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Abstract—Visualization of large geometric environments has always been an important problem of computer graphics. In this paper,

we present a framework for the stereoscopic view-dependent visualization of large scale terrain models. We use a quadtree based

multiresolution representation for the terrain data. This structure is queried to obtain the view-dependent approximations of the terrain

model at different levels of detail. In order not to lose depth information, which is crucial for the stereoscopic visualization, we make use

of a different simplification criterion, namely, distance-based angular error threshold. We also present an algorithm for the construction

of stereo pairs in order to speed up the view-dependent stereoscopic visualization. The approach we use is the simultaneous

generation of the triangles for two stereo images using a single draw-list so that the view frustum culling and vertex activation is done

only once for each frame. The cracking problem is solved using the dependency information stored for each vertex. We eliminate the

popping artifacts that can occur while switching between different resolutions of the data using morphing. We implemented the

proposed algorithms on personal computers and graphics workstations. Performance experiments show that the second eye image

can be produced approximately 45 percent faster than drawing the two images separately and a smooth stereoscopic visualization can

be achieved at interactive frame rates using continuous multiresolution representation of height fields.

Index Terms—Stereoscopic visualization, terrain height fields, multiresolution rendering, quadtrees.
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1 INTRODUCTION

IN general, geometry processing is the main bottleneck of
all graphics applications. Even high-end graphics work-

stations have the ability to draw only a very small fraction
of the triangles needed to draw large complex scenes at
interactive frame rates. Furthermore, virtual reality applica-
tions need twice the processing power as needed for their
monoscopic correspondents. Therefore, the surface has to
be approximated up to a certain threshold.

The most common way to approximate a surface is to use
algorithms based on screen-space error threshold that
provide suitable heuristics for the approximation. However,
one of the most important disadvantages of using screen-
space error threshold as a simplification criterion is the loss
of depth information, which is crucial in stereo visualiza-
tions. To solve this problem, we propose a distance-based
angular error threshold criterion that preserves depth
information of the terrain data during the simplification
process.

In stereoscopic visualization, the two views must be
generated fast enough to achieve interactive frame rates.
Our goal in this work is to decrease the time needed for
generating the second eye image so that complex stereo-
scopic visualizations can be possible. For this purpose, an
algorithm is proposed to speed up the generation of stereo
pairs for stereoscopic view-dependent visualizations. The
algorithm, called Simultaneous Generation of Triangles
(SGT), generates the triangles for the left and right eye

images simultaneously, using a single draw-list, thereby

avoiding the need for performing the view frustum culling

and the vertex activation operations twice.
The contributions of the paper can be summarized as

follows:

. A traversal algorithm on the quadtree representation
of the terrain data that is preventing the formation of
cracks using dependency information between the
vertices.

. A distance-based angular error metric for view-
dependent refinement of the terrain data that
preserves the depth information of the terrain data
during simplification process, which is necessary for
correct stereoscopic view.

. An algorithm to speed-up the generation of the stereo
pairs for stereoscopic view-dependent visualizations,
namely, Simultaneous Generation of Triangles.

. Several strategies to optimize the view frustum
culling process.

. A morphing technique that works in the same
manner for both refining and coarsening phases
while visualizing the terrain data.

The rest of this paper is organized as follows: In Section 2,

we describe related work on both multiresolution modeling

of terrain data and stereoscopic visualization. Our quad-

tree-based multiresolution modeling approach and distance

based angular error threshold as the approximation criter-

ion are explained in Section 3. The algorithm that is

proposed to speed up the generation of the second eye

image for stereoscopic visualization is explained in

Section 4. Section 5 discusses the performance of the

proposed algorithms in terms of processing speed and

quality of the visualizations. Conclusions are given in
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Section 6. In the Appendix, we present the algorithms in
C-like pseudocode.

