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Abstract— This paper presents an automatic and robust ap-
proach to synthesize stereoscopic videos from ordinary monoc-
ular videos acquired by commodity video cameras. Instead of
recovering the depth map, the proposed method synthesizes
the binocular parallax in stereoscopic video directly from the
motion parallax in monocular video. The synthesis is formulated
as an optimization problem via introducing a cost function
of the stereoscopic effects, the similarity, and the smoothness
constraints. The optimization selects the most suitable frames
in the input video for generating the stereoscopic video frames.
With the optimized selection, convincing and smooth stereoscopic
video can be synthesized even by simple constant-depth warping.
No user interaction is required. We demonstrate the visually
plausible results obtained given the input clips acquired by
ordinary hand-held video camera.

Index Terms— Stereoscopic video synthesis, parallax, optimiza-
tion.

I. INTRODUCTION

S
TEREO visualization provides users the important depth

cue experienced in our daily life. Since the introduction

of the parallax principle of stereo [1], various stereoscopic

systems for displaying stereoscopic images and videos have

been developed. Examples include the recently developed

3DTV system [2].

However, stereoscopic videos are normally inaccessible by

general public due to the difficulty in generating stereoscopic

videos. Acquiring stereoscopic videos from real world usu-

ally requires specialized devices. In addition, processing the

captured videos requires specialized software or hardware

and specialized skills. On the other hand, low-cost ordinary

monocular video cameras are widely available. In this paper,

we propose an automatic and efficient video-based rendering

method to synthesize stereoscopic videos from the monocular

videos. Although not all kinds of monocular videos can be

used to synthesize stereoscopic videos, many are feasible, e.g.

aerophotographic video.

A monocular video can be regarded as a set of plenoptic

samples of the scene [3]. The synthesis of stereoscopic videos

is basically a process of determining the proper samples and

compositing them to give the left- and right- view sequences.

Our method assumes the camera motion contains translational

movement and the scene is fixed.

To synthesize stereoscopic videos, one may recover the

depth values of samples, and reproject the samples to syn-
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thesize both views for each frame. This approach strongly

relies on the accuracy of recovered depth values which in

turn strongly depends on the availability of textures in the

scene. Moreover, when the scene exhibits mirror reflection or

highlight, the accuracy of depth recovery is even lowered. Our

major contribution is to make use of the motion parallax in

the monocular video and convert it to binocular parallax in

a robust way, instead of explicitly recovering the dense depth

maps. The whole process is done automatically. To synthesize

realistic stereoscopic video, we formulate it as an optimization

problem with an objective function that measures the loss of

stereoscopic effects, similarity, and smoothness constraints.

With the optimally selected frames, convincing stereoscopic

video can be synthesized by simple view warping (Figure 1).

There are 3 major steps in our method. Firstly, we track

the camera motion in the monocular video by a robust

camera-tracking algorithm. Secondly, an iterative optimization

algorithm is performed to determine the most suitable mono-

frames for stereoscopic video synthesis. It selects two se-

quences of frames from the monocular video. The i-th frames

in the two sequences are then warped into the binocular views

corresponding to the i-th desired eyes (left and right) in the

final step. Our major contribution is the optimization in the

second step. It minimizes a cost function with the following

objectives:

• The selected frames exhibit the most realistic stereoscopic

effects after warping.

• The warped views are similar to the original ones.

• The synthesized stereo frames are smooth temporally.

II. RELATED WORKS

Early work in stereoscopic video generation employs 3D ge-

ometry [4]. However, 3D models are usually difficult to obtain

for real-world scene. Generating stereo views from monocular

video sequences can be achieved by first recovering the depth

map [5], [6]. There have been many work in recovering depth

in the area of computer vision. Stereo reconstruction [7], two-

view or multi-view reconstruction [8], [9] have been proposed.

However, fully automatic, context-independent, and accurate

dense 3D reconstruction is still an open problem.

Image-based rendering [10], [11] aims at synthesizing novel

views from images. Methods like light field [12], [13] and

lumigraph [14] densely sample the scene in order to synthesize

reasonable novel views even no geometry information is
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given. Other methods try to reduce the sampling rate by

incorporating depth information or coarse 3D models. They

include 3D warping [15], view interpolation [16], view mor-

phing [17], image tours [18], and layered-depth images [19].

Sawhney et al. [20] synthesized high-resolution stereoscopic

video given one high-resolution and one low-resolution views.

Recent work in video-based rendering [21] utilizes multiple

synchronized video cameras to generate the 3D video [22],

or free viewpoint video [23]. Their goals are to synthesize

arbitrary novel views. However, specialized hardware and/or

reconstruction of 3D models are usually required. Techniques

for stereo panoramic images [24], [25] have been proposed.

They stitch images obtained from a single rotating camera

mounted on a special rig or equipped with a specialized optical

lens.

