm{~Hz}$, $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right)\right], 3.3-2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33$ [d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)$], $0.89\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 205.3$ ($\mathrm{s}, \mathrm{C}=0$), 142.6, 140.1, and 129.5 ($\mathrm{s}, \mathrm{Ar} \mathrm{C)}$,130.5 , 128.3, 128.2, 127.5, 127.0, 124.1, and 123.7 (d, Ar C), 63.3 [d, $\mathrm{NCH}\left(\mathrm{CH}_{3}\right)$], 43.9 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 30.9 [$\mathrm{q}, \mathrm{O}=\mathrm{C}\left(\mathrm{CH}_{3}\right)$], 19.7 [q , $\mathrm{NCH}\left(\mathrm{CH}_{3}\right)$, $11.9\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) 1684(\mathrm{C}=0) \mathrm{cm}^{-1}$; mass spectrum, $m / e 267.161\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$ 267.162).

General Procedure for the Preparation of the Morpholinyl Compounds 5 a and $\mathbf{5 b}$. To a solution of the benzaldehyde $\mathbf{2 a}(2.19 \mathrm{~g}, 10 \mathrm{mmol})$ or the acetophenone $\mathbf{2 b}(2.33 \mathrm{~g}, 10 \mathrm{mmol})$ in toluene (10 mL) was added malononitrile ($0.67 \mathrm{~g}, 10 \mathrm{mmol}$) in one portion. After the mixture was stirred for several hours at room temperature, the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$).
(R)-2-[[2-(3-Ethyl-4-morpholinyl)phenyl]methylene]propanedinitrile (5a): reaction time 12 h ; oil; yield $91 \% ;[\alpha]^{25}{ }_{\mathrm{D}}$ $+235^{\circ}$ ($\mathbf{c} 3.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.36(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 8.25-8.1$ and 7.65-7.5 (m, $2 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), 7.4-7.15 (m, $2 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), 4.1-3.5 and $3.05-2.8\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{NCH}, \mathrm{NCH}_{2}, \mathrm{CH}_{2} \mathrm{O}\right), 1.6-1.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.74\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 157.1(\mathrm{~d},=\mathrm{CH})$, 153.0 (s, Ar C-2), 134.9 and 129.1 (d, Ar C), 127.0 (s, Ar C-1), 124.5 and $122.7(\mathrm{~d}, \mathrm{ArC}), 114.2$ and $112.7(\mathrm{~s}, \mathrm{CN}), 82.0\left[\mathrm{~s},=C(\mathrm{CN})_{2}\right]$, 69.8 and $67.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 61.2$ (d, NCH), 52.2 ($\mathrm{t}, \mathrm{NCH}_{2}$), 20.5 (t , $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 10.2\left(\mathrm{q}, \mathrm{CH}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 2228(\mathrm{CN}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 267.134\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O} 267.137$).
(\boldsymbol{R})-2-[1-[2-(3-Ethyl-4-morpholinyl)phenyl]ethylidene]propanedinitrile (5b): reaction time 20 h ; yield 81%; mp $149-150{ }^{\circ} \mathrm{C}$ (ethanol); $[\alpha]^{25} \mathrm{D}+266^{\circ}\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ 7.55-7.1 (m, $4 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), 4.05-3.45 and 3.3-2.7 (m, $7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$, $\left.\mathrm{NCH}, \mathrm{NCH}_{2}\right), 2.67\left[\mathrm{~s}, 3 \mathrm{H},=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$], $1.6-1.