2 RELATED WORK

2.1 View-Dependent Visualization of Terrain Height
Fields

In [1], a dynamic approach is presented for level of detail
(LOD) construction of terrain data. In this work, grid
elevation data is used to represent height fields and to
visualize terrain at real time. The simplification hierarchy is
represented using a quadtree structure. During the simpli-
fication process, block-based tests are done first to select
discrete levels of detail for blocks of the quadtree. After this
coarse level of simplification, a fine-grained simplification is
performed in which individual vertices are considered for
removal. To check a vertex for removal, a screen-space error
metric is used.

In [2], a framework for monoscopic visualization of
regular grid elevation data is proposed. In order to prevent
cracks on the terrain, a dependency relation is generated.
Every vertex is dependent on the two other vertices of the
same or the next higher level in the quadtree hierarchy. A
breadth-first search is performed in the quadtree for
progressive mesh construction. Blending is used to prevent
popping effects. A windowing mechanism is used for large
terrains by applying spatial database access in order not to
load the whole terrain data into the memory. The Euclidean
distance between the vertices is used as a simplification
criterion.

In [3], regular grid data is first approximated with
minimum error and the triangulation is converted into a
triangulated irregular network (TIN) model. Later, the
blocks are simplified step-by-step for each LOD and
simplification steps are recorded to construct hierarchical
representation of the terrain. While switching between
different resolutions, morphing is used to eliminate pop-
ping artifacts. The pixel threshold that is used to control the
simplification process is adjusted according to the frame
rate defined.

Grid elevations and quad cells are also used in [4]. The
lowest acceptable rendering speed is chosen and the
appropriate LOD for that rendering speed is selected.
Elevation differences are taken into account for simplifica-
tion and a distance-based polygon resolution technique is
used for simplification. In order to hide the appearance of
cracks, each crack is closed by an additional triangle.

Other techniques, which decrease the number of poly-
gons to be processed, hence optimizing CPU usage, include
view frustum culling, back face removal, and occlusion
culling. In [5], some methods are proposed to speed up
view frustum culling by using bounding boxes. They use
movement coherency during visualization based on the
properties of axis aligned and oriented bounding boxes.

Some other work use special capabilities of the under-
lying graphics system. In [6], selection buffer mechanism of
OpenGL is used for view frustum culling. This mechanism
is very effective in determining which quad blocks are in
the view frustum and eliminates the need to make
intersection tests. However, the bounding boxes must be
drawn to the selection buffer as filled polygons and

backface culling should not be performed. Otherwise, it is

possible that the viewer is completely inside of a box and

the selection buffer may not create a hit although the block

is in the viewing frustum. Besides, culling tests bring

additional overhead if it is needed to distinguish between

the blocks that are completely inside and the blocks

intersecting with the view frustum since a hit produced

cannot differentiate between these cases. For occlusion

culling, they use OpenGL’s stencil buffer mechanism.

2.2 Stereoscopic Rendering and Visualization

Stereoscopic visualization systems are used in many

applications, such as simulators and scientific visualization.

These systems can be used with suitable hardware designed

for this purpose. One of the most commonly used hardware

is the time multiplexed display system that is supported by

liquid crystal shutter (LCS) glasses and virtual reality (VR)

glasses. In this work, we chose to use LCS glasses since they

are less expensive and many users can simultaneously see

the results of a visualization application in stereo. Detailed

information about these systems can be found in [7] and [8].
For stereoscopic viewing, the application must support a

kind of display technique to make each eye see the image

generated for it. In visualization with LCS glasses, when the

left eye view is drawn onto the screen, the right eye of the

glasses dims to occlude the left eye image from the right

eye. The same procedure is applied when the right eye

image is drawn onto the screen. Average refresh rate of a

real-time visualization application should be around

25 frames per second (fps) for monoscopic view. However,

since two images should be generated for each frame in

stereoscopic visualization, the application should be able to

generate 50 or more images per second to achieve the same

frame rate as the monoscopic correspondent. This means

that, when you convert a monoscopic application to stereo

without any improvement, the frame rate decreases by half.
The algorithms developed for speeding up stereo

rendering generally make use of the mathematical char-

acterization of an image that changes when the eye-point

shifts horizontally and a recognition of the characteristics

that are invariant with respect to the eyepoint, like the

scanlines to which an object project, as stated in [7]. In [9],

the authors present a visible surface ray-tracing algorithm

that infers a right-eye view from a fully ray-traced left-eye

view and this algorithm is further improved in [10]. In [11],

a non-ray-tracing algorithm is described to speed up the

second eye image generation for polygon filling, hidden

surface elimination, and clipping. In [12], methods that take

advantage of the coherence between the two halves of a

stereo pair for ray traced volume rendering are presented.