Homography can be used for rectifying a pair of still images

to a stereo pair in stereo vision [26]. However, it may not suit

for the video sequence since the change of orientations of

rectified stereo pairs may not be smooth, which causes the

resultant video looks shaky. Moreover, the baselines (the lines

joining the stereo image pairs) of rectified stereo pairs may

also not be the same throughout the video. This violates the

property of the stereoscopic video. Rotem et al. [27] calculated

a planar transformation between images in the sequence and

aligned one input frame to another in order to synthesize the

stereoscopic video sequence. This relies on the human capa-

bility to sense the residual parallax. Since it only uses a simple

homograhy without the accurate camera motion recovery, the

baseline of a stereo pair may not be calculated accurately,

resulting in the length of baseline changes vigorously in the

generated stereoscopic video sequence. In addition, there is no

attempt to control the parallax errors along vertical direction.

Hence there will be shaky motion in the generated stereoscopic

video as evidenced by their results.

The proposed work synthesizes stereoscopic video from a

monocular video sequence by utilizing the motion parallax

alone. No depth map recovery is required. We make an in-

depth analysis based on precise camera motion recovery, and

formulate it as an optimization problem of the stereoscopic

effects, the similarity, and the smoothness constraints.

III. OVERVIEW

Before presenting our algorithm, we first define the termi-

nologies. We call the input monocular video sequence the base

frame sequence, in which each frame is a base frame. The

camera corresponding to a base frame is a base camera, and its

viewpoint and viewing direction are called by base viewpoint

and base viewing direction respectively. The ordered sequence

of base viewpoints form a base trajectory. A stereo-camera

consists of two monocular cameras, left camera and right cam-

era. Both of them are in the same orientation and orthogonal to

the line joining them. The center of projections of left and right

cameras are called the left and right viewpoints respectively.

The center of the stereo-camera lies at the midpoint of two

cameras. These notations are listed in Table I.

We assume the interocular distance, the distance between

the left and right viewpoints, is constant and denoted by deye.

frame 27 frame 30frame 1 frame 9

Camera Tracking

View Warping

the recovered base trajectory

base frame sequence

Optimization for Stereo

left camera right camera left camera right cameracenter center

Fig. 1. Synthesizing stereoscopic video from monocular frames. At the
bottom of this example, Π

L = 27,30 and Π
R = 1,9. The first frame in the

stereoscopic video is warped from the base frame pair (f27, f1), while the
second one is warped from base frame pair (f30, f9). The actual base frames
for warping are selected by optimizing the cost function.

Π
L, Π

R the index subsequences in which the i-th elements
Π

L[i] and Π
R[i] are the indices of the base frames

to be warped to the i-th left-eye and right-eye frame
in stereoscopic video sequence.

s a stereo-camera.
S the ordered set (sequence) of stereo-camera. S[i] is

the i-th stereo-camera, equivalent to si.
b a base camera.
B the ordered set (sequence) of base camera. B[i] is

the i-th base camera, equivalent to bi.
L(s),R(s) the left and right cameras of stereo-camera s.

v(b) the viewpoint of camera b.
v(L(s)),v(R(s)) the left and right viewpoint of stereo-camera s.

q(b),q(s) the orientation of base camera b or stereo-camera s

respectively, expressed by Euler angles.
f(m) the frame corresponding to camera m.

fk the k-th base frame, equivalent to f(bk).
f(m1) → f(m2) the warped view f from camera m1 to that of

camera m2.

TABLE I

NOTATIONS.

Thus, the extrinsic parameters of the stereo-camera can also

be described by its center and the orientation of its viewing

coordinate frame. We also assume that the intrinsic parameters

of both left and right cameras are the same and unchanged

throughout the whole sequence.

Our method exploits the temporal coherence of the monocu-

lar video sequence. The novel binocular views are synthesized

by warping two properly selected base frames. The warping

error between the warped and the true views is small when

the difference (in terms of viewing parameters) between the

original and target views is small. Thus, we need to carefully

determine the center and the orientation of the desired stereo-
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Fig. 2. Absolute parallax and relative parallax. (a) illustrates the absolute and relative parallax. (b) Moving the scene nearer, the absolute parallaxes become
larger. (c) Extruding the scene toward the nearer distance, the relative parallaxes become smaller while the absolute parallaxes become larger.

camera, as well as the selection of two base frames, so that

the following three objectives are achieved: (a) the binocular

views obtained by warping exhibit the stereoscopic effects

as realistic as possible; (b) the binocular views are close to

the selected base frames; and (c) the change in viewpoint

position and orientation of consecutive stereo-cameras are

minimized. Otherwise, the generated stereoscopic video will

be shaky. We begin the description with the input base frame

sequence F = {fk|k = 1, ...,K}. Here are the three major steps

to perform:

Step 1 For each base frame fk, we recover the extrinsic

parameters of the corresponding base camera bk in

the set B = {bk|k = 1, ...,K}.

Step 2 Determine the stereo-camera sequence S = {si|i =
1, ...,N} and the two index subsequences, ΠL and

ΠR, satisfying criteria (a), (b) and (c) (explained in

Section IV).

Step 3 For i = 1, . . . ,N, performing view warping opera-

tions:
f(bl) → f(L(si)), l = ΠL[i]
f(br) → f(R(si)),r = ΠR[i].

(1)

The output frames {f(L(si)), f(R(si))|i = 1, ...,N} form the

resultant stereoscopic video sequence. This procedure is illus-

trated in Figure 1.

Step 1 involves the structure and motion recovery which is

a classical problem in computer vision. Several methods [28],

[8], [29], [30] have been proposed to recover the camera

extrinsic parameters given a video sequence. In our implemen-

tation, we adopt the method proposed in [30] to automatically

extract the camera motion parameters and the 3D positions of

sparse feature points for each frame.

