Stereoselective Epoxidation of 4-Deoxypentenosides: A Polarized- π Model Supporting Information

Synthesis of 4-Deoxypentenosides

4-Deoxypentenosides (4-DPs) 1-4 were synthesized from their corresponding methyl glycosides as described in Ref. 2 (Org. Lett. 2002, 4, 2281; J. Org. Chem., 2004, 69, 3391). The synthesis and complete characterization of 2 -amino-2,4-dideoxy-4pentenosides 5-10 will be described elsewhere. 2,4-Dideoxy-4-pentenoside 11 was synthesized according to Scheme S1.

Scheme S1

Reagents and conditions: (a) $\mathrm{Bu}_{2} \mathrm{SnO}$, toluene, reflux; then $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{I}^{-}, \mathrm{BnBr}(57 \%) ;{ }^{1}$ (b) $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OMe})_{2}, \mathrm{CSA}, \mathrm{THF}, 85{ }^{\circ} \mathrm{C}$ (67\%); (c) $\mathrm{NaH}, \mathrm{CS}_{2}$, MeI, THF, $0{ }^{\circ} \mathrm{C}$; (d) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux (65% over 2 steps); (e) 8:1:1 AcOH:THF: $\mathrm{H}_{2} \mathrm{O}, 45{ }^{\circ} \mathrm{C}$ (87\%); (f) NaOCl, TEMPO (5 mol\%), satd aq. $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; (g) DMF dineopentyl acetal, toluene, $130^{\circ} \mathrm{C}$ (60% over 2 steps).

2,4-Dideoxy-4-pentenoside 11: $[\alpha]_{\mathrm{D}}{ }^{20}=+249\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 7.10-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.31(\mathrm{~d}, 1 \mathrm{H}), 4.87-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}), 4.30(\mathrm{~d}, 1 \mathrm{H}), 3.91(\mathrm{q}$, 1H), 3.29 (s, 3H), 2.10 (ddd, 1H), 1.90 (ddd, 1 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 141.6,139.0,138.9$, 102.2, 99.2, 69.9, 67.4, 55.8, 34.0.

Epoxidation of 4-DPs
A typical epoxidation reaction was performed as follows: A solution of 4deoxypentenoside $2(43 \mathrm{mg}, 0.133 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was stirred at $-55^{\circ} \mathrm{C}$ and treated with a freshly prepared solution of DMDO ($2.7 \mathrm{~mL}, 0.1 \mathrm{~m}$ in acetone). The resulting mixture was stirred at $-55^{\circ} \mathrm{C}$ under argon for 2 days, then warmed to $0^{\circ} \mathrm{C}$ over a period of 4 hours. The mixture was concentrated to an oil to yield the desired epoxypyranoside as a $10: 1 \alpha: \beta$ mixture ($45 \mathrm{mg}, 99 \%$).

Epoxide stereochemistry was confirmed by $\mathrm{S}_{\mathrm{N}} 2$ ring opening at C 5 using LiAlH_{4}, LiAlD_{4}, or LiSEt as the nucleophile (Nu). Reaction conditions are as follows:
LiAlD_{4} or LiAlH_{4} addition: A solution of LiAlH_{4} or $\mathrm{LiAlD}_{4}(36.5 \mathrm{mg}, 0.869 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was stirred at rt under argon atmosphere, then treated with a solution of the epoxide in $\mathrm{Et}_{2} \mathrm{O}$ ($4 \mathrm{~mL}, 0.043 \mathrm{~m}$ solution). The mixture was stirred for 15 min at rt , cooled to $0{ }^{\circ} \mathrm{C}$, diluted with $1 \mathrm{~m} \mathrm{HCl}(3 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Silica gel chromatography using a 20:80 to 50:50 EtOAc-

[^0]hexanes gradient containing 0.1% of $\mathrm{Et}_{3} \mathrm{~N}$ yielded the corresponding C 5 adduct, which was characterized by ${ }^{1} \mathrm{H}$ NMR coupling constant analysis.