In [13], the authors present an algorithm using segment

composition and linearly interpolated reprojection for fast

stereo volume rendering. Hubbold et al. [14] propose

extensions of a direct volume renderer for use with an

autostereoscopic display in radiotherapy planning. Since

the terrain data does not have any mathematical character-

ization, mentioned algorithms cannot be adapted easily to

stereoscopic terrain visualization.
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3 MULTIRESOLUTION MODELING

3.1 Data Structures

Here, we present the data structures used in our imple-

mentation. In order to visualize complex scenes, such as

terrain height fields, at interactive frame rates, efficient data

structures need to be used. Quadtree representation

perfectly fits into grid elevation data. To allow morphing

and crack prevention, the elevation structure has to be

equipped with suitable fields. The elevation data

structure stores elevation data, the distance at which the

vertex will be activated, the state of the vertex (active or

inactive), indices of its dependent vertices, morph field

indicating at which morphing stage the vertex is, a

precalculated value showing the distance between active

and inactive states of the vertex, and a morph lock flag to

prevent the vertex from being morphed again by other

neighboring blocks at the same frame (see Fig. 1).
The quadtree structure was constructed as in [15]. In the

quad structure, minimum and maximum elevations and

minimum and maximum activation distances for a quad

block are stored. Flags indicating whether or not the quad

block is activated, previously culled, and its children are
activated are also stored in this structure.

For a terrain with n2 vertices, the Terrain structure

holds 60n2 bytes. The QuadTree array occupies 26

bytes per node. The quadtree contains N ¼ ððnÿ 1Þ=2Þ2

nodes at the most detailed level. Given L ¼ log4N levels

and TN ¼
PL

level¼1
4
levelÿ1 nodes, the quadtree structure

occupies 26TN bytes.
The tag data structure stores flags to indicate the

activated vertices for the quad blocks and uses up two
bytes for each node. This information is used while drawing
the second eye image.

3.2 Approximation Criterion

As mentioned previously, the screen-space error criterion
for approximating the terrain is not sufficient in order to
achieve a correct stereoscopic view. In the screen-space
error metric, elevation differences are taken into account to
evaluate a vertex for removal. The visible pixel difference
on the projection plane when the vertex is active and
inactive is calculated for this purpose. If this number is
greater than the prespecified pixel tolerance, then the vertex
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is kept; otherwise, it is removed. This is illustrated in Fig. 2.
The problem here is that if the viewer is looking at the
terrain from above, then the projection of the vertices to the
camera plane when they are active and inactive will be very
small, yielding to the elimination of the candidate vertex.
This problem can be illustrated by an example. Assume that
we are looking at a tower from above and we use screen-
space error tolerance. Since the projection of the elevation
difference will be very small with respect to the position of
the eye, the tested vertices will be removed, although they
are important to the viewer (i.e., they will make the viewer
see the height of the tower when viewed in stereo).
Therefore, although the screen-space error metric is suitable
for the monoscopic view [1], it degrades the stereo effect
and may result in incorrect stereoscopic vision.

The elevation and distance of objects from the viewer are
two important criteria that make us feel the depth and
differentiate between objects. Therefore, the threshold value
must be specified adaptively so that it takes into account
both of these parameters to reflect the correct depth

information. For this purpose, we specify our distance-

based angular error threshold for simplification as follows:

First, we define an angular error threshold that will be used to

simplify the terrain. This value will be used to calculate

elevation thresholds at each vertex location, which is adaptive

to the distance of the viewer from the vertex. In order to do

that, we accept the eye to be in the center of a sphere. The

candidate vertices tested for the elimination are supposed to

be located on the surface of the sphere. The elevation

threshold value at a vertex location is computed by using

the prespecified angular threshold value and the radius of

the sphere (i.e., the distance from eye to the vertex). The

greater the radius of the sphere is, the larger the size of the

elevation threshold will be. We can derive the elevation

threshold by calculating the tangent of the angular thresh-

old at the given distance. Fig. 3 illustrates our angular error

metric for the evaluation of a vertex for removal.
The distance from the eye position to the vertex is:
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algorithm when the block is viewed from the top.