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.77\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 179.2\left[\mathrm{~s},=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right]$, 148.9 (s, Ar C-2), 133.2 (s, Ar C-1), 132.0, 128.7, 124.4, and 122.7 (d, Ar C), 112.3 (s, CN), $86.8\left[\mathrm{~s},=\mathrm{C}(\mathrm{CN})_{2}\right], 69.8$ and $67.2\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right.$), 61.3 (d, NCH), 51.1 ($\mathrm{t}, \mathrm{NCH}_{2}$), $24.0\left[\mathrm{q},=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$], 20.0 (t , $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $11.0\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (KBr$) 2240(\mathrm{CN}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 281.150\left(\mathrm{M}^{+}\right.$, calcd 281.153). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ ($M_{\mathrm{r}} 281.358$): C, 72.57; H, 6.81; $\mathrm{N}, 14.93$. Found: C, 72.23 ; H, 6.90; N, 14.81 .
(3a R-trans)-7-Bromo-1,2,3,3a-tetrahydro-3a-(methoxy-methyl)-5-methylpyrrolo[1,2-a]quinoline-4,4(5H)-dicarbonitrile (10). To a stirred solution of $7 \mathrm{~d}(150 \mathrm{mg}, 0.53 \mathrm{mmol})$ in carbon tetrachloride (5 mL) was added N-bromosuccinimide (95 $\mathrm{mg}, 0.53 \mathrm{mmol}$) at room temperature. A catalytic amount of dibenzoylperoxide was added to the slurry. Subsequently, the mixture was refluxed for 1.5 h . The mixture was allowed to cool, the solid substance was filtered off, and the filtrate was washed with water $(3 \times 5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 10 as a solid in a yield of $78 \%: \mathrm{mp} 128-130^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]^{25} \mathrm{D}$ 71.3° ($c 0.59, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.33$ (s, $1 \mathrm{H}, \mathrm{H}-6$), 7.27 and 6.52 (AB, $2 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-8$ and $\mathrm{H}-9$), $3.85-3.2\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2}\right.$, $\mathrm{ArCH}\left(\mathrm{CH}_{3}\right)$], $3.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.65-2.0$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$), $1.74\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 140.5$ (s, C-10a), 131.6 and 129.9 (d, Ar C), 121.3 (s, C-6a), 115.1 (d, Ar C), 114.6 and $113.0(\mathrm{~s}, \mathrm{CN}), 109.8(\mathrm{~s}, \mathrm{C}-7), 73.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 66.3$ [s, $\left.\mathrm{NC}\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)\right], 59.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 49.2\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 45.3$ [s, $\mathrm{C}-$ $(\mathrm{CN})_{2}$], 36.3 [d, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)$], 34.1 and $22.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 16.7$ [$\mathrm{q}, \mathrm{CH}-$ $\left(\mathrm{CH}_{3}\right)$]; IR $(\mathrm{KBr}) 2245(\mathrm{CN}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 359.059$ (M^{+}, calcd 359.063). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}$ ($M_{\mathrm{r}} 359.148$): C, 56.85 ; H, 5.05 ; N, 11.70. Found: C, 56.96 ; H, 5.03 ; N, 11.79.