LiSEt addition: A solution of EtSH ($0.1 \mathrm{~mL}, 1.35 \mathrm{mmol}$) in dry THF $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated with $n-\mathrm{BuLi}(20 \mu \mathrm{~L}, 2.6 \mathrm{~m}$ in hexanes) under an argon atmosphere. The resulting mixture was treated with the crude epoxide ($45 \mathrm{mg}, 0.133 \mathrm{mmol}$) in 0.5 mL of THF at $0^{\circ} \mathrm{C}$ and stirred for 2 hours. The reaction was quenched with satd. aq. NaHCO_{3}, extracted with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Silica gel chromatography using a hexanes-EtOAc gradient yielded the corresponding C5 thioacetal, which was characterized by ${ }^{1} \mathrm{H}$ NMR coupling constant analysis.

In the case of 2,4-dideoxy-4-pentenoside 11, the corresponding epoxide was unstable upon isolation at r.t and was therefore trapped by addition of $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $-55^{\circ} \mathrm{C}$, then warmed to $0^{\circ} \mathrm{C}$ over a period of 5 hours (cf Figure 3 in text). The reaction was concentrated to dryness,
 producing 1,5-bisacetal 12 in quantitative yield.

2-Deoxypentoside, 1,5-bisacetal 12: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.31-7.07(\mathrm{~m}, 10 \mathrm{H}$, Ar-H), 4.66 (d, 1 H, J $12.3 \mathrm{~Hz}, \mathrm{CHPh}$), 4.55-4.48 (m, $3 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-5, \mathrm{CHPh}$), 3.92 (ddd, 1 H, $J_{2 e q, 3} 5.1 \mathrm{~Hz}, J_{2 a x, 3} 9.3 \mathrm{~Hz}, J_{3,4} 9.0 \mathrm{~Hz}, \mathrm{H}-3$), 3.68 (ddd, $1 \mathrm{H}, J_{3,4} 9.0 \mathrm{~Hz}, J_{4,5} 8.4 \mathrm{~Hz}$, $\left.J_{4, \mathrm{OH}} 2.4 \mathrm{~Hz}, \mathrm{H}-4\right), 3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 2.4 \mathrm{~Hz}, \mathrm{OH}$), 2.05 (ddd, 1 H, 1.5 Hz, $5.1 \mathrm{~Hz} 13.2 \mathrm{~Hz} \mathrm{H}-2 \mathrm{eq}), 1.58$ (ddd, $1 \mathrm{H}, 3.9 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 13.2 \mathrm{~Hz}$, H-2ax).

Table S1. Selected NMR coupling constants (in $\mathrm{Hz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 4-DPs 1,2 and 5-10:

compd	$J(1,2)$	$J(2,3)$
$\mathbf{1}(\alpha-G l c-4-D P)^{a}$	2.4	6.0
$\mathbf{2}(\beta-G l c-4-D P)$	7.2	6.3
$\mathbf{5}(\alpha-G l c N P h t h-4-D P)$	2.7	9.9
$\mathbf{6}(\beta-G l c N P h t h-4-D P)$	9.0	9.3
$\mathbf{7}\left(\alpha-G l c N_{3}-4-D P\right)$	2.1	6.6
$\mathbf{8}\left(\beta-G l c N_{3}-4-D P\right)$	8.1	7.5
$\mathbf{9}\left(\alpha-G l c N B n_{2}-4-D P\right)$	2.7	9.0
$\mathbf{1 0}\left(\beta-G l c N B n_{2}-4 D P\right)$	6.6	6.3

