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Stereoselective synthesis of medium lactams
enabled by metal-free hydroalkoxylation/
stereospecific [1,3]-rearrangement
Bo Zhou1, Ying-Qi Zhang1, Kairui Zhang2, Ming-Yang Yang1, Yang-Bo Chen1, You Li2, Qian Peng 2,

Shou-Fei Zhu 2, Qi-Lin Zhou2 & Long-Wu Ye 1,3

Rearrangement reactions have attracted considerable interest over the past decades due to

their high bond-forming efficiency and atom economy in the construction of complex organic

architectures. In contrast to the well-established [3,3]-rearrangement, [1,3] O-to-C

rearrangement has been far less vigorously investigated, and stereospecific [1,3]-rearran-

gement is extremely rare. Here, we report a metal-free intramolecular hydroalkoxylation/

[1,3]-rearrangement, leading to the practical and atom-economical assembly of various

valuable medium-sized lactams with wide substrate scope and excellent diastereoselectivity.

Moreover, such an asymmetric cascade cyclization has also been realized by chiral Brønsted

acid-catalyzed kinetic resolution. In addition, biological tests reveal that some of these

medium-sized lactams displayed their bioactivity as antitumor agents against melanoma

cells, esophageal cancer cells and breast cancer cells. A mechanistic rationale for the reaction

is further supported by control experiments and theoretical calculations.
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E
ight-membered lactams, especially the benzo[d]azocinones,
are prominent structural motifs that can be found in many
natural products and bioactive molecules (Fig. 1)1–5.

However, access to these heterocycles is challenging owing to
unfavorable enthalpic and entropic barriers in transition states
leading to medium-sized rings6–10. To date, only very limited
methods have been developed, and most of them rely on noble-
metal catalysis11–19. To this end, the development of new
methods for the efficient construction of this skeleton is
highly desirable, especially those with high diastereo- and
enantioselectivity.

Rearrangement reactions have attracted considerable interest
over the past decades due to their high bond-forming efficiency
and atom economy in the construction of complex organic
architectures20,21. In contrast to the well-established [3,3]-rear-
rangement22–25, which generally proceeds via the chair-like
transition state and thus is stereospecific (Figs. 2a), [1,3] O-to-
C rearrangement has been far less vigorously investigated, and
stereospecific [1,3]-rearrangement is highly challenging due to the
formation of presumable zwitterion pairs (Fig. 2b)26,27. Although
several Lewis acid-mediated and thermal [1,3]-rearrangements
that relay stereochemical information have been reported28,29,
transformation in these limited cases lacks generality and sig-
nificant deterioration of enantiomeric excess is observed30,31.

Recently, great progress of transition metal-catalyzed intra-
molecular alkoxylation-initiated [1,3]-rearrangement has evoked
a new round of exploration on the [1,3]-rearrangements, offering
great potential to build structurally complex cyclic molecules, as
elegantly established by Toste, Rhee, Hashmi, Liu, Davies, and
Zhu31–38. Despite these impressive advances, these tandem
reactions are limited to ether nucleophiles and rely on noble
metals (Au/Pt) as the catalyst. Importantly, no direct catalytic
asymmetric tandem reaction has been described to date39.
Inspired by the above results and by our recent study on yttrium-
catalyzed tandem intramolecular hydroalkoxylation/Claisen
rearrangement40, we envisioned that the synthesis of eight-
membered benzo[d]azocinones 2 might be accessed directly
through catalytic intramolecular hydroalkoxylation/[1,3]-rear-
rangement of ynamides 141–50. Herein, we describe the realization
of a metal-free tandem intramolecular hydroalkoxylation/[1,3]-
rearrangement (Fig. 2c), and this method leads to the practical
and atom-economical synthesis of various valuable medium-sized
lactams with excellent diastereoselectivity. Moreover, such an
asymmetric cascade cyclization has also been achieved via kinetic

resolution by chiral spiro phosphoramide catalysis. Importantly,
this [1,3]-rearrangement is highly stereospecific and proceeds
with complete chirality transfer. Control experiments and density
functional theory (DFT) calculations provide further evidence of
the feasibility of the proposed mechanism.

