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Stereophonic Acoustic Echo Cancellation Employing
Selective-Tap Adaptive Algorithms
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Abstract—Stereophonic acoustic echo cancellation has gener-
ated much interest in recent years due to the nonuniqueness and
misalignment problems that are caused by the strong interchannel
signal coherence. In this paper, we introduce a novel adaptive
filtering approach to reduce interchannel coherence which is based
on a selective-tap updating procedure. This tap-selection tech-
nique is then applied to the normalized least-mean-square, affine
projection and recursive least squares algorithms for stereophonic
acoustic echo cancellation. Simulation results for the proposed
algorithms have shown a significant improvement in convergence
rate compared with existing techniques.

Index Terms—Adaptive algorithms, partial-update, stereo-
phonic acoustic echo cancellation, tap-selection.

I. INTRODUCTION

STEREOPHONIC tele- and videoconferencing systems
have gained much popularity [1]–[3] in recent years. In

applications such as desktop conferencing and hands-free tele-
phony, stereophonic systems provide telepresence to users by
enabling listeners to localize speakers in conference meetings
where multiple parties might be conversing at the same time.
The stereophonic acoustic echo canceller (SAEC) as shown in
Fig. 1 suppresses the echo returned to the transmission room so
as to enable undisturbed communication between the rooms.
This disturbance, caused by echo, increases in severity with the
propagation delay of the channel.

A serious problem encountered in SAEC is that the echo can-
celler coefficients do not in general converge to the true impulse
responses of the echo path when the adaptive filters, of length

, are greater than or equal to that of the transmission room’s
impulse responses, . In such a situation, the solutions for the
adaptive filters are nonunique and depend both on the transmis-
sion and receiving rooms’ impulse responses [4].

In the practical case where , the problem of
nonuniqueness is ameliorated to some degree by the “tail”
effect [4]. However, even in such cases, direct application of
standard adaptive filtering is not normally successful because
the system identification problem is ill-conditioned due to
the high interchannel coherence between the two channels’
tap-input vectors [2], [4]. This is known as the misalignment
problem. Significant undermodeling of the unknown system
can further degrade cancellation of echo. To overcome the
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misalignment problem in this practical case, several approaches
have been employed to decorrelate the two input signals using,
for example, nonlinear processing [4]–[6], spectrally shaped
random noise [7], [8], comb filtering [9], leaky extended LMS
[10], and alternating fixed-point [11] algorithms. The common
aim of these algorithms is to achieve decorrelation of input
signals and without affecting the quality or stereo-
phonic image of the speech.

In recent years, selective-tap schemes were introduced to re-
duce computational complexity of, in particular, the normal-
ized least-mean-square (NLMS) algorithm by updating only a
subset of taps at each iteration. The techniques of [12], [13], for
example, allow implementation of selective-tap algorithms in
single-channel echo cancellation with performance close to that
of the full update NLMS algorithm. The reduction in computa-
tional complexity due to the partial updating is offset to some de-
gree by the computational cost of tap-selection which normally
requires a sort operation to be performed. However, efficient ap-
proximate schemes have been proposed which address this issue
[14]. In this paper, our main motivation is not the reduction of
complexity of SAEC. Instead, we propose to employ tap-selec-
tion as a means to reduce interchannel coherence. Our proposed
tap-selection algorithm will be applied to NLMS, affine projec-
tion (AP), and the recursive least squares (RLS) algorithms for
the SAEC application.

This paper is organized as follows: Section II reviews
the SAEC problem. Section III discusses the single channel
MMax–NLMS selective-tap algorithm and examines the effect
of interchannel decorrelation when the MMax tap-selection cri-
terion is applied in the stereophonic environment. The effect of
our proposed exclusive tap-selection on interchannel coherence
and the input autocorrelation matrix will also be discussed. An
exhaustive tap-selection search technique is initially considered
in Section IV to demonstrate the concept of the selective-tap
approach in SAEC. In Section V, we proposed an efficient
exclusive maximum (XM) tap-selection technique for SAEC
involving adaptive filters of realistic order. This methodology is
applied in combination with a nonlinear (NL) processor block
to form the XMNL-based versions of NLMS, AP, and RLS
algorithms. We will also consider the computational complexity
of the proposed algorithms in Section V. Section VI presents
simulation results while Section VII draws conclusions from
our work.