Fig. 3. Angular error threshold representation for vertex removal.



d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðex ÿ vxÞ
2 þ ðey ÿ vyÞ

2 þ ðez ÿ vzÞ
2

q

: ð1Þ

The distance between the original and removed positions of

the vertex is:

� ¼ vz ÿ
leftcornerz þ rightcornerz

2

� ��

�

�

�

�

�

�

�

; ð2Þ

where z implies the height of the vertex.
The elevation threshold that is calculated at the vertex

location is given by A0 ¼ tanð�Þ d.
Hence, our rule for enabling or disabling a vertex is

if � < A0 then

disable vertex

else

enable vertex

Our aim is to find a distance at which the threshold value

does not exceed the elevation difference (�). Therefore,

� ¼ A0 ð3Þ

� ¼ tanð�Þ vact ð4Þ

vact ¼
�

tanð�Þ
: ð5Þ

The vertex activation distance vact ¼ �=tanð�Þ is a

precomputable value. So, the rule for enabling or disabling

a vertex can be restated as

if vact < d then

disable vertex

else

enable vertex

This reduces vertex simplification to a comparison between

the precomputed vact value and the measured distance (d)

between the viewer and the vertex location.
In order to prevent cracks on the terrain and provide a

suitable heuristic for morphing, a valid triangulation should
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Fig. 4. Activation distance assignment. (a) Calculation of the activation values for each border vertex of the quad blocks. (b) Finding the activation
distances for the center vertices by taking into account the diagonals based on the position of the quad block and assignment of the maximum of its
four border activation distances and the calculated value as the center vertex activation distance. (c) Calculation of the activation distances for
border vertices for each edge and assignment of the maximum of the border vertex activation distances on the same edge and the calculated value
as the border vertex activation distance. (d) Finding the activation distances for center vertices by taking into account the two corner vertices (based
on its position in the larger quad block) and assignment of the maximum of nine values to the centers.



be maintained. Our distance-based vertex activation scheme

accomplishes this by using the activation values (vact)

assigned to each vertex in the preprocessing phase by

using (5).
The activation values are assigned starting from the level

just above the lowest level in the quadtree structure (Fig. 4a

and Fig. 4b). After finding the activation distances for this

level, we go up one level in the quadtree and the activation

distances for the higher level nodes are calculated similarly.

However, there are minor differences for the calculations at

higher level blocks (Fig. 4c and Fig. 4d). This process is

repeated going up until the root of the quadtree is reached. In

addition, the distance necessary for at least one vertex to be

activated (maxact ) and the distance necessary for all vertices

to be activated (minact ), which are used to speed up the

simplification process, are precomputed for each quad-cell.

3.3 View Frustum Culling

Efficient view frustum culling (VFC) is crucial for inter-

active frame rates. While the quadtree is traversed, the

nodes are checked against the viewing frustum and flags for

the nodes in the quad block are cleared and set accordingly.

To speed up frustum culling, frustum tests are done using

bounding spheres enclosing the quad blocks.

In VFC, several optimizations can be performed, as listed

below.

. One of the most important optimizations is to utilize
the coherence between two frames when the user
navigates through the terrain. If the user moves
forward, then there is no need to cull the whole
terrain again since the terrain is already culled in the
previous frame. So, previously culled blocks can be
used for the current frame [5].

. Another method is deferred VFC. By deferred VFC,
we mean that VFC is not done for every frame, but at
predefined intervals. In this way, the overhead
brought by the VFC step can be decreased.

. As another approach, VFC depending on the
deviation of the viewer location is used. Here, we
run the VFC only if the user moves a prespecified
distance from the previously culled position.