Step 2 is the most challenging and difficult part. We adopt an

optimization process to determine (S,ΠL,ΠR) by minimizing

the cost function E(S,ΠL,ΠR). This cost function consists of

the stereo cost, the similarity cost, and the continuity cost,

corresponding to the 3 objectives mentioned above. Section IV

describes them in details.

Finally, in Step 3, we can warp the pair of chosen base

frames (from Step 2) to obtain the left and right frames. There

are several possible ways to achieve this view warping. A

classical way for view warping is to produce 3D meshes by

triangulating the sparse point cloud, and render each mesh

with texture map to synthesize the desired view. However,

the 3D points recovered in the first step are too sparse and

unevenly distributed. Missing geometry and outlying points

can sometimes cause distracting artifacts. Another approach

is planar-homography that restricts the warping on a plane

(planar impostor). It computes a planar transformation (or

homography) by minimizing the average warping/disparity

error of the recovered sparse 3D feature points. However,

in our application to generate stereo frames, apparent visual

artifact will be resulted if the warping plane is allowed to

be arbitrarily oriented. Figure 9(a) shows one such example.

The building and streetlamps are not parallel to each other in

the synthetic left and right views, as the warping planes for

generating the left and right views are not parallel. Note that

human vision is more sensitive to such misalignment than the

disparity errors. To avoid the artifact, we restrict the warping

planes to be perpendicular to the viewing direction and aligned

to the up vector of the stereo-camera. In other words, all

pixels in the warped frame have the same depth zc. Due to the

uneven distribution of the recovered sparse 3D points, we use

zc = 2(z−1

min +z−1
max)

−1 instead of a mean value. Here, [zmin,zmax]
is the depth range of the scene with respect to viewpoint of

the associated base camera, which can be estimated automat-

ically with the recovered sparse 3D points. This restriction

is also adopted in the plentopic sampling analysis [13]. Even

with such crude constant-depth assumption, convincing stereo

frames can be synthesized (Figure 9(b)).

IV. THE COST FUNCTION

The cost function E(S,ΠL,ΠR) consists of three terms, the

stereo cost ES, the similarity cost EQ, and the continuity costs

of camera orientation ECQ and location ECV . Mathematically,

E(S,ΠL,ΠR) is defined as:

E(S,ΠL,ΠR) = wSES +wQEQ +(wCQECQ +wCV ECV ), (2)

where wS,wQ,wCQ and wCV are weights of the cost terms.

A. Stereo Cost

1) Relative Parallax: The sense of stereo is due to the

fact that our left and right eyes see differently. The same
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Fig. 3. The relationship between two base cameras and stereo-camera s.
v(L(s)) and v(R(s)) are the left and right viewpoints of stereo-camera s

respectively. v(s) is the center of stereo-camera s. bl and br are the two base
cameras, and their corresponding base frames will be warped to generate a
pair of stereoscopic frames. v(bl) and v(br) are their viewpoints respectively.

scene/object is spatially shifted in our left and right views.

Such apparent position difference is called binocular parallax.

In the 2D illustration of Figure 2(a), the viewing rays corre-

sponding to the points i and j in the left view are overlaid onto

the right view as indicated by the dotted red and blue lines.

The displacements Di and D j are the parallaxes (binocular

parallaxes). They are related to the interocular distance (deye),

focal length ( f ), and depth (zi). Obviously closer object results

in larger parallax.

In this article, we argue that the sense of stereo relies not

on the absolute parallax, but on the relative parallax. Relative

parallax is the difference in parallax of two objects. The

notion of relative parallax has long been used in the area of

astronomy [31]. In this paper, the relative parallax is formally

defined as follow. Consider Figure 2, a pixel pL
i in the left

view and its corresponding pixel pR
i in the right view. The

parallax of this pixel pi is Di = pL
i −pR

i . The relative parallax

with reference to another pixel pL
j is defined as mi j = Di−D j.

The parallax depends on their depths, focal length, and the

interocular distance, mi j = deye f (z−1

i − z−1

j ). Thus, for a pair

of binocular images, we can define the relative parallax matrix

M in which its element mi j being the relative parallax of every

pair of pixels pi and p j.

Figure 2 explains why the relative parallax is more sensible

than the absolute parallax in expressing the stereoscopic effect.

The object in Figure 2(b) is moved closer to the viewer.

The values of both the relative (mi j) and absolute (Di, D j)

parallaxes are increased. In Figure 2(c), the object is not just

moved closer but also flattened. Although the absolute parallax

is increased, its relative parallax decreases.

To account for the relative parallax, we estimate the error

in relative parallax between the synthetic (view-warped) and

ideal stereo image pairs. Given the stereo-camera in the

current iteration (it may change in the next iteration), the

synthetic stereo frame is the one warped with the constant-

depth assumption. It is the one that we can compute. The

ideal stereo frame is the one that we can obtain if the true

depth map is known. Obviously, the true depth map is not

available. But we can still estimate the upper bound of this

relative parallax error.

Each stereoscopic frame pair is synthesized by warping

two chosen base frames. Let’s denote the two base frames

being considered for view warping in the current round of

optimization as fl (left candidate) and fr (right candidate).