II. STEREOPHONIC ACOUSTIC ECHO CANCELLATION

Stereophonic acoustic echo cancellation, as shown in Fig. 1,
can be viewed as a multichannel extension of the single-channel
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Fig. 1. Schematic diagram of stereophonic acoustic echo cancellation (after [4]). Only one channel of the return path is shown for simplicity.

echo cancellation concept. Two microphones are located in the
transmission room depicted on the right. The speech signal is
convolved with the transmission room impulse responses
and to give and , respectively. These stereo-
phonic signals are then transmitted to loudspeakers in the re-
ceiving room which in turn are acoustically coupled to the re-
ceiving room microphones. We consider only one microphone
at the receiving room here for simplicity since similar analysis
can be applied to the other channel. We also consider a noise-
less case in our discussion without loss of generality. Receiving
room impulse responses and for channels 1,
2, respectively, produce the desired signal which is given
by

(1)

where the superscript denotes vector transposition,
, and

. A
pair of adaptive filters of length function as a SAEC by
estimating the unknown systems and using filter
coefficients and . The error signal between the
desired signal and its estimate is, thus, given by

(2)

If we now consider the use of the method of least squares
following the approach of [4], the cost function can be defined
as

(3)

where is the forgetting factor. Minimizing the least
squares criterion (3) and using (2), we obtain the set of normal
equations

(4)

where the weighted time-averaged autocorrelation matrix and
cross-correlation vector are defined [4], respectively, as

(5)
and

(6)

given that and
are the concatenated tap-input vectors

and filter coefficients, respectively.
It is shown in [4] that when , the solution of (4) is in

the form

(7)

where , 1, 2 is appended with
zeros and is a scalar quantity. Equation (7) indicates that
the solutions for are nonunique. In practical cases where

, the time-averaged autocorrelation matrix is
ill-conditioned because the input signals and are
highly correlated [4]. In the case where the filters are shorter
than the length of the receiving room impulse response, ,
a system mismatch error is introduced in the filter coefficients
due to undermodeling. Defining as that part of the im-
pulse response of the th channel in the receiving room which
is not modeled by the respective adaptive filter such that

, and as the
concatenated true impulse responses, the system mismatch can
be quantified [4] by the normalized misalignment

(8)
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such that is defined as the squared -norm operator and

(9)

is the time-averaged autocorrelation matrix formed from the
“tails” of the input signal such that for the th channel,

.
The fundamental difference between a single channel

and stereophonic case can be seen from (8) and (9). In the
single-channel case, (9) collapses to only which con-
sequently reduces in (8). In addition to the error caused
by under-modeling of the unknown system, matrices
and in (9), for the stereo case, are significant because
of the high cross-correlation between the two input signals

and . As a result, the misalignment for SAEC is
significantly higher than for the single channel AEC unless
specific processing, such as described here, is employed.

III. MMAX TAP-SELECTION

Selective-tap schemes including sequential and periodic LMS
[12] achieve complexity reduction by updating only a subset of
taps at each iteration. The MMax–NLMS algorithm proposed
in [13] has been shown to suffer only a modest degradation
in convergence rate by updating taps corresponding to the
largest magnitude tap-inputs. A theoretical justification for se-
lecting taps corresponding to the largest -norm of tap-inputs
is provided in [15] by formulating the problem in terms of the
principle of minimum disturbance. In this section, we shall ex-
amine briefly the dependence of convergence rate on tap-selec-
tion by proposing a new measure and investigate the effect
of tap-selection on the interchannel coherence in the stereo case.
The proposed new measure will then be used for the stereo
case as an optimization parameter in the subsequent develop-
ment of our selective tap SAEC algorithms in Section IV.