The control algorithm that decides when vertex activa-

tion and frustum culling operations should be done

according to different culling schemes is as follows (Fig. 14

in the Appendix):

. If deferred culling is being used, then the time from
the last VFC operation is calculated. If the period is
reached, then the VFC and vertex activation algo-
rithms are invoked.

. If deviation-based culling is being used, then we
calculate the distance between the camera positions
of the current frame and the last frame where the
VFC operation is performed. If it is greater than the
deviation threshold, then the VFC and vertex
activation algorithms are invoked.

. If no VFC optimization is being used and the user is
navigating, then the VFC and vertex activation
algorithms are invoked at each frame.

. The draw-list construction algorithm is activated.

In the view frustum culling algorithm (Fig. 15 in the

Appendix), the quadtree is traversed in preorder. If the

viewer moves forward, the algorithm checks only the

previously culled blocks. In this way, we make use of

frame coherency. If the movement is not a forward

movement then all quad blocks are to be checked. Since,
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Fig. 5. Dependency relationships of center and border vertices.

Fig. 6. Crack prevention: (a) crack formation, (b) activate the center vertex in the higher level block, and (c) use it in the triangulation to eliminate the

crack.



our scene construction is not graph-based, we do not use
rotation coherency as in [5].

The frustum checking algorithm (Fig. 16 in the Appen-
dix) that is a part of the VFC algorithm can be summarized
as follows:

. Test whether the block is completely inside, inter-
secting, or completely outside of the view frustum.

. If the block is intersecting with any of the planes of
the frustum, then it is marked as intersecting and the
VFC algorithm is called for the children of the block.

. If the block is completely inside the frustum, then all
children of the checked block are marked as inside
and the VFC algorithm is called for the sibling of the
checked block.

. If the block is completely outside the frustum, then
no marking takes place and the VFC algorithm is
called for the sibling of the checked block.

3.4 Vertex Activation

Vertex activation takes place after view frustum culling. In
this algorithm (Fig. 17 in the Appendix), the quadtree is
again traversed in preorder, but we only traverse the nodes
that are in the view frustum. In this step:

. The distance from the viewer position to the center
of the quad block is calculated.

. If the distance is less than the minimum activation
distance value of the quad block, then the viewer
is close enough to the quad block and all vertices
are activated. Since the maximized activation
values are assigned to higher level quad blocks,
it is not necessary to check the children of the
quad block and they can be activated without
further investigation.

. If the distance falls between the minimum and
maximum activation distances, then each border
vertex is checked individually, measuring the eye-
point to vertex distances and comparing with their
activation distances. If the distance measured is less
than the activation distance, then the viewer is close
enough and the vertex should be activated.

It should be noted that the dependents of a vertex are
also activated during the activation of a vertex for crack
prevention. Therefore, in the worst case, the number of
vertex activation operations is 5TN for a terrain with
TN nodes in the quadtree.
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Fig. 7. A sample execution of the triangulation algorithm for a quad block.

Fig. 8. The process flow diagram of the proposed framework for
stereoscopic visualization. This diagram shows the invocation order of
the presented algorithms. The data worked on by the processes in the
dashed blocks are 1) the whole quad-tree, 2) the view-frustum culled
data, 3) the activated blocks, and 4) the draw-list transferred.



3.5 Crack Handling and Triangulation

Cracks are one of the artifacts on the geometry when the
two neighboring quad blocks differ in level of detail. If a
border vertex is activated in a block, then a triangle
including that vertex is drawn. If a neighboring block is
not on the same level of detail, then no triangles including
the common border vertex will be drawn for the neighbor-
ing block. This causes the formation of a crack. There are
several approaches to crack handling. These include hiding
the cracked position by drawing another triangle patch [4],
triangulation of the gapped position [16], or not allowing
crack formation by using the dependency relations [2].

In order to prevent cracks without causing discontinu-

ities, dependency relations similar to the one in [2] are

imposed between vertices. As shown in Fig. 5, center

vertices are dependent on the four corner vertices. If they

are activated, then the dependents are activated as well.