If we have the true depth maps, we can correctly synthesize

stereo pair f′l and f′r by a per-pixel warping. Let’s denote the

relative parallax matrix of this ideal stereo pair (f′l , f
′
r) by MG.

It is the ideal relative parallax matrix. Since the true depth

map is not available, we can only warp the images with the

constant-depth assumption. The relative parallax matrix of this

synthetic stereo pair is denoted as MW . The matrix MW −MG

measures the error in relative parallax. Although we do not

know MG, we can estimate a upper bound ε for the norm of

the elements in MW −MG (see Appendix for the derivation).

ε(s, fl , fr) = f hd

√

(dx +
w

2 f
·dz)2 + µ(dy +

h

2 f
·dz)2, (3)

where f is the focal length; hd = z−1

min − z−1
max; w and h are the

width and height of the base frames; µ is a constant greater

than 1; and

dx =| tL
x − tR

x |, dy =| tL
y − tR

y |, dz =| tL
z | + | tR

z | . (4)

where tL = v(bl)− v(L(s)) and tR = v(br)− v(R(s)) are the

displacement vectors as illustrated in Figure 3. The intuition

is that the deviation of the two displacement vectors, tL

(displacement between the candidate and ideal left viewpoints)

and tR (displacement between the candidate and ideal right

viewpoints) should be close, especially in y axis.

Constant µ is the weight on y component. In our formula-

tion, the x-axis is aligned with the line connecting the left and

right viewpoints of the stereo-camera, the positive direction of

z-axis is the viewing direction, and the positive direction of

y-axis is the upward vector of the camera. The y component of

relative parallax should be zero according to the stereovision

theory, and any nonzero value will damage the stereoscopic

effect. Therefore, we use µ(> 1) to penalize any change in y

direction caused by our view warping.

2) Warping Error: Besides the relative parallax error, the

error due to warping should also be controlled to minimize

visual artifact. We estimate the warping error as the maximum

deviation between the pixel positions warped with constant-

depth assumption and the ideal pixel positions if the true

depths are known. If the deviation is too large, it will be easily

aware by audiences. Note that minimizing the relative parallax

error not necessarily minimizes the warping error. It is easy to

demonstrate that the error due to warping the base frame pair

(fl , fr) is bounded by δ (see Appendix for the derivation),

δ (s, fl , fr) =

√
2

2
f hd max(1,

√
w2 +h2

2 f
)
√

‖tL‖2 +‖tR‖2, (5)

The goal of Equation 5 is to minimize the pixel position

deviation via minimizing the displacement of viewpoints (tL

and tR). One assumption of Equation 5 is that the target and

original views have the same viewing orientation. If the camera

orientation of the target and original views are different, we

can rectify the original views. The error due to the difference

of camera orientation is accounted by the similarity cost

(explained in Section IV-B).
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Fig. 4. Determination of the initial value of (S[i],ΠL[i],ΠR[i]). q(si), q(bi)
and q(bk) are the orientations of camera si, bi, and bk respectively. The blue
arrows indicate the viewing direction of these cameras.

Finally, we use both ε and δ to estimate the overall loss of

stereoscopic effects due to the view warping. As the maximum

relative parallax is f hddeye, we use this maximum value to

normalize ε and δ . Hence, the stereo cost of the entire

stereoscopic sequence is defined as:

ES(S,ΠL,ΠR) = 1

( f hddeye)2

N

∑
i=1

(ε2(S[i],ΠL[i],ΠR[i])

+δ 2(S[i],ΠL[i],ΠR[i])).

(6)

B. Similarity Cost

The orientation of the two chosen base cameras bl and br

should be as close to that of the stereo-camera s as possible.

This guarantees that the binocular views generated by viewing

warping look similar to the original ones and they share the

large common scene region. Therefore, we define the similarity

cost for one stereo frame by:

γ(s, fl , fr) = ‖q(s)−q(bl)‖2 +‖q(s)−q(br)‖2, (7)

where, q(s), q(bl) and q(br) are the orientations of the stereo-

camera s, the left and right base cameras bl and br respectively.

Each is represented by a triplet of Euler angles. The similarity

cost of the entire video sequence is defined by:

EQ(S,ΠL,ΠR) =
N

∑
i=1

γ(S[i],ΠL[i],ΠR[i]). (8)

C. Continuity Cost

The discontinuity of a video sequence is mainly caused by

the unsteady rotational and translational speed of the camera.

Therefore, to ensure the visual smoothness of the synthesized

stereoscopic video, the rotational and translational acceleration

should be minimized. Besides, since our stereoscopic video

sequence is obtained by view warping, the change of the loss

of stereoscopic effect should also be minimized to achieve

visual smoothness. From Equations 5 and 3, the stereoscopic

effect loss is dependent on the viewpoints of stereo-camera

and the two candidate cameras. Thus, to ensure the stereo-

camera moves steadily, the corresponding candidate cameras

also have to move steadily. Hence, we define the continuity

costs of the camera orientations, ECQ and the location, ECV

as:

ECQ(S,ΠL,ΠR) =
N−1

∑
i=2

‖2q(si)−q(si+1)−q(si−1)‖2

ECV (S,ΠL,ΠR) = 1

d2
eye

(
N−1

∑
i=2

‖2v(si)−v(si+1)−v(si−1)‖2

+
N−1

∑
i=2

‖2v(b
ΠL[i])−v(b

ΠL[i+1])−v(b
ΠL[i−1])‖2

+
N−1

∑
i=2

‖2v(b
ΠR[i])−v(b

ΠR[i+1])−v(b
ΠR[i−1])‖2).