A. MMax Performance Measure

In the single-channel MMax–NLMS algorithm [13], for an
adaptive filter of length , only those taps corresponding to the

largest magnitude tap-inputs are selected for updating at each
iteration. The MMax–NLMS tap-update equation may be ex-
pressed as

(10)

where and are the regularization and adaptive step-size pa-
rameters, respectively. The tap-selection matrix

(11)

contains elements in which are represented by

otherwise,
(12)

for tap-indices .
The penalty incurred due to tap-selection in the

MMax–NLMS algorithm is a decrease in convergence rate for

Fig. 2. Variation of with subselection parameter showing modest
reduction of within the region for WGN sequence with

.

Fig. 3. Number of iterations to converge to 20 dB normalized misalignment
as a function of for .

a given [16]. For an adaptive filter of length , we examine
the dependence of convergence rate on the subselection using
the measure as the ratio of the energy of the selected
tap-inputs to the energy of the full tap-input vector. Thus,

may be written as

(13)

Whereas the fundamental concept of MMax tap-selection was
presented in [13], our measure provides an explicit quan-
tification of the deviation of the selective-tap case from the full
update case such that corresponds to full update
adaptation. Furthermore, allows direct extension to the
multichannel case as will be shown in Section IV-B.

Fig. 2 shows how varies with the size of tap-selection
for zero mean, unit variance white Gaussian noise (WGN) at
a particular time iteration . We note that exhibits only a
modest reduction for . Fig. 3 shows the number
of iterations for MMax–NLMS to achieve 20 dB normalized
misalignment for various and, hence, verifies our expecta-
tion that, over the range , a graceful reduction
in convergence rate is obtained as compared to full update adap-
tation when [17], [18]. Since convergence rate can be
seen to increase monotonically with , we propose that any
degradation in convergence performance due to subselection of
taps can be minimized by selecting taps so as to maximize .
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Fig. 4. Squared coherence for (a) . (b) with MMax tap-selection. (c) with exclusive tap-selection.

B. Interchannel Decorrelation Using Tap-selection

In order to examine the effect of tap-selection on interchannel
coherence in SAEC, we first employ the squared coherence
function

(14)

where is the cross power spectrum between the two
channels, and is the normalized frequency.

We consider two tap-input vectors of length formed
from a zero mean, unit variance WGN source convolved with
two highly correlated impulse responses and each of
length 1024, where is formed using the method of images
[19]. In this example, is then generated using the following
relation:

(15)

where is an independent WGN sequence also with zero mean.
We have used , giving a correlation coefficient of 0.904,
to reflect the high interchannel correlation found in practice.

The highly correlated tap-input vectors give rise to a squared
coherence close to one across most of the frequency band as
shown in Fig. 4(a). In the case shown in Fig. 4(b), taps are se-
lected according to the MMax selection criterion with

. It can be seen clearly that MMax tap-selection does not

provide any significant decorrelation. This is because the MMax
criterion selects nearly identical tap-indices in both filters for
updating, due to the high coherence between the two channel
tap-input vectors. This does not achieve our desired effect of
decorrelating the signals.

We now, therefore, propose an exclusive tap-selection crite-
rion such that selection of the same tap-index in both channels
is not permitted. A simple example of such an exclusive case
with (but not the technique used in our proposed
algorithm) is to select the taps corresponding to the largest
magnitude tap-inputs in the first channel and the exclusive set
of taps in the second channel. Fig. 4(c) shows the squared co-
herence plot of such a case. We see that the mean interchannel
coherence is significantly reduced from 0.88 to 0.52 and we will
use this to illustrate and develop further study of tap-selection
in Section IV.

The exclusive tap-selection can be seen as a method for im-
proving the conditioning of the input autocorrelation matrix by
considering the case where and are highly corre-
lated Gaussian inputs. Defining and

as the mathematical expectation operator, the autocorrela-
tion matrix can be expressed as

(16)
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Fig. 5. Effect of exclusive tap-selection on mean condition number for WGN
sequence. (a) Without tap-selection. (b) With exclusive tap-selection.