Likewise, the border vertices are dependent on the center

vertices of the two neighboring blocks at the same level. If a
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Fig. 9. Number of polygons rendered for the experimental visualization. Fig. 10. Comparison of the frame rates of different types of visualiza-
tions: monoscopic visualization where only one image is generated for
each frame; standard stereoscopic visualization where two images are
generated for each frame; simultaneous generation of triangles for
stereoscopic visualization where we utilize a triangle list for one eye to
generate the triangles for the other eye.

TABLE 1
Performance Results



border vertex is activated, then its dependent vertices at the

same level are activated, too (Fig. 6).
During the vertex activation process, vertex dependents

are locked by calling the dependency locking algorithm

(Fig. 18 in the Appendix) when a vertex is activated. This

procedure activates the related vertex as follows:

. Turn its flag on.

. Inform its parents that the corresponding quad block
is activated.

. If the dependent vertex was enabled previously,
then stop locking because locking has already been
done and there is no need to go further.

. Call the procedure recursively to further lock the
dependents of the dependent vertex.

In order to triangulate a quadrant, no children should be

active in that quadrant. Otherwise, overlapping triangle

patches may exist in that area. This is guaranteed for a block

by checking the fields showing the activation status of its

children, which are modified by a notification algorithm.

Fig. 19 in the Appendix gives the algorithm for notifying the

parents of a node. In this algorithm, the quadrant number of

the subquad block that is notifying its parent is calculated

and the related field of the parent is marked. The

notification process is stopped if the location of the child

block in the quad was marked before, which means the

higher level quad blocks have already been notified.
Before the triangulation of each quad block, a drawlist

for that block is constructed. The draw-list construction

algorithm (Fig. 20 in the Appendix) can be summarized as

follows:

. Check whether the center vertex of the quad block is
activated or not.

. If the center is activated, then check the bottom-left
quadrant of the block for triangulation.
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Fig. 11. Comparison of the frame rates for each type of visualization with different morphing/culling options: (a) monoscopic visualization with

morphing; (b) monoscopic visualization without morphing; (c) standard stereoscopic visualization with morphing; (d) standard stereoscopic

visualization without morphing; (e) simultaneous generation of triangles with morphing; (f) simultaneous generation of triangles without morphing.



- If no subquad block is activated in the bottom-

left quadrant and the upper-left quadrant is not

available, then put the left border vertex into the

draw-list.

- If no subquad block is activated in the bottom-

left, then put the bottom-left corner vertex into

the draw-list.

- If the bottom-right quadrant is not available, then

put the bottom border vertex into the draw-list.

- If the bottom border vertex is activated and the

bottom-left and the bottom-right quadrants are

available, then put the bottom border vertex into

the draw-list.
- Process all the other quadrants as above.
- Triangulate the quad-block.
- Check the children of the block and repeat the

process.
. If the center is not activated then check the sibling of

the quad-block.

The triangulation algorithm essentially checks the

vertices of a quad block starting from the bottom-left

subquad and forms triangles with the activated vertices by
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Fig. 12. Comparison of different culling schemes for each type of visualization: (a) dynamic culling off with morphing; (b) dynamic culling off without

morphing; (c) dynamic culling on with morphing; (d) dynamic culling on without morphing; (e) deferred culling with morphing; (f) deferred culling

without morphing; (g) deviation-based culling with morphing; (h) deviation-based culling without morphing.



traversing the quad block in counterclockwise direction.

The triangulation of a quad block is illustrated in Fig. 7.

3.6 Morphing

One of the important issues while visualizing complex

geometric environments using a multiresolution represen-

tation is that there should be no popping artifacts while

switching between different levels of detail. The best way to

achieve this is with a smooth morphing of the geometry

between successive frames.
The proposed morphing scheme works as follows: The

distances between activated and deactivated states of the

vertices, namely � values, are precalculated using (2). A

prespecified morph-segment number is used to decide at

how many steps should the enabling or disabling vertex

reach its new position. In the morphing algorithm (Fig. 21 in

the Appendix):

. If the vertex is a coarsening vertex, then � value is
added or subtracted from the elevation, depending
on whether it is below or above its deactivated state.