General Procedure for the Thermal Conversion of the Condensation Products 5a and 5b. Synthesis of 11 and 12. A solution of the condensation product $5 \mathbf{5 a}(1.34 \mathrm{~g}, 5 \mathrm{mmol})$ or $5 \mathbf{b}(1.41 \mathrm{~g}, 5 \mathrm{mmol})$ in 1-butanol (5 mL) was heated ($118^{\circ} \mathrm{C}$) for several hours until all the starting material had disappeared according to TLC. The solvent was removed under reduced pressure, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$).
(S) -4a-Ethyl-1,2,4,4a-tetrahydro[1,4]oxazino[4,3-a]-quinoline-5,5(6H)-dicarbonitrile (11): reaction time 20 h ; yield $75 \% ; \operatorname{mp} 124-125{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ;\left[\alpha{ }^{25}{ }_{\mathrm{D}}+1.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}\right.$

NMR (200 MHz) $\delta 7.3-7.15$ and $7.1-7.0$ (m, $2 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), 6.9-6.7 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), 4.36 and 3.91 ($\mathrm{AB}, 2 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{H}-4$), 4.15 (br dd, $1 \mathrm{H}, J=11.6$ and $4.4 \mathrm{~Hz}, \mathrm{H}-2_{\text {eq }}$), 3.80 (ddd, $1 \mathrm{H}, J=11.6$, 11.7 , and $3.7 \mathrm{~Hz}, \mathrm{H}-2_{\mathrm{ax}}$), 3.51 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}$), 3.39 (br dd, 1 H , $J=11.8$ and $3.7 \mathrm{~Hz}, \mathrm{H}-1_{\text {eq }}$), 3.23 (ddd, $1 \mathrm{H}, J=11.8,11.7$, and $\left.4.4 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{ax}}\right), 2.03$ and $1.72\left(\mathrm{ABX}_{3}, 2 \mathrm{H}, J_{\mathrm{AB}}=14.8 \mathrm{~Hz}, J=7.6\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.08\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 142.7$ (s, C-10a), 129.2, 129.0, 119.5, and 112.6 (d, Ar C), 115.1 (s, C-6a), 114.8 and 114.1 (s, CN), 70.6 and $66.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 57.5$ [s, NC$\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$], $42.3\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 38.2\left[\mathrm{~s}, \mathrm{C}(\mathrm{CN})_{2}\right.$], $34.0\left(\mathrm{t}, \mathrm{Ar} \mathrm{CH}_{2}\right), 23.1$ ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 9.6 ($\mathrm{q}, \mathrm{CH}_{3}$); IR (KBr) $2260(\mathrm{CN}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 267.136$ (M^{+}, calcd 267.137). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}\left(M_{\mathrm{r}} 267.331\right): \mathrm{C}, 71.89 ; \mathrm{H}, 6.41 ; \mathrm{N}, 15.72$. Found: C, 71.61; H, 6.56; N, 15.75.
(4aS-trans)- and (4aS-cis)-4a-ethyl-1,2,4,4a-tetrahydro-6-methyl[1,4]oxazino[4,3-a]quinoline-5,5(6H)-dicarbonitrile (12a and 12b): reaction time 30 h ; yield 90%; ratio $7: 3$. Major isomer (12a): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.1-6.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}$ H), 6.85-6.6 (m, $2 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), 6.4-6.3 (m, $1 \mathrm{H}, \mathrm{Ar}$ H), 4.16 and 3.78 (AB, $2 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 3.49 (ddd, $1 \mathrm{H}, J=11.9,5.0$, and $1.2 \mathrm{~Hz}, \mathrm{H}-2_{\mathrm{eq}}$), 3.29 (ddd, $1 \mathrm{H}, J=11.9,11.7$, and $6.7 \mathrm{~Hz}, \mathrm{H}-2_{\mathrm{ax}}$), $2.84\left[\mathrm{q}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \operatorname{ArCH}\left(\mathrm{CH}_{3}\right)\right], 2.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{l}_{\mathrm{eq}}\right.$ and $\left.\mathrm{H}-1_{\mathrm{az}}\right), 1.58$ and $1.23\left(\mathrm{ABX}_{3}, 2 \mathrm{H}, J_{\mathrm{AB}}=14.6 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.39\left[\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)\right.$], $0.72(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.5$ (s, C-10a), 128.9 and 127.3 (d, ArC), 120.7 (s, C-6a), 119.6 (d, Ar C), 114.2 and 112.3 (s, CN), 112.4 (d, Ar C), 70.8 and $66.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 58.0$ [s, $\mathrm{NC}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$], 42.4 [s, $\mathrm{C}(\mathrm{CN})_{2}$], $42.3\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 35.8$ [d, $\mathrm{ArCH}\left(\mathrm{CH}_{3}\right)$], 23.4 (t , $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.9\left[\mathrm{q}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)\right], 9.6\left[\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right] ; \mathrm{IR}(\mathrm{KBr}) 2260$ (CN) cm^{-1}; mass spectrum, $m / e 281.153$ (M^{+}, calcd 281.153). (\pm)-12a: crystallized from the mixture of (\pm)-12a and (\pm)-12b; $\mathrm{mp} 119-120^{\circ} \mathrm{C}(\mathrm{EtOH})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}\left(M_{\mathrm{r}} 281.358\right)$: C, 72.57; H, 6.81; N, 14.93. Found: C, 72.23; H, 6.50; N, 15.26.