After exclusive tap-selection, the resulting sparse vectors
and give rise to

. The diagonals and some off-diagonal elements of
and are zero. This improves on the conditioning of
and in the limit where and are perfectly uncorrelated
and white, the autocorrelation matrix is a diagonal matrix

with a 2-norm condition

number of ,
where is the th channel subselected tap-input variance.

Fig. 5 shows the variation of mean condition number of the
autocorrelation matrices and as a function of . Both
the autocorrelation matrices are formed from and gener-
ated by convolving a WGN sequence with and governed
by (15) with the additional exclusive tap-selection criterion im-
posed when generating . For each case of , the average
2-norm condition number for 50 trials is computed and plotted
as shown in Fig. 5(a) and (b) for and , respectively.
We see that as is reduced, and become less correlated
and, hence, a reduction of mean condition number for both
and is exhibited. In addition, for each case of , has
a lower mean condition number than and, hence, exclu-
sive tap-selection gives rise to a better conditioned autocorrela-
tion matrix which in turn allows us to address the misalignment
problem discussed in Section II-B.

IV. EXCLUSIVE MAXIMUM TAP-SELECTION

A. Formulation

It has been shown in Section III that exclusive tap-selection
can improve the conditioning of the adaptive filtering in SAEC.
We wish to develop an adaptive filtering scheme which makes
use of this concept without degrading convergence due to par-
tial adaptation. We now, therefore, formulate the joint optimiza-
tion problem of maximizing the MMax criterion, determined by

, and minimizing the interchannel coherence under the con-
trol of tap-selection. This is done using two variables: magni-
tude weighting, , to describe the “closeness” of the tap-se-
lection to that of the MMax scheme, and coherence weighting,

, to describe interchannel coherence between
the subsampled tap-input vectors. A magnitude weighting of

corresponds to selecting coefficients based on the
MMax tap-selection criterion only.

We begin by considering combinations of selecting
taps from each channel’s adaptive filter of length

. Let the combinations be indexed ,
giving tap-selection sets and for channel 1 and 2
respectively and define as the combined two channel
tap-selection set. Let be defined as the subselected input
vector using tap-selection set . For the structure shown in
Fig. 1, we define, at each time iteration , and as
square matrices with elements

(17)

(18)

respectively, such that denotes the absolute sum of the
selected tap-inputs in a particular tap-selection set , and

is the squared coherence, with indicating averaging
over frequency, of the two tap-input vectors with unse-
lected inputs in each channel set to zero.

Since the elements in matrix contain magnitude sums
which are required to be maximized, an integer cost is first as-
sociated with each of the elements such that the least
cost is allocated to the element having the largest magnitude in

. We now denote this new magnitude cost matrix as .
In a similar manner, each element in will be allocated an
integer cost such that element corresponding to the minimum
coherence is allocated the least cost. We denote this new coher-
ence cost matrix as . Hence, matrices and now
contain integer cost values depending on the magnitude sum and
interchannel coherence. A total cost matrix is then given
by

(19)

We define as the tap-selection set
having minimum cost in matrix and search for
such that

(20)

For small and letting and
, can be searched exhaus-

tively such that the tap-selection set can then be
incorporated into NLMS adaptation as

(21)

with being the two-channel
selection matrix such that, at each time iteration , element of

and element of are defined for ,
as

if
otherwise
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Fig. 6. Normalized misalignment for (a) . (b) NLMS. (c) .
(d) 0.7. (e) 0.1. , , , , dB.