. The � value is divided by the morph-segment value.

. At each frame, the morphing state of the vertices is
modified and the divided distance is used to
calculate the new elevation for that point.

. If the morph-segment value is modified more than
once by the neighboring quad blocks while drawing
a frame, then gaps may occur between the neighbor-
ing quad blocks. In order to prevent the formation of
such gaps, a flag is used to lock the vertex morphing
at each frame.

During morphing, a positive morph value is used for a

refining vertex and a negative morph value is used for a
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Fig. 13. Still frames from a monoscopic walkthrough.

Fig. 14. The algorithm that calls view frustum culling and activation

procedures depending on the culling scheme used.

Fig. 15. The view frustum culling algorithm.



coarsening vertex. While the viewer gets closer to the
terrain, vertices are enabled and morphing is started.
Morphing for the coarsening vertices starts immediately,
as soon as the viewer begins to get away from the terrain,

which provides a uniform morphing scheme for both the

refinement and coarsening phases during the navigation.

4 STEREOSCOPIC VISUALIZATION

At first, we need to explain the stereoscopic projection

system we used. In general, stereo projections are divided

into two: on-axis and off-axis [7]. Off-axis projections require

the implementation of asymmetric parallel view frustum

projections. By using off-axis projections, a more accurate

stereo view can be achieved in terms of reduced ghosting

effect in the peripheries. However, it has a disadvantage in

terms of execution speed because control of the center of

projection is not implemented in hardware for most low-

end systems [7]. Therefore, on-axis projection, which

modifies the data with translations and rotations, has an

important advantage over off-axis projections in terms of

speed. The disadvantages of on-axis projections, namely,

ghosting effect and loss of data in side-views, are eliminated

with our simple correction: We operate on the data that is in

the view frustum, plus the data on the left and right of the
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Fig. 16. The frustum checking algorithm.

Fig. 17. The vertex activation algorithm.



view frustum in half of the projection of the interocular

distance for each eye.
With the correction of the ghosting effect, the coverage of

the stereoscopic area is the same as the stereoscopic area in

off-axis projections. Since the interocular projection is very

small with respect to the terrain, elimination of the ghosting

effect does not cause significant processing overhead.

4.1 Simultaneous Generation of Triangles

Terrain data is huge with respect to the interocular distance

(IOD). In order to prevent the ghosting effect that can occur

in on-axis projections, we add the necessary data to the

view frustum by enlarging it by half the projection distance

of IOD in both sides. Besides, we do not make occlusion

culling since it does not increase the performance signifi-

cantly for the terrain data [3]. Therefore, left and right eye

views may operate on the same view frustum culled data

safely, which is the most important condition for the

SGT algorithm.
The second eye image is generated during the draw-list

construction for the first eye. When drawing the second eye,

we do not repeat the view frustum culling and vertex

activation processes. We only traverse the draw-list con-

structed for the right eye and do not make any modifica-

tions on the data created previously, while the left eye view

is drawn. This is achieved by modifying the algorithm for

construction of the draw-list given in Fig. 20 as in Fig. 22.

The modification adds a control block to the algorithm that

checks the drawn eye and, if it is the second eye, then only

uses the draw-list constructed while the first eye was being

drawn. Stereoscopic drawing algorithm using the

SGT approach is given in Fig. 23 in the Appendix. In this

algorithm:
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Fig. 18. Locking the vertex dependents.

Fig. 19. Notifying parents. Fig. 20. Construction of the draw-list.



. The right eye buffer for stereo is selected.

. The view transformation for the right eye is
calculated.

. The VFC and the vertex activation operations are
performed.

. The right eye view is drawn while transferring the
draw-list to the left eye.

. After drawing the right eye view, the left eye buffer
is selected.

. The view transformation for the left eye is calculated.

. The left eye view is drawn.

The process flow diagram of the proposed framework for
stereoscopic terrain visualization is given in Fig. 8.