General Procedure for the Conversion of $3 a$ and $3 b$ with Malononitrile. Synthesis of 13 and 14. A solution of the benzaldehyde $3 \mathrm{a}(1.26 \mathrm{~g}, 5 \mathrm{mmol}$) or the acetophenone 3b (1.34 $\mathrm{g}, 5 \mathrm{mmol}$) and malononitrile ($0.33 \mathrm{~g}, 5 \mathrm{mmol}$) in 1-butanol (5 mL) was heated $\left(118^{\circ} \mathrm{C}\right)$ for several hours until all the starting material had disappeared according to TLC. The solvent was removed under reduced pressure, and the residue was purified by column chromatography ($\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(\boldsymbol{R})-1-Ethyl-1,2-dihydro-2-methyl-2-phenylquinoline-3,3($4 H$)-dicarbonitrile (13): reaction time 48 h ; yield 73%; mp $172-173{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ;[\alpha]^{25}{ }_{\mathrm{D}}+231^{\circ}\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.6-6.7(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 3.38$ and $3.27\left(\mathrm{ABX}_{3}, 2\right.$ $\left.\mathrm{H}, J_{\mathrm{AB}}=15.8 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.23$ and $3.01(\mathrm{AB}, 2 \mathrm{H}$, $J=15.9 \mathrm{~Hz}, \mathrm{ArCH}_{2}$), $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 144.1$ (s, C-10a), 136.4 (s, C-6a), 129.4, 129.0, 128.7, 127.6, 117.6, and 111.8 (d, Ar C), 115.2, 114.6, and 114.0 ($\mathrm{s}, \mathrm{Ar} \mathrm{C}, \mathrm{CN}$) , $65.2\left[\mathrm{~s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)\right], 42.8\left[\mathrm{~s}, \mathrm{C}(\mathrm{CN})_{2}\right.$], $42.4\left(\mathrm{t}, \mathrm{NCH}_{2}\right)$, $34.8\left(\mathrm{t}, \mathrm{ArCH}_{2}\right), 25.1\left[\mathrm{q}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)\right.$], $14.9\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr})$ $2225(\mathrm{CN}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 301.155\left(\mathrm{M}^{+}\right.$, calcd 301.158). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3}\left(M_{\mathrm{r}} 301.392\right)$: C, 79.70; $\mathrm{H}, 6.35 ; \mathrm{N}, 13.94$. Found: C, $79.45 ; \mathrm{H}, 6.45$; N, 13.75.
($2 R$-cis)- and ($2 R$-trans)-1-ethyl-1,2-dihydro-2,4-di-methyl-2-phenyl-3,3($4 H$)-quinolinedicarbonitrile (14a and 14b): reaction time 72 h ; oil; yield 75%; ratio 1:3. Minor isomer (14a): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-6.7(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 3.56$ [q, $\left.1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \operatorname{ArCH}\left(\mathrm{CH}_{3}\right)\right], 3.26$ and $3.11\left(\mathrm{ABX}_{3}, 2 \mathrm{H}, J_{\mathrm{AB}}\right.$ $\left.=15.4 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.89\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{NC}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right.$], $1.74\left[\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)\right], 1.19(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$). Major isomer (14b): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.75-6.7(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 3.55$ and $3.41\left(\mathrm{ABX}_{3}, 2 \mathrm{H}, J_{\mathrm{AB}}=15.8\right.$ $\left.\mathrm{Hz}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.05\left[\mathrm{q}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)\right]$, $2.29\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{NC}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right], 1.63\left[\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)\right]$, $1.33\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

2-[1-[2-(4-Morpholinyl)phenyl]ethylidene]propanedinitrile (15) was prepared by reaction of 1-[2-(4-morpholinyl)phenyl]ethanone ${ }^{19}(1.03 \mathrm{~g}, 5 \mathrm{mmol})$ and malononitrile $(0.34 \mathrm{~g}, 5$ mmol) in toluene (5 mL) in a similar way as described for 5. Reaction time 8 h ; yield 86%; mp 131-132 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.6-7.1(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 3.9-3.7\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.1-2.8(\mathrm{~m}, 4$