(9)

Here, we minimize the second derivative of the camera ori-

entations and locations in order to reduce the discontinuity.

It has been pointed out [32] that human are more sensitive

to rotational vibrations, therefore ECQ should be given larger

weight. Generally, the weights of ES and ECV should be

close to ensure the tradeoff between the warping errors and

translational smoothness.

V. OPTIMIZATION

Computing the optimal solution is challenging, as it involves

both the combinatorial and continuous optimizations. We

design an iterative algorithm to accomplish this task. Table II

shows the pseudocode.

1) Find an initial solution of S, Π
L, and Π

R.
2) Fix Π

L,ΠR, and find the optimal viewpoints of the stereo-
cameras V = {v(si)|si = S[i], i = 1, ...,N}, and viewing orien-
tations Q = {q(si)|si = S[i], i = 1, ...,N} by minimizing E.

3) If E is small enough or doesn’t improve from last iteration,
terminate the iteration; otherwise, continue.

4) for (i = 1, ...,N)
fix v(si) and q(si), and find the optimal Π

L[i],ΠR[i] to
minimize wSES +wQEQ.

5) Fix Q, Π
L & Π

R, and refine V to minimize E.
6) Fix Q and V, and refine Π

L and Π
R locally to minimize E.

7) Goto step 2.

TABLE II

ALGORITHM OF OPTIMIZATION.

Solving ΠL and ΠR involves a combinatorial optimization,

which is too complicated to search globally for the best solu-

tion. However, if ΠL and ΠR are fixed, it becomes a nonlinear

continuous optimization and can be optimized by Levenberg-

Marquardt method (LM) efficiently. Therefore, we employ an

optimization strategy which alternates between the continuous

optimization and the discrete search. That is, instead of letting

all parameters to change simultaneously, we temporarily fix

discrete parameters to allow continuous optimization. Then we

temporarily fix certain continuous parameters to allow discrete

search. Such alternation continues in the next iteration.

We first initialize S (i.e. V and Q), ΠL and ΠR (Section V-

A). The initial V,ΠL and ΠR are usually already close to

optimal ones. Then in step 2, we fix ΠL and ΠR, and optimize

the V and Q using standard continuous optimization method

like Levenberg-Marquardt. If E is not sufficiently small, it

means that ΠL and ΠR are not good enough and need to be

adjusted in the following steps.
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Steps 4-6 are mainly designed for adjusting the discrete

parameters ΠL and ΠR. However, adjusting ΠL and ΠR is

computationally expensive. In order to efficiently adjust ΠL

and ΠR, we temporarily freeze ECQ and ECV (contain complex

combinatorial optimization if ΠL and ΠR are not fixed) to their

current values (step 4). Instead of optimizing the whole E, we

only minimize for wSES + wQEQ. This is an implementation

trick. Then in the following steps 5 and 6, we patch on

this partial optimization. In step 5, we allow V to adjust

in order to reflect the effect due to the previous change of

ΠL and ΠR. This time we minimize for the whole E, (not

just wSES + wQEQ). Once V adjusts, it affects ΠL and ΠR

immediately. Finally in step 6, we locally adjust ΠL and ΠR

to minimize for the whole E. With the partial optimization and

the local adjustment, the adjustment on ΠL and ΠR becomes

efficient.

A. Initialization

Firstly, we construct the initial selection. Let ΠL[i] = i for

i = 1, ...,N, i.e., the base frame fi will be the current candidate

to be warped into the left view corresponding to the i-th left

camera. Then, the remaining task is to search the proper base

frame as the current candidate for the corresponding right

view. Consider the i-th left camera, base camera bk is the

desired one if the distance between bk and bi is the closest

one to the interocular distance deye. Its index is assigned

to ΠR[i], or ΠR[i] = k such that k > i. It is natural to let

the center and orientation of the i-th stereo-camera be the

average of those of bi and bk, i.e., v(si) = (v(bi)+ v(bk))/2

and q(si) = (q(bi) + q(bk))/2. Next, according to the local

coordinate system of the stereo-camera, if bk is not on the right

hand side of bi when looking at the positive direction of the

z-axis, the values in ΠL[i] and ΠR[i] are swapped. v(R(si)) and

v(L(si)) are the left and right viewpoints of si and are equal to

v(si)±0.5deyeex respectively, where ex is the x-axis direction

vector. Figure 4 illustrates the initialization graphically.

B. Speed-up

During the adjustment of ΠL[i] and ΠR[i], the terms ECQ and

ECV involve the complex combinatorial optimization in which

its complexity grows exponentially with the number of frames.

Therefore, we employ a practical trick. It firstly ignores the

continuity cost in step 4. Then the continuity consideration is

brought back in steps 5 and 6 for improving visual smoothness.