Fig. 6 shows simulation results for the normalized misalign-
ment with different values of magnitude weighting ( 0.1,
0.7, 0.9, 1.0). In this example, the input is a zero mean WGN
sequence with adaptive filters having six taps per channel and
for every iteration, three taps are updated ( , ). The
relationship between impulse responses and with lengths

is again determined by (15) with . The im-
pulse responses and are taken from a WGN sequence and
are of lengths . This choice of and allows us
to study the adaptive filters which uniquely determine the un-
known system while minimizing the misalignment caused by
undermodeling. The normalized misalignment for only one of
the two channels is plotted for each case of for reasons of
clarity. Uncorrelated measurement noise is added to such
that a signal-to-noise ratio (SNR) of 40 dB is achieved.

The simulation result shows that coincides with
MMax–NLMS where performance is close to that of the fully
updated NLMS as expected. The highest convergence rate can
be seen when , where there is a high
weighting given to the minimization of interchannel coherence.
Upon further investigation, it was found that for ,
all the tap-selection sets satisfy the exclusive criterion across
all time iterations, such that combinations and contain no
tap-indices in common, i.e,

(22)

where is a null set. Therefore, we can redefine our opti-
mization problem in the simpler form of a search such that (22)
is satisfied while maximizing at each iteration.

B. Efficient Realization

The exhaustive search of for the optimum exclusive
maximum tap-selection is computationally expensive for adap-
tive filters of higher orders. We now, therefore, propose an effi-
cient alternative to the exhaustive search. In the following, we
shall temporarily drop the dependence on for brevity.

Let us define, at each time iteration , the interchannel tap-
input magnitude difference vector

(23)

and

(24)

as sorted in descending order. Let and denote the th
tap-input samples of channels 1 and 2, ordered according to the
sorting of such that , . In
this two-channel case, is defined as

(25)

with and . Utilizing
the robustness of the NLMS algorithm to MMax tap-selection
for as discussed in Section III, we consider

.
As will be illustrated, the tap-selection set that maximizes

jointly for both channels contains the largest elements of
from channel 1 and the smallest elements of from channel
2, i.e.,

(26)

Hence, at each iteration, element of and element of
are defined for , where

otherwise

otherwise.
(27)

To verify this, we consider whether the absolute sum given
by is greater than other
absolute sums of exclusive tap-inputs combinations. We start by
testing whether

(28)

holds. Simplifying (28), we obtain

(29)

which is valid from the definition of . We next consider the
other possible cases. Suppose, for example, we select

tap-indices in the set where
for which we must now test whether

(30)

holds. Rewriting (30), we obtain
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and, hence

(31)

where . Since , (31) is valid from the
definition of . Similar analysis can then be used to verify
the remaining cases.

As an illustration, consider an SAEC system with channels
1, 2, adaptive filters each of length and tap-input

vectors . The vector
may then be expressed as

(32)

Consider the example case , for a par-
ticular time instant. Since , it can be
shown that

(33)

where refers to all other pair-wise combinations of , 1,
2, 3, 4. Thus, the tap-selection corresponding to inputs ,

, and maximizes with the minimum coher-
ence constraint satisfied by the exclusivity of the tap-selection.

In this way, the exclusive maximum (XM) tap-selection crite-
rion efficiently selects the best exclusive sets of taps where best
here is defined as nearest to MMax jointly for both channels.
This is achieved by maximizing the measure computed
using the taps from both channels. Because of the exclusivity
constraint, neither channel in general attains a tap-selection as
good as MMax and some degradation in convergence perfor-
mance is, therefore, to be expected. Nevertheless, our results in-
dicate that such degradation is small compared to the improve-
ment in convergence due to the decorrelating property of XM
tap-selection.

We note that the XM tap-selection criterion as described
above will result in a selected tap-input vector with lower power
than for the MMax criterion for each channel due to the exclu-
sivity constraint. It is to be expected, therefore, that the effect of
noise may be relatively more significant in the proposed scheme
compared to the MMax scheme. However, simulation results
such as shown in Figs. 11 and 12 indicate that any such effects
are insignificant compared to the improvements obtained due
to the decorrelating properties of the proposed tap-selection.