[^4]$\mathrm{H}, \mathrm{NCH}_{2}$), $2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.7\left[\mathrm{~s},=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$], 150.2 (s, C-2), 132.3 (d, Ar C), 131.4 (s, C-1), 128.7, 123.8, and 120.2 (d, Ar C), 112.5 and 112.4 (s, CN), $87.0\left[\mathrm{~s},=\mathrm{C}(\mathrm{CN})_{2}\right], 66.9$ (t , $\mathrm{CH}_{2} \mathrm{O}$), 52.6 ($\mathrm{t}, \mathrm{NCH}_{2}$), $23.7\left(\mathrm{q}, \mathrm{CH}_{3}\right.$); IR (KBr$) 2240(\mathrm{CN}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 253.119$ (M^{+}, calcd 253.121). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ ($M_{\mathrm{r}} 253.304$): C, 71.12; H, 5.97; N, 16.59. Found: C, 71.39; H, 5.93; N, 16.48.
(trans)-(土)-1,2,4,4a-Tetrahydro-6-methyl[1,4]oxazino-[4,3-a]quinoline-5,5(6H)-dicarbonitrile (16) was prepared by reaction of $15(0.51 \mathrm{~g}, 2 \mathrm{mmol})$ in 1-butanol (2 mL) in a similar way as described for 11 and 12. Reaction time 8 h ; yield 83%; $\mathrm{mp} 172-173{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.4-7.3$ and 7.1-6.95 (m, $4 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), 4.50 (dd, $1 \mathrm{H}, J=11.1$ and 3.6 Hz , $\mathrm{H}-4_{\mathrm{eq}}$), 4.21 (ddd, $1 \mathrm{H}, J=11.7,4.0$, and $1.2 \mathrm{~Hz}, \mathrm{H}-2_{\text {eq }}$), 3.90 (ddd, $1 \mathrm{H}, J=11.7,11.7$, and $\left.3.1 \mathrm{~Hz}, \mathrm{H}-2_{\mathrm{ax}}\right), 3.86(\mathrm{dd}, 1 \mathrm{H}, J=10.6$ and $\left.11.1 \mathrm{~Hz}, \mathrm{H}-4_{\mathrm{ax}}\right), 3.79(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=11.9,3.1$, and 1.2 Hz , $\mathrm{H}-1_{\mathrm{eq}}$), 3.67 [q, $\left.1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)\right], 3.62(\mathrm{dd}, 1 \mathrm{H}, J$ $=10.6$ and $3.6 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}$), 3.04 (ddd, $1 \mathrm{H}, J=11.9,11.7$, and 4.0 $\left.\mathrm{Hz}, \mathrm{H}-1_{\mathrm{ax}}\right), 1.86\left[\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)\right.$]; ${ }^{13} \mathrm{C}$ NMR $\delta 143.7$ (s, C-10a), 129.0, 127.3, 120.5, and 113.1 (d, Ar C), 121.3 (s, C-6a), 113.8 and $111.6(\mathrm{~s}, \mathrm{CN}), 68.2$ and $66.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 57.2(\mathrm{~d}, \mathrm{NCH})$, $45.8\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 41.4$ [s, $\mathrm{C}(\mathrm{CN})_{2}$], 40.1 [d, $\mathrm{ArCH}\left(\mathrm{CH}_{3}\right)$], 16.5 (q, CH_{3}) $\mathrm{IR}(\mathrm{KBr}) 2260(\mathrm{CN}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 253.117\left(\mathrm{M}^{+}\right.$, calcd 253.121). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}\left(M_{\mathrm{r}} 253.304\right)$: C, 71.12; H, 5.97; N, 16.59. Found: C, $71.34 ; \mathrm{H}, 5.95 ; \mathrm{N}, 16.53$.
X-ray Crystal Structure Determination. The crystal data of compounds 9 d and 10 have been reported. ${ }^{6}$

Crystals of (\pm)-12a are monoclinic; space group $P 2_{1} / n ; a=8.000$ (3) $\AA, b=22.181$ (6) $\AA, c=9.338$ (4) $\AA, \beta=114.51$ (3) $)^{\circ}, Z=4$, $d_{\mathrm{c}}=1.24 \mathrm{~g} \mathrm{~cm}^{-3}$. Reflections measured with an Enraf-Nonius CAD4 diffractometer (MoK α radiation, graphite monochromator, $\omega-2 \theta$ scans, $3<\theta<25^{\circ}$, scan width $(\omega)(1.0+0.34 \operatorname{tg} \theta)^{\circ}$. The structure was determined and refined by using 1195 reflections with $F_{0}>3 \sigma\left(F_{0}\right)$. The number of parameters refined was 247 [scale factor, extinction factor, positional and thermal (isotropic for H -atoms, anisotropic for others) parameters of all atoms]. The final R factor was 6.3%. As evident from Figure I the C atoms of the ethyl group show large thermal vibrations. Therefore H atoms could not be located for these atoms. Consequently the H atoms for these atoms have been treated as riding atoms. Crystals of 16 belong to the triclinic space group $P \overline{1}$ with $a=$ 8.683 (4) $\AA, b=9.878$ (4) $\AA, c=10.070(5) \AA, \alpha=61.76(3)^{\circ}, \beta$
$=68.53(3)^{\circ}, \gamma=61.16(4)^{\circ}, Z=2, d_{\mathrm{c}}=1.23 \mathrm{~g} \mathrm{~cm}^{-3}$. The experimental conditions were the same as for (\pm)-12a, except for the scan angle (ω), which was taken as $(1.5+0.34 \operatorname{tg} \theta)^{\circ}$. The number of reflections used was 1684. The number of parameters refined was 233 , and the R factor was 5.3%.