In step 4, for each stereo frame i, its best candidate pair

(ΠL[i], ΠR[i]) is determined by fixing the stereo-camera si

(both viewpoint and orientation) and minimizing the part of

objective function wSES +wQEQ, i.e. σi = wS(δ
2 +ε2)+wQγ .

Energy terms ECQ and ECV are temporarily fixed and ignored.

As (ΠL[i], ΠR[i]) affects the center of stereo-camera vi, we then

optimize vi according to the selected pair using LM method

in step 5.

The key is to efficiently select the best candidate pair in

step 4. For stereo-camera si, σi = wS(δ
2 + ε2)+ wQγ . From

Equation 5, we know δ 2 = A(‖tL‖2 + ‖tR‖2), where A is an

invariant if w, h, hd , and f are fixed. So, for either ‖tL‖ >
√

σ/(AwS) or ‖tR‖ >
√

σ/(AwS), wSδ 2 > σ is true. Hence,

L
t

R
t

s

k

i
Aw/

]1[ −

σ

))(( sRv))(( sLv
)(sv

s

k

i
Aw/

]1[ −

σ

Fig. 5. The illustration of the determination of the appropriate base frames
inside the spheres.

in the k-th iteration of the entire algorithm, we only select

base camera pair candidates from those inside the spheres

centered at left and right viewpoints with the radius equal to
√

σ
[k−1]
i /(AwS), where σ

[k−1]
i is the cost evaluated by using

the values of ΠL[i] and ΠR[i] determined from the last iteration

(or the (k−1)-th iteration), as shown in Figure 5. This scheme

discards the inappropriate pairs, whose relevant cost σ
[k]
i have:

σ
[k]
i ≥ wS(δ

[k])2 ≥ σ
[k−1]
i , (10)

where σ
[k]
i is the current cost. Therefore, for each candidate

pair inside the spheres, its cost σ
[k]
i is calculated. The candidate

pair, whose cost is the minimum and less than σ
[k−1]
i , is the

desired one. Their indices are assigned to ΠL[i] and ΠR[i]
accordingly. If there is no pair satisfying Equation 10, the

current ΠL[i] and ΠR[i] are retained.

C. Optimization for Visual Smoothness

To maintain the visual smoothness, we control the acceler-

ations of both left and right eyes. The accelerations are com-

puted by the second-order difference of the eye positions. This

smoothness is determined by ECQ and ECV . While ECQ can be

optimized easily by LM method in step 2, the optimization of

ES and ECV are highly dependent on V, ΠL and ΠR, and has

a high combinatorial complexity. In step 6 of the pseudocode,

when the viewpoints of stereo-cameras are fixed, ECV merely

relies on the sum of the norm of the acceleration of the left

and right eyes. Due to the symmetry, we only explain the left

eye in the following discussion.

The shaky candidate cameras are those whose accelera-

tions exceed a tolerance amax. Whenever shaky candidate

exists, we should modify our choice of candidate frames.

In general, such change of choice should involve the whole

candidate index sequence. In practice, we only perform a

local adjustment by modifying a candidate index subsequence

centered at the detected shaky candidate. To simplify the

discussion, we only describe the adjustment on the left-

view frame index sequence ΠL. The right-view frame ΠR

is adjusted similarly. Consider the n-element subsequence

{ΠL[ko],Π
L[ko +1], ...,ΠL[ko +n−1]} where ko +⌈n/2⌉ is the

detected shaky element, for every element ΠL[ko + i] = li, its

new value after adjustment can be any value in the range of

[li −m, li + m]. In most of our experiments, m is 3 and n is

10. For each possible replacement, wSES +wQEQ +wCV ECV is
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Fig. 6. An example of stereoscopic video generation. The input monocular video sequence is taken in the air. (a) shows the recovered base trajectory and
a few frames from the base sequence. (b) illustrates the generation of a stereoscopic view pair. The blue dot coupled with 2 green dots indicate the virtual
stereo-camera, where the green dots are the left and right cameras. (c) shows the composed stereo frame.
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Fig. 7. Plots of Euler angles of the computed orientation. (a) is the recovered camera orientation of the base sequence (monocular video). (b) and (c) show
the camera orientations of the corresponding stereo-camera computed with different wCQ settings. In (b) wS = 1,wQ = 100,wCQ = 100,wCV = 1 while in (c)
wS = 1,wQ = 100,wCQ = 10000,wCV = 1.

recomputed and the one with the minimal wSES + wQEQ +
wCV ECV is selected for replacement in order to improve

smoothness. Then we return to step 2, the viewpoints and

orientations of stereo-camera are further optimized according

to the updated ΠL and ΠR by means of the LM method.

Since in each iteration the overall cost E is guaranteed to be

decreased, the iteration converges at a minimal point. Although

it may not be a global optimal solution, convincing solutions

are obtained in all of our experiments.

VI. RESULTS AND DISCUSSIONS

We have tested our method with several monocular video

sequences from either movies or home-made video clips

acquired via a hand-held video camera. All experiments are

carried out on a PC with Intel Pentium IV 2.4 GHz CPU

and 1 GB memory. Appealing results are obtained in our

experiments. Figures 6 and 8 show two synthesized stereo-

scopic video sequences. The input monocular video sequence

in Figure 6 is taken in the air. Video in Figure 8 is taken

indoor. In Figure 8, we show the disparity of 5 sample pixels.