Table S2. Selected NMR coupling constants (in $\mathrm{Hz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of C 5 adducts derived from 4DPs 1-8 and 10, following DMDO epoxidation and $\mathrm{S}_{\mathrm{N}} 2$ ring opening:

initial 4-DP	config of C5 adduct	$J(1,2)$	$J(2,3)$	$J(3,4)$	$J(4,5)$
1 ($\alpha-G l c-4-\mathrm{DP})^{a}$	α-L-Ara	3.3	9.6	3.3	e
2 (β-Glc-4-DP) ${ }^{a}$	β-D-Xyl	6.3	8.1	7.5	9.3
3 (α-Man-4-DP) ${ }^{a}$	α-D-Lyx	2.1	e	9.6	9.6
4 (β-Man-4-DP) ${ }^{\text {b }}$	β-D-Lyx	3.3	3.0	7.8	e
5 (α-GlcNPhth-4-DP) ${ }^{\text {c }}$	α-L-Alt	3.6	11.1	3.0	2.1
6 (β-GlcNPhth-4-DP) ${ }^{\text {c }}$	β-D-Glc	8.7	8.4	10.5	9.9
7 (α-Glc $\left.N_{3}-4-\mathrm{DP}\right)^{\text {c }}$	α-L-Alt	1.5	6.0	e	6.9
8 (β-GlcN $\left.N_{3}-4-\mathrm{DP}\right)^{\text {c }}$	β-D-Glc	8.1	e	e	9.6
10 (β-GlcNBn $\left.{ }_{2}-4 \mathrm{DP}\right)^{c}$	β-D-Glc	6.0	7.8	e	9.3
11 (α-2-deoxy-Glc-4-DP) ${ }^{\text {d }}$	α-D-Glc	1.5,3.9	5.1,9.3	9.0	8.4

DFT and PPFMO calculations

Calculations were performed using the Gaussian®03W Software Package Version 6, Revision-B.03. Initial structures were constructed using GaussView and were optimized employing the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. DFT calculations were based on Becke’s threeparameter hybrid functional in conjunction with the nonlocal correlation functional by Lee, Yang, and Parr (B3LYP; Becke, A. D. J. Chem. Phys. 1993, 98, 5648; Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37, 785).

PPFMO calculations were carried out at the B3LYP/STO-3G level of theory using the DFT-optimized geometries. Four s-functions (denoted $B q$ in output files) were positioned above and below the lobes of the $2 p_{y}$ orbitals centered at C4 and C5, at a distance of 1.3 \AA from the carbon nuclei. The s-functions are essentially reduced to a single Gaussian function scaled to a level of 1.0 . The values of the exponent of the s orbital and its contract coefficient were chosen to be 0.1 and 1.0 respectively, based on reference 9(a). The resulting s and $2 p_{y}$ coefficients were extracted from the highest occupied π-orbital to determine the polarization in charge density at C4 and C5.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{1}$:

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of 4β-epoxide of $1(10: 1 \beta / \alpha)$:

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 5S-d-L-arabinoside derived from 1:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 2:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 4α-epoxide of $2(1: 10 \beta / \alpha)$:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 5R-d-D-xyloside derived from 2

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{3}$:

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of 4α-epoxide of $3(<1: 20 \beta / \alpha)$:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 5R-d-D-lyxopyranoside derived from 3:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 4:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 4α-epoxide of $4(1: 15 \beta / \alpha)$:

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 5R-d-D-lyxopyranoside derived from 4:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 5:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of 4β-epoxide of $5(10: 1 \beta / \alpha)$:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 5S-(L-altro) ethylthioacetal derived from 5:

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{6}$:

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 4α-epoxide of $6(1: 10 \beta / \alpha)$:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 5S-(D-gluco) ethylthioacetal derived from 6:

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of 7 :

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of 4β-epoxide of $7(>20: 1 \beta / \alpha)$:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 5S-(L-altro) ethylthioacetal derived from 7:

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{8}$:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 4α-epoxide of $8(1: 10 \beta / \alpha)$:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 5S-(D-gluco) ethylthioacetal derived from 8 :

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{9}$:

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{1 0}$:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 4α-epoxide of $10(<1: 20 \beta / \alpha)$:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of 5S-(D-gluco) ethylthioacetal derived from 10:

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of S-2:

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of S-2:

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{1 1}$:

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 11:

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{1 2}$:

[^0]: ${ }^{1}$ For a similar reaction, see: Yu, H. N.; Furukawa, J.-I.; Ikeda, T.; Wong, C.-H. Org. Lett. 2004, 6, 723.