As a final summary, we note that it is irrelevant to consider
other tap-selection sets since they have smaller magnitude sum.
This approach has allowed us to eliminate
possible combinations, thus allowing efficient implementation

of the exclusive maximum tap selection which we have de-
noted XM. We will develop in Section V such efficient practical
schemes for use with NLMS, AP, and RLS adaptation.

V. EXCLUSIVE MAXIMUM ADAPTIVE FILTERS

As has been shown in Section III, XM tap-selection can im-
prove theconditioningof and,hence, improvedconvergence
is expected. The effect of tap-selection for the AP and RLS cases
on the autocorrelation matrix will be seen to be similar to that
which occurs in the NLMS case shown in Section III-B. The XM
approach relies on the existence of a unique solution for the adap-
tive filter coefficients which is the case for as discussed
in Section II. As will be shown through simulations in Section VI,
XM tap-selection in combination with the nonlinear (NL) pre-
processor leads to better conditioning than the use of the NL-pre-
processor alone. This combination of XM and NL approaches,
which we refer to as XMNL, is highly effective for the cases we
have studied and, therefore, we focus on this combined structure
for our later experiments. Fig. 7 shows the schematic diagram of
the proposed XMNL-based SAEC structure.

A. XM-NLMS Algorithm

The XM tap-selection technique may be incorporated into the
NLMS by selecting taps corresponding to the largest
elements of the input magnitude difference vector in the
first channel and the smallest elements of in the second
channel as shown in Table I. Tap-indices are then updated using
(10). Simulation results for the XM-NLMS algorithm are shown
in Fig. 10(c) and described in Section VI-B.

B. XMNL-NLMS Algorithm

The nonlinear (NL) preprocessor [4] is one of the most effec-
tive methods of achieving signal decorrelation without affecting
stereo perception by using as the nonlinearity constant such
that

(34)
(35)

We refer to the use of the NL preprocessor with NLMS adap-
tation as NL–NLMS. Several workers [3], [9], [20] have pro-
posed algorithms in combination with the NL processor so as
to achieve low misalignment. In the same manner, we propose
a combined algorithm employing the XM tap-selection, to im-
prove the conditioning of the autocorrelation matrix, in addi-
tion to the NL preprocessor so as to improve the convergence
rate obtained from the use of the NL preprocessor alone. The
XMNL–NLMS algorithm is summarized in Table II.

C. XMNL–AP Algorithm

The affine projection algorithm [21] incorporates multiple
projections by concatenating past input vectors from time
iteration to time iteration , where is defined
as the projection order. We first distinguish the concatenated
subselected tap-input vector and the concatenated full tap-input
vector by letting be the subselected
tap-input vector where and
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Fig. 7. Schematic diagram of XMNL preprocessor in stereophonic echo
canceller. Bold arrows indicate tap-selection control.

TABLE I
XMNL TAP-SELECTION

. The subselected and full
tap-input matrix are then denoted, respectively, as

(36)

(37)
Thus, the tap-update equation for the XMNL–AP algorithm is
given as

(38)
where and is
the regularization parameter while is a identity ma-
trix. It can be seen from (38) that for projection order ,
XMNL–AP is equivalent to XMNL–NLMS.

Note that even though the matrix is formed by subs-
electing the tap-input vector, XMNL–AP in general cannot be
classified as a partial-update algorithm. This is because the ele-
ments in the column vector form

TABLE II
XMNL–NLMS

TABLE III
XMNL–AP

a full vector and, therefore, every element of will be up-
dated at each iteration. Special cases may occur if there exist
any null rows in the matrix resulting in a partial adapta-
tion. Such a situation may arise if there are several consecutive
small values of such that the “inactive” tap-indices in each
channel propagate consistently through from iteration
to . The XMNL–AP algorithm is given in Table III.

D. XMNL–RLS Algorithm

The RLS algorithm is well known to be relatively insensi-
tive to the eigenvalue-spread of the input signal compared to
NLMS-based algorithms [21], [22]. Consequently, the rate of
convergence of RLS is higher than that of NLMS for speech
inputs. However, the algorithm does not address the nonunique-
ness problem inherent in SAEC and, hence, a poor rate of con-
vergence is expected when the RLS algorithm is applied di-
rectly.