Note that how our method correctly reflects the relative depth

of scene objects.

The statistics of the four video sequences are listed in

Table III. In the table, deye is interocular distance, and µ is

the penalty factor for parallax in y direction (see Equation 3).

Sequence in Fig. 1 Fig. 6 Fig. 8 Fig. 10

Number of frame 431 861 441 370

Time for camera tracking 26 min. 80 min. 30 min. 22 min.

Iteration number 2 1 2 3
of optimization

Time for optimization 27 sec. 20 sec. 35 sec. 21 sec.

Time for view warping 10 min. 20 min. 10 min. 8 min.
and video output

deye 10 4 12 10

µ penalty factor for y dir. 4 4 4 4

wS 1 1 1 1

wQ 100 100 100 100

wCQ 10,000 100 100 10,000

wCV 1 1 1 1

TABLE III

THE PERFORMANCE STATISTICS.

From the table, the optimization time is small. Camera tracking

consumes most of the time. From our experiments, the number

of iterations for the optimization is around 1 to 3. Such small

number of iterations means that the initial solution is close to

the optimal ones.

The weights in the cost function are user-specified. Table III

lists their values. In our experiments, we set wS = wCV = 1,

and wQ = 100. The choice of wCQ is highly dependent on the

smoothness of the input video sequence. For the sequences
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(b)

(c)

(d)

(a)

Fig. 8. Another example of stereoscopic video generation. (a) shows the
recovered base trajectory. The two images in the (c) and (d) are the warping
result of the base frames, and form a stereoscopic view pair in the result.
The arrows in the images show the degree of binocular parallax of five points
in the scene. It can be found that the remote points have the small parallax,
whereas the near points have the large ones. (b) is the composition image of
(c) and (d).

extracted from professional movies (normally with smooth

motion), wCQ can be set to about 100. For the video captured

by hand-held camera (like Figure 1), wCQ should be greater

than 100. Figure 7 shows the camera orientations (in Euler

angles) of the base sequence and those of stereo sequence with

different wCQ settings. It shows that larger value of wCQ leads

to a smoother change of computed orientation, hence the result

is less shaky. As the search window m of local adjustment for

shaky camera (Section V-C) increases, the smoothness of result

also increases, but with the trade-off of higher computational

cost. In our experiments, we found m = 3 is a good choice to

balance the trade-off between the performance and quality. In

general, adjusting the weights trades among the smoothness,

stereoscopic effect and/or visual similarity.

Recall that in Section III, we have justified why the simple

but restrictive constant-depth view warping, instead of the

more general planar-homography, is adopted. Figure 9(a)

shows a stereo-frame from view warping with the planar-

homography. Note that the building and streetlamps in the left

and right synthetic views are not parallel. This artifact can be

easily recognized by human vision. Even worse, some farther

objects have much larger disparities than those closer objects.

In contrast, the result from the constant-depth view warping

(Figure 9(b)) does not cause similar objectionable artifacts.

Since no depth map is used, our approach has some limita-

tions.

1) The scene should be static, otherwise the moving objects

will be warped incorrectly. Because the left-eye and

right-eye views are the warping results of the input

frames at different time instances, warping them results

in inconsistent object motion. Nevertheless, human vi-

sion may accept small inconsistent movements.

2) As our method relies on the motion parallax to synthe-

(b) view warping with constant-depth(a) view warping with planar-homography

Fig. 9. Comparison of planar-homography and constant-depth view warping.
In (a), the building and the streetlamps in the left and right views are not
parallel. Moreover, some farther objects even have much larger disparities
than those nearer ones. Not similar objectionable artifact are found in the
result from constant-depth warping (b).

(a) (b)

Fig. 10. A poor example of stereoscopic video generation. The input
monocular sequence is taken by a hand-held camera moving in the direction
of the camera viewing direction. (a) shows the recovered base trajectory.
Since the angle between the moving direction and the viewing direction is
very small, the binocular parallax is hard to be converted from the motion
parallax. As the result, all binocular parallax of the sample points in the scene
are almost identical, and the generated stereoscopic video does not properly
show the depth cue.

size the stereo parallax, it fails when there is no horizon-

tal parallax in the input video. Examples include the case

when the video is captured from a fixed viewpoint, the

case when the viewing and motion directions coincide

(Figure 10), and when the input video contains only

vertical motion.

3) Our method tries to minimize the relative parallax error

and warping error, and keep them consistent. However,

since it is based on a crude constant-depth assumption,

a large relative parallax/warping error may still occur

and not be quite consistent in some cases. For example,

when a originally panning camera suddenly changes its

trajectory and moves forward, it is very difficult to keep

all the parallaxes consistent. In this case, the objects

whose depths are close to the optimal depth value (i.e.

zc = 2(z−1

min + z−1
max)

−1) have more consistent parallaxes.

On the other hand, the parallaxes of the objects whose

depths are far away from the optimal depth value may

be jittered. In practice, the regions with inconsistent

parallaxes are usually not the visual focus and human

vision have a higher tolerance.

4) If the focal length of input video varies, the output

video may contain error. The simplest way to work

around the problem is to preprocess the input video.

A more sophisticated approach is to incorporate focal-

length variation in the cost function. This is one of our
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future directions.