Results
Screening of reaction conditions. At the outset, ynamide 1a was
used as the model substrate to demonstrate our designed cascade
cyclization, as shown in Table 1 (for more details see Supple-
mentary Table 1). To our delight, the expected benzo[d]azoci-
none 2a was indeed formed with exclusive cis-diastereoselectivity
(diastereoselectivity (d.r.) >50:1; determined by crude proton
nuclear magnetic resonance (1H NMR)), albeit in low yields, in
the presence of typical gold catalysts (Table 1, entries 1 and 2).
Somewhat surprisingly, further investigations revealed that the
reaction also proceeded in the presence of various non-noble
metals (Table 1, entries 4–7), with Zn(OTf)2 giving the best yield
of the desired product 2a (Table 1, entry 7). In addition, Brønsted
acids such as TsOH and MsOH could also catalyze this cascade
reaction to produce 2a in 47 and 66% yields, respectively, together
with significant amounts of hydration product 2a′ in both cases
(Table 1, entries 8 and 9). Although the use of 10 mol% of HOTf
as catalyst failed to produce the desired 2a, probably because the
high acidity led to decomposition of 1a (Table 1, entry 10), the
reaction efficiency was substantially improved by decreasing the
loading of catalyst (Table 1, entries 11–13). With a low catalyst
loading of 0.5 mol%, HOTf efficiently catalyzed the formation of
2a in 96% yield (Table 1, entry 13). These results indicate that
HOTf, which was released as a hidden Brønsted acid, is
presumably the true catalytic species in the above Lewis acid
catalysis51–53.

Reaction scope study. The reaction scope was then explored
under the optimized reaction conditions (Fig. 3). This metal-free
tandem reaction occurred efficiently with various benzyl alcohol-
tethered ynamides 1, leading to the corresponding benzo[d]azo-
cinones 2 in good to excellent yields. Importantly, excellent dia-
stereoselectivity (>50:1) was achieved in all cases. Ynamides with
different sulfonyl-protecting groups were first investigated, and
the desired products 2a–2c were formed in 73–94% yields. In
addition, ynamides bearing either electron-withdrawing or
electron-donating substituents, such as F, Cl, Br, Me, OMe, or
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Fig. 1 Benzo[d]azocinones in natural products and bioactive molecules. Some of representative molecules are listed
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even CN and CF3 on the aromatic ring (R2=Ar), were compa-
tible with this cyclization to produce the expected 2d–2l in
generally excellent yields. This cascade cyclization was also
extended to the naphthalene, thiophene, and alkenyl-substituted

ynamides, delivering the desired 2m (99%), 2n (81%), and 2o
(94%), respectively. Various aryl-substituted ynamides with either
electron-donating or electron-withdrawing groups were then
screened, and the reaction afforded the desired products 2p–2ab

Table 1 Optimization of reaction conditionsa

Entry Catalyst Yield (%)b

2a 2a′

1 IPrAuNTf2 (5mol%) 48 3
2 Ph3PAuNTf2 (5 mol%) 32 <1
3 AgOTf (10mol%) 15 <1
4 Cu(OTf)2 (10mol%) 18 5
5 Y(OTf)3 (10mol%) 73 4
6 Yb(OTf)3 (10mol%) 74 3
7 Zn(OTf)2 (10mol%) 76 3
8 TsOH (10mol%) 47 12
9 MsOH (10mol%) 66 10
10 HOTf (10mol%) <5 <1
11 HOTf (5mol%) 72 <1
12 HOTf (1 mol%) 88 <1
13 HOTf (0.5mol%) 96 <1

1H NMR proton nuclear magnetic resonance
aReaction conditions: 1a (0.1 mmol), catalyst (0.5–10 mol%), PhCl (2 mL), 80 °C, 4 h, in vials
bMeasured by 1H NMR using diethyl phthalate as internal standard
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in 73–98% yields. Of note, in some cases better yields could be
achieved by employing Zn(OTf)2 (10 mol%) as catalyst and 5 Å
molecular sieve (MS) as additive (2s and 2aa). Interestingly, alkyl-
substituted ynamides (R1 or R2= alkyl) were also suitable sub-
strates, and were converted into the desired 2ac and 2ad in good
yields, and 2ae in a serviceable yield; higher temperature was
needed in these cases. The molecular structures of 2a and 2ac
were confirmed by X-ray diffraction (for more details see Sup-
plementary Tables 3 and 4).