The tap-update equation for RLS is given as
(39)

where the Kalman gain and a priori error are denoted as
and , respectively. We note that direct extension of the XM
tap-selection approach achieved by sorting the magnitude dif-
ference of will not achieve the desired convergence. This
is because the Kalman gain depends on previous values of the
time-averaged inverse correlation matrix , defined in (5),
given by

(40)

Our approach will be to improve the condition of by in-
troducing sparseness. This can be achieved by replacing
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in the Kalman gain calculation and Ricatti update with a sub-
sampled input vector . This ensures that
the subsampled input vectors propagate consistently through the
memory of the algorithm.

To derive the XMNL–RLS algorithm, we rewrite (5) in terms
of the subselected tap-input vector recursively as

(41)

where

and

Similarly, the cross-correlation vector in (6) may be expressed
recursively as

(42)

where

Using the matrix inversion lemma and following the approach
of [21] gives

(43)
where the modified Kalman gain is given by

(44)

such that . Defining as the a
priori error, the XMNL–RLS tap-update equation is then given
by

(45)

Similar to XMNL–AP, the XMNL–RLS algorithm in general
updates all the taps at each iteration since the modified Kalman
gain vector is a full column vector except in cases where
there exist any null rows in . The XMNL–RLS algo-
rithm is summarized in Table IV.

E. Computational Complexity

We define the complexity as the total number of multipli-
cations and comparisons per sample period for each channel.
Similar to the MMax–NLMS algorithm, the XMNL-based al-
gorithms employ the SORTLINE procedure [23] which requires
at most comparisons. Thus, the XMNL-NLMS has
the same complexity as MMax–NLMS, for , which
requires at most operations per sample pe-
riod per channel.

The complexity of AP using the generalized Levinson al-
gorithm is multiplies per sample period [20].
The XMNL–AP algorithm requires an additional
sorting operations in each channel for . However, due
to a reduction in multiplications required when computing

TABLE IV
XMNL–RLS

, the complexity for XMNL–AP is
operations per sample period per

channel.
The number of multiplications required for the RLS algo-

rithm is per adaptive filter where an additional
multiplications are required for the tap-updates. Due to the sub-
selection of input vector , the number of multiplications
required for computing for the XMNL–RLS is
while multiplications are required for computing the
Kalman gain. Hence, the number of operations required for the
XMNL–RLS is at most per sample
period per channel.

Figs. 8 and 9 show the variation of complexity with for
XMNL–NLMS, XMNL–AP, and XMNL–RLS algorithm. The
projection order for AP-based algorithms is . Although
complexity reduction is not the main aim of this work, it can
be seen that the XM selective-tap techniques nevertheless bring
significant computational savings.

VI. SIMULATION RESULTS

A. Experimental Setup

In all our simulations, impulse responses , , , and
are generated using the method of images [19]. Two micro-
phones are placed 1 m apart in the center of both the transmis-
sion and receiving rooms each of dimension 3 4 5 m. The
source is then positioned 1 m away from each microphone in the
transmission room. Tap-input vectors and are ob-
tained by convolving the source with two impulse responses
and and then applying the nonlinear preprocessor defined in
(34) and (35). The desired response in the receiving room
is obtained by summing and . For clarity, the
normalized misalignment of only one channel is plotted in each
experiment.

B. NLMS Simulations

We examine the performance of XM tap-selection and the
NL preprocessor in combination with NLMS adaptation. In
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Fig. 8. Computational complexity of NLMS and AP-based algorithms.