5 PERFORMANCE RESULTS

In the visualization experiments, approximately 4,000
polygons were rendered for each eye on the average at
each frame. The terrain used is a part of the Grand Canyon
that has very sharp ridges in it, with 513� 513 vertices. The
results were obtained on a personal computer with Intel
Pentium III-550 Mhz CPU and 64 MB of main memory with
32 MB of graphics memory.

We prepared a flythrough of the terrain with approxi-
mately 5,000 frames. Still frames from the monoscopic
flythrough are shown in Fig. 13. The number of polygons
rendered during the flythrough is shown in Fig. 9. All

related figures are smoothed using a regression function for
easy interpretation. Fig. 10 shows the average frame rates of
different types of visualization techniques by using differ-
ent morphing, culling, and rendering techniques at different
parts of the flythrough. It gives a general overview about
the performance of the visualization techniques. In this test,
the average frame rate of the proposed SGT approach is
17.65 fps, whereas the frame rate of the monoscopic
visualization is 25.05 fps. Performance comparison of the
visualization methods with different types of culling,
morphing, and rendering techniques are given in Table 1.
These results show that the best performance in stereo is
achieved when deviation-based culling is used without
morphing with the proposed SGT approach. In this case, the
average rendering speed for SGT is 27.48 fps, where its
monoscopic correspondent is 43.25 fps. The largest perfor-
mance gain is achieved when SGT approach is used with
dynamic culling without morphing. In this case, a perfor-
mance gain of 43.27 percent over normal stereo implemen-
tation is achieved. The morphing scheme imposes
approximately 10 to 30 percent overhead on the frame rate
due to clearance of the morph flags for the vertices going
out of the view frustum when the user is navigating.

In Fig. 11, performance comparison showing the frame
rates of our culling techniques with each visualization
method is given. In deviation-based culling tests, the
deviation threshold was taken as 500 meters. In deferred
culling, the deferring time was taken as 0.1 second. As is
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Fig. 21. The morphing algorithm.



seen in the figure, deviation-based culling and deferred

culling perform better than dynamic culling. The perfor-

mances are almost the same when dynamic culling is on or

off since the viewer is continuously moving in the

experiments. Turning dynamic culling off becomes advan-

tageous when the viewer does not move. Under normal

conditions, the viewer generally stops moving at undeter-

mined instances. Since the screen will be rendered without

being culled, the stereo effect will be much better.
In Fig. 12, the performances of the visualization

methods for each of the proposed culling schemes are

given. It is apparent that the proposed stereo visualiza-

tion method performs much better than the normal

stereoscopic visualization.

6 CONCLUSION

This paper presents a framework for the stereoscopic view-

dependent visualization of large scale terrain models. A

quadtree-based multiresolution representation is used for

the terrain data. This structure is queried to obtain the view-

dependent approximations of the terrain model at different

levels of detail. In order not to lose depth information,

which is crucial for the stereoscopic visualization, we make

use of a different simplification criterion, namely, distance-

based angular error threshold. An algorithm is proposed for

the construction of stereo pairs in order to speed up the

view-dependent stereoscopic visualization. The proposed

algorithm simultaneously generates the triangles for two

stereo images using a single draw-list so that the view

frustum culling and vertex activation is done only once for

each frame. The cracking problem is solved using the

dependency information stored for each vertex. The popping

artifacts that can occur while switching between different

resolutions of the data are eliminated using morphing. The

proposed algorithms are implemented on personal compu-

ters and graphics workstations. Performance experiments

show that the second eye image can be produced approxi-

mately 45 percent faster than drawing the two images

separately and a smooth stereoscopic visualization can be

achieved at interactive frame rates using continuous multi-

resolution representation of height fields.

APPENDIX

ALGORITHMS IN PSEUDOCODE

In Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18, Fig. 19, Fig. 20,
Fig. 21, Fig. 22, and Fig. 23, we present the algorithms in
pseudocode in order to make the techniques reimplemen-
table. The algorithms are given in C-like pseudocode, where
details are omitted for the sake of simplicity and clarity.
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