Notably, this cascade cyclization was also extended to the allyl
alcohol-tethered ynamides, and, importantly, no competing intra-
molecular hydroalkoxylation/[3,3]-rearrangement was observed40.
As shown in Fig. 4a, the desired benzo[d]azocinones 2af–2ah were
obtained in 61–76% yields, and significantly improved yield (86%)
was achieved in case of ynamide 1ah by using Zn(OTf)2 as catalyst.
In addition, the reaction proceeded smoothly to produce the
expected 9-membered lactam 2ai in 46% yield, and, in this case, the
use of Zn(OTf)2 as catalyst also gave significantly improved yield
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(Fig. 4b, 2ai was confirmed by X-ray diffraction, for more details see
Supplementary Table 5). Moreover, it was found that other
heterocycle-linked 8-membered ring lactams 2aj–2am could also
be synthesized in 41−55% yields in the presence of 20mol% of
HNTf2 as catalyst (Fig. 4c). Attempts to extend the reaction to the
terminal ynamide 1an only gave a complex mixture of products,
and the reaction of ynamides 1ao and 1ap also failed to produce the
desired products (for more details see Supplementary Figs. 118 and
119), indicating that the formation of a stable benzylic carbocation
is a key requirement for subsequent [1,3]-rearrangement (Fig. 4d).

Screening of reaction conditions for kinetic resolution. We
then considered the possibility of developing an asymmetric variant
of this tandem sequence. Although no enantioselectivity was
observed by the use of chiral metal catalysts, good enantioselectivity

could be attained by employing chiral spiro phosphoramides as
catalysts (for more details, see Supplementary Table 2 and Supple-
mentary Fig. 120)54,55. Importantly, further studies revealed that the
chiral induction was realized through kinetic resolution of racemic
ynamides (for more details, see Supplementary Fig. 121). Initially,
ynamide 1p, bearing an electron-donating methyl group on the
aromatic ring moiety that should promote this cascade cyclization,
was used as the model substrate. As shown in Table 2, the desired
chiral benzo[d]azocinone 2p-ent was obtained in 42% yield with an
enantiomeric ratio (e.r.) of 95:5 in the presence of chiral spiro
phosphoramide Cat. 356–59, bearing two 6,6'-di(3,5-di-tert-butyl-4-
methoxyphenyl) moieties (Table 2, entry 5). Interestingly, the use of
the corresponding chiral binol-derived phosphoramide led to sig-
nificantly decreased enantioselectivity (e.r. <60:40), indicating that
the spirobiindane backbone of the phosphoramides plays a crucial
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role in the chiral induction step. It is notable that in this process one
enantiomer ((R)-1p) favored formation of the desired chiral benzo
[d]azocinone 2p-ent, while the other enantiomer ((S)-1p), which
does not match with the Cat. 3, favored formation of the corre-
sponding hydration product 2p' catalyzed by the acid (for more
details, see Supplementary Figs. 122–124). Thus, it represents a rare
example of parallel kinetic resolution60,61.

Scope of kinetic resolution of racemic ynamides 1. Preliminary
investigations were carried out into the reaction scope by
employing chiral spiro phosphoramide Cat. 3 as a catalyst
(Fig. 5). Substrates with either electron-donating or electron-
withdrawing groups on the aromatic ring moiety of the racemic
ynamides 1 were well tolerated and resulted in 40–51% yields and
good e.r. values. The absolute configuration of 2p-ent was

Table 2 Kinetic resolution of racemic 1p with chiral spiro phosphoramidesa

Entry Cat. Solvent Yield (%)b E.r.c

1 1 PhCl 47 65:35
2 2 PhCl 44 86.5:13.5
3 3 PhCl 45 90:10
4 4 PhCl 10 58:42
5 3 Et2O 42 95:5