Fig. 9. Computational complexity of RLS-based algorithms.

this experiment, the lengths of the adaptive filters are
while the lengths of the transmission and receiving rooms’
impulse responses are and , respectively.
Fig. 10 shows the normalized misalignment plot for (a) NLMS,
(b) NL–NLMS, (c) XM-NLMS, and (d) XMNL–NLMS. A
WGN input signal with a sampling frequency of kHz is
used with , and a step-size of is chosen for
each algorithm. A nonlinear distortion factor of is used
[4] and WGN sequence is added to such that an SNR of 30
dB is achieved. We see that NLMS has the slowest convergence.
The convergence rate of XM-NLMS and NL–NLMS increases
significantly due to the XM and NL preprocessors, respectively.
The XMNL–NLMS algorithm shows even further improvement
of approximately 3 to 4 dB compared to NL–NLMS due to
the additional improvement in conditioning caused by XM
tap-selection. Alternatively, XMNL–NLMS could achieve the
same rate of convergence as NL–NLMS but with a lower value
of [18], hence reducing nonlinear distortion.

C. AP Simulations

The performance of the XMNL–AP algorithm is compared
with that of the AP algorithm in combination with NL pre-
processor (NL–AP) for a recorded speech signal. The impulse

Fig. 10. Normalized misalignment for WGN sequence (a) NLMS. (b)
NL–NLMS. (c) XM-NLMS. (d) XMNL–NLMS , ,

, , kHz, , , and dB .

Fig. 11. (a) Speech signal and normalized misalignment for (b) NL–AP and
(c) XMNL–AP , , , kHz,

, , , , and dB .

responses are chosen to be of length , adap-
tive filters of length and are used. We have
used a sampling frequency of kHz and an additive WGN
is added to the desired signal such that an SNR of 30 dB is
achieved. The adaptive step-size for each algorithm is chosen
such that they achieve approximately the same final normalized
misalignment. A nonlinearity constant of and affine
projection order are used.

We see from Fig. 11 that the rate of convergence of
XMNL–AP is significantly higher than that of the NL–AP
resulting in approximately 4 dB of improved normalized mis-
alignment. This is again due to the additional improvement
in conditioning caused by XM tap-selection. For the arbitrary
choice of , it was found that
gives approximately the same final normalized misalignment.

D. RLS Simulations

In Fig. 12, we compare the performance of XMNL–RLS with
that of the RLS incorporating the NL preprocessor (NL–RLS)
[4]. We have used , , ,
and a speech input sequence with sampling frequency of
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Fig. 12. (a) Speech signal and normalized misalignment for (b) NL–RLS and
(c) XMNL–RLS , , , kHz,

, , , and
dB .

kHz. As before, WGN sequence is added to the desired signal
such that an SNR of 30 dB is achieved. A forgetting factor of

[24] is used for
XMNL–RLS while for NL–RLS, is used
such that both algorithms achieve approximately the same final
normalized misalignment.

As shown in Fig. 12, the XMNL–RLS algorithm converged
within the range of 6 to 8 s giving a significant improvement in
convergence rate corresponding to approximately 3 to 4 dB in
normalized misalignment over NL–RLS.

VII. CONCLUSION

In this paper, we have introduced a novel approach to improve
convergence in SAEC employing a tap-selection technique. The
“closeness” of MMax tap-selection to the full tap-input vector
has been quantified by introducing which was then used as
an optimization parameter in the development of the proposed
XM tap-selection technique. It has been shown that the exclu-
sive tap-selection criterion reduces the interchannel coherence
of the tap-input vectors and improves the conditioning of the au-
tocorrelation matrix which consequently reduces the misalign-
ment problem. The efficient XM tap-selection technique has
been developed as an optimization of the MMax criterion sub-
ject to an exclusivity constraint between the tap-selection sets
of the two channels. This XM tap-selection has been applied to
the NLMS, AP, and RLS algorithms with and without nonlinear
preprocessing. Simulation results have shown a significant im-
provement in the range of 3 to 4 dB during convergence com-
pared with algorithms that use the NL–preprocessor alone. Al-
though complexity reduction is not the main aim of this work, it
has been seen that XM selective tap updating nevertheless brings
significant computational savings.
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