All calculations have been done with SDP. ${ }^{20}$
Acknowledgments. We wish to thank Prof. Dr. C. W. Hilbers (KU, Nijmegen) and the Netherlands Foundation of Chemical Research (SON) for the facilities offered and the use of the $500-\mathrm{MHz}$ NMR apparatus (Nijmegen). This investigation was supported by the Netherlands Foundation of Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO).

Registry No. 1a, 117607-29-1; 1b, 117607-30-4; 1c, 117607-31-5; 1d, 117607-32-6; 2a, 117607-14-4; 2b, 117607-16-6; 3a, 117607-15-5; 3b, 117607-17-7; 4c, 117677-84-6; 4d, 107743-60-2; 5a, 117607-18-8; 5b, 117607-19-9; 7a, 117677-85-7; 7b, 117607-33-7; 7c, 117677-86-8; 7d, 107743-61-3; 8c, 117677-87-9; 8d, 107743-62-4; 9c, 117677-88-0; 9d, 107797-44-4; 10, 107743-63-5; 11, 117607-20-2; (\pm)-12a, 117607-21-3; (\pm)-12b, 117607-22-4; 12a, 117677-89-1; 12b, 117677-90-4; 13, 117607-23-5; 14a, 117607-24-6; 14b, 117607-25-7; 15, 117607-27-9; 16, 117607-28-0; (S)-(+)-2-(hydroxymethyl)pyrrolidine, 23356-96-9; (S)-2-(chloromethyl)pyrrolidine hydrochloride, 35120-33-3; (S)-2-(chloromethyl)-1-pyrrolidinecarboxylic acid phenylmethyl ester, 61350-66-1; (R)-2-(chloromethyl)-1pyrrolidinecarboxylic acid phenylmethyl ester, 117607-12-2; (R)-2-methylpyrrolidine hydrobromide, 117607-13-3; 2 -fluorobenzaldehyde, 446-52-6; 2-fluoroacetophenone, 450-95-3; (R)-3ethylmorpholine, 74572-05-7; (R)- N-ethyl- α-methylbenzenemethanamine, 70811-66-4; 1-[2-(4-morpholinyl)phenyl]ethanone, 117607-26-8.

Supplementary Material Available: Lists of atomic positions, bond distances, and bond angles for compounds (\pm)-12a and 16 (8 pages). Ordering information is given on any current masthead page.
(20) Structure Determination Package; Frenz B. A. and Associates Inc., College Station, TX, and Enraf-Nonius, Delft, 1983.

Synthesis of 1,2-Dihydro-1-oxo-3H-3-benzazepine and 3-Acyl Derivatives

Rodney C. Schnur* and Randall J. Gallaschun
Central Research, Pfizer Inc., Groton, Connecticut 06340

Received May 23, 1988
Facile preparation of 1-oxo-1,2-dihydro-3H-3-benzazepine, 1 , is afforded by an unusual base-induced oxidative elimination of 1-oxo-3-sulfonyl-1,2,4,5-tetrahydro-3 H -3-benzazepines 6 . This unstable eneamino-ketone can be isolated and characterized as an oil or derivatized after in situ generation. A series of 3 -acyl derivatives of 1 were prepared. The chemistry of these derivatives and the mechanism of reaction for their formation is discussed. Molecular mechanics calculations of 1 and related tautomers were neither consistent with the favored tautomer observed experimentally nor predictive of a mechanistic pathway for its formation.

We report the first isolation and derivatization of the unstable parent 1,2-dihydro-1-oxo-3H-3-benzazepine, $1 .{ }^{1}$ Its formation occurs via the facile oxidative elimination of sulfinate from sulfonamide with subsequent hydrogen rearrangement and results in introduction of functionality into the unactivated carbons of a tetrahydroazepine ring.

[^5]This remote functionalization provides access to unique preparative opportunities for a number of biologically important natural or unnatural products containing the benzazepine ring system, e.g. antitumor alkaloids of the cephalotaxine class. ${ }^{2}$

[^6]
[^0]: ${ }^{\dagger}$ Laboratory of Organic Chemistry.
 \# Laboratory of Chemical Physics.
 ${ }^{?}$ Present address: Physics Department, Faculty of Science, Assiut University, Assiut, Egypt.