VII. CONCLUSIONS

In this paper, we present a novel automatic synthesis of

stereoscopic video sequence from the monocular one. Instead

of recovering the depth map, we exploit the motion parallax.

This allows us to avoid the objectionable visual artifact due

to the inaccurately recovered 3D information. We formulate

the video synthesis problem as an optimization problem. The

introduced cost function considers the stereoscopic effects, the

similarity, and the smoothness objectives. Users can adjust the

weights to trade among these three objectives. Convincing

results evidence the robustness and the efficiency of our

approach. Despite of limitations, the proposed method is useful

in many scenarios in which the video contains the panning

motion.
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APPENDIX

Assume the coordinate system is set to align with the left

camera (right camera), and the camera views along z-axis.

Refer to Table IV for the meaning of the notations used in

this appendix. Then the position of the candidate camera is

t = (tx, ty, tz). For simplicity, we assume the candidate camera

and left (right) camera have the same orientation. If their

orientations are different, we can rectify them beforehand.

Without loss of generality, we choose a pixel p which 3D ho-

mogeneous coordinate is (x,y,1,1/z) in the coordinate system

of the candidate camera. From the candidate camera to the left

(right) camera, its coordinate becomes ( xz+tx
z+tz

,
yz+ty

z+tz
,1,1/(z +

tz)). Then the offset in the image is d =
(

f
tx−xtz

z+tz
, f

ty−ytz

z+tz

)⊤
.

For convenience, we replace z + tz with z by simply offset

the coordinate, hence d =
(

f
tx−xtz

z
, f

ty−ytz

z

)⊤
. We assume the

depths of scene are in the range of [zmin,zmax]. During the

view warping, we assume the depth is constant and equal to

zc = 2(z−1

min + z−1
max)

−1 over the whole image. This results in

dW =
(

f
tx−xtz

zc
, f

ty−ytz

zc

)⊤
. Here, we define ∆d as the offset

error due to the uncertainty of depth.

∆d =
(

f (tx − xtz)(
1

zc
− 1

z
), f (ty − ytz)(

1

zc
− 1

z
)
)⊤

≤ f hd
2

(|tx − xtz|, |ty − ytz|)⊤

pi(xi,yi,1,1/zi) the homogeneous 3D coordinate of pixel i.
zi the depth of pixel i.

w, h the width and height of the image.
f the focal length.

tL(tR) the relative translation between left (right) and the
candidate cameras.

Di the parallax of pixel i.
DW

i the parallax of pixel i warping with constant depth
zc.

dL
i (dR

i ) the image offset of pixel i between left (right) and
candidate cameras.

dLW
i (dRW

i ) the image offset of pixel i between left (right) and
candidate cameras warping with constant depth zc.

ei j the relative parallax error between pixels i and j.

TABLE IV

NOTATIONS USED IN THE APPENDIX.

Since |xi| ≤ w
2 f

, |yi| ≤ h
2 f

, we have

||∆d|| ≤ 1

2
f hd

√

(tx − xtz)2 +(ty − ytz)2

≤ 1

2
f hd

√

(|tx|+ w
2 f
|tz|)2 +(|ty|+ h

2 f
|tz|)2

≤
√

2

2
f hd max

(

1,

√
w2+h2

2 f

)

||t||

Therefore, considering the parallax errors of both left and

right cameras, we obtain Equation 5.

Next, we derive Equation 3. For any pixel pi(xi,yi,1,1/zi)
in the coordinate system of the candidate camera, having the

following:

dL
i =





t
L
x−xL

i t
L
z

zi
f

t
L
y−yL

i t
L
z

zi
f



 ,dLW
i =





t
L
x−xL

i t
L
z

zc
f

t
L
y−yL

i t
L
z

zc
f





dR
i =





t
R
x −xR

i t
R
z

zi
f

t
R
y −yR

i t
R
z

zi
f



 ,dRW
i =





t
R
x −xR

i t
R
z

zc
f

t
R
y −yR

i t
R
z

zc
f





DW
i = Di +(dLW

i −dRW
i )− (dL

i −dR
i )

Then the relative parallax error between pixels i and j:

ei j = (DW
i −DW

j )− (Di −D j)

= (dLW
i −dRW

i )− (dL
i −dR

i )− ((dLW
j −dRW

j )− (dL
j −dR

j ))

= f

(

−(tL
x − tR

x )( 1

zi
− 1

z j
)+PL

x tL
z −PR

x tR
z

−(tL
y − tR

y )( 1

zi
− 1

z j
)+PL

y tL
z −PR

y tR
z

)

≤ f hd

(

|tL
x − tR

x |+(|tL
z |+ |tR

z |) w
2 f

|tL
y − tR

y |+(|tL
z |+ |tR

z |) h
2 f

)

Here,

PL
x = xL

i ( 1

zi
− 1

zc
)− xL

j (
1

z j
− 1

zc
),PR

x = xR
i ( 1

zi
− 1

zc
)− xR

j (
1

z j
− 1

zc
)

PL
y = yL

i ( 1

zi
− 1

zc
)− yL

j (
1

z j
− 1

zc
),PR

y = yR
i ( 1

zi
− 1

zc
)− yR

j (
1

z j
− 1

zc
)

Hence, we obtain Equation 3.
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