[^1]: (2) Meyers, A. I.; Dickmann, D. A. J. Am. Chem. Soc. 1987, 109, 1263. Meyers, A. I.; Sohda, T.; Loewe, M. F. J. Org. Chem. 1986, 51, 3108.
 (3) Agami, C.; Meynier, F.; Rizk, T. Synth. Commun. 1987, 17, 241.
 (4) Ando, A.; Shioiri, T. J. Chem. Soc., Chem. Commun. 1987, 656.
 (5) Seebach, D.; Naef, R. Helv. Chim. Acta 1981, 64, 2074. Seebach, D.; Aebi, J. D.; Naef, R.; Weber, T. Helv. Chim. Acta 1985, 68, 144. Seebach, D.; Fadel, A. Helv. Chim. Acta 1985, 68, 1243.
 (6) Part of this work has been published as a preliminary communication: Nijhuis, W. H. N.; Verboom, W.; Reinhoudt, D. N.; Harkema, S. J. Am. Chem. Soc. 1987, 109, 3136.
 (7) Enders, D.; Eichenauer, H. Chem. Ber. 1979, 112, 2933.
 (8) van Elburg, P. A. Thesis, University of Twente, 1987.
 (9) Bettoni, G.; Franchini, C.; Perrone, R.; Tortorella, V. Tetrahedron 1984, 36, 409 .
 (10) Prepared according to a procedure kindly provided by Prof. L. Ghosez (personal communication) with minor modifications (see the Experimental Section).

[^2]: (11) Neumann, W. P. Synthesis 1987, 665 and references cited therein. (12) The optical purity of the compounds 1-5 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using chiral shift reagents $\left[\mathrm{Eu}(\mathrm{hfc})_{3}, \mathrm{Yb}(\mathrm{hfc})_{3}\right.$, and AgFOD].
 (13) Niewiadomski, K. B.; Suschitzky, H. J. Chem. Soc., Perkin Trans. 1 1975, 1679.
 (14) Verboom, W.; Reinhoudt, D. N.; Visser, R.; Harkema, S. J. Org. Chem. 1984, 49, 269.

[^3]: (17) The enantiomeric purities of 11 and 12a were determined by using $0.3-0.4$ equiv of Eu(hfc) $)_{3}$. The racemic 11 and 12a showed a splitting of $\mathrm{CH}_{2} \mathrm{CH}_{3}$ protons in the ${ }^{1} \mathrm{H}$ NMR spectrum when shift reagent was added. The triplet of $\mathrm{CH}_{2} \mathrm{CH}_{3}$ also showed some splitting, whereas the products obtained from the optically pure starting materials showed no splitting. The enantiomeric purities of the compounds 13 and $14 a, b$ were analogously determined with 1.0 equiv of $\mathrm{Yb}(\mathrm{hfc})_{3}$ and 1.0 equiv of AgFOD [splitting of the singlet of $\mathrm{NC}\left(\mathrm{CH}_{3}\right)$ (13 and $14 \mathbf{a}, \mathbf{b}$), and of the doublet of $\mathrm{CH}_{3}-5$ ($\left.14 \mathbf{a}, \mathbf{b}\right)$].

[^4]: (19) 1-[2-(4-Morpholinyl)phenyl]ethanone was prepared from 1-(2fluorophenyl)ethanone and morpholine via a nucleophilic substitution

[^5]: (1) For reviews on azepines, see: Smalley, R. K. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: New York, 1984; Vol. 7, pp 491-546. Proctor, G. R. In Chemistry of Heterocyclic Compounds; Rosowsky, A., Ed.; John Wiley and Sons: New York, 1984; Vol. 43, pp 696-737.

[^6]: (2) For syntheses of the cephalotaxine antitumor compounds, see: Mikolajczak, K. L.; Smith, C. R., Jr. J. Org. Chem. 1978, 43, 4762. Semmelhack, M. F.; Chong, B. P.; Stauffer, R. D.; Rogerson, T. D.; Chong, A.; Jones, L. D. J. Am. Chem. Soc. 1975, 97, 2507. Tiner-Harding, T.; Ulrich, J. W.; Chiu, F.-T.; Chen, S.-F.; Mariano, P. S. J. Org. Chem. 1982, 47, 3362. Hiranuma, S.; Shibata, M.; Hudlicky, T. J. Org. Chem. 1983, 48, 5321.