HPLC high-performance liquid chromatography
aReaction conditions: 1p (0.1 mmol), Cat. (0.02 mmol), solvent (2 mL), 25 °C, 8 h, then Et3N (0.03 mmol), PhCl (1 mL), 60 °C, 24 h, in vials
bIsolated yields
cDetermined by HPLC analysis on a chiral stationary phase
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determined by X-ray crystallographic analysis (for more details,
see Supplementary Table 6). Of note, although 20 mol% catalyst
loading was employed, probably because the acidity of the chiral
catalyst is not high enough, the catalyst could be readily recovered
and reused five times with almost unchanged enantioselectivity
and reactivity (for more details, see Supplementary Fig. 125).

Synthetic applications and biological tests. To further demon-
strate the potential utility of this reaction, we also carried out
product derivatizations (Fig. 6). For example, the Ts group in
benzo[d]azocinone 2a, prepared on a gram scale in 86% yield, was
efficiently removed to form free amide 3a in 87% yield by the
treatment with SmI2. 3a could be further methylated into the
corresponding lactam 4a (89%) and oxidized into unsaturated
lactam 5a (72%), respectively.

Moreover, we tested the above-synthesized 3-benzazocinones
for their bioactivity as antitumor agents. The cytotoxic effects of
these compounds were evaluated against a panel of cancer cells,
including melanoma cells A375, esophageal cancer cells SK-GT-4
and KYSE-450, and breast cancer cells MCF-7 and MDA-MB-231
using cell viability assay. Our preliminary studies showed that
almost half of these compounds exerted significant cytotoxic
effects on the A375, and a few compounds (2ac, 2ah, 2p-ent, and
3a) and compound 2am exerted cytotoxic effects on the SK-GT-4
and MCF-7 (for more details, see Supplementary Table 8),

respectively, suggesting a potential application of these medium-
sized lactams in medicinal chemistry.

Mechanistic investigations. We then turned our attention to
mechanistic investigations (for more details, see Supplementary
Figs. 126–129). First, it was found that no incorporation of 18O
into the product 2a was observed when ynamide 1a was subjected
to the reaction conditions with H2

18O, which indicates that the
oxygen on the carbonyl group of 2a originates from the hydroxyl
group of 1a (for more details, see Supplementary Fig. 126). In
addition, hydration product 2a′ was not converted into 2a under
the standard conditions, thus ruling out 2a′ as a possible inter-
mediate (for more details, see Supplementary Fig. 127). Gratify-
ingly, the ketene aminal 6a (only the E isomer) could be isolated
in 53% yield by quenching the reaction after 15 min (Fig. 7a).
Importantly, 6a was readily converted into the desired 2a and
complete chirality transfer was observed starting from chiral 6a
(Fig. 7b, c). Furthermore, the acid catalyst did not work in this
rearrangement process, indicating that it is an uncatalyzed ther-
mal rearrangement (for more details, see Supplementary
Fig. 128). These results strongly support that 6a is the key
intermediate and stereospecific [1,3]-rearrangement is pre-
sumably involved in this tandem process.

On the basis of the above observations, we propose a mechanism
for the formation of benzo[d]azocinone 2a (Fig. 8). The reaction
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begins with the hydroxyl group attack of the HOTf-activated
ynamide 1a to afford oxonium intermediate B presumably via a
keteniminium intermediate A, thus further yielding thermodyna-
mically stable vinyl ether intermediate 6a of E configuration and
regenerating the acid catalyst. DFT calculations at B3LYP-D3/6-
31G(d,p)//SMD-def2-TZVP level of theory62–65 (for more details,
see Supplementary Figs. 111–113 and Supplementary Datasets 1–4)
were introduced to understand the subsequent O-to-C rearrange-
ment of (R)-6a, which is a stereospecific, rate-determining, and
uncatalyzed thermal rearrangement, to produce the final cis product
(R, S)-2a. Two major conformational isomers of initial compound
6a and 6a-iso can be located by calculations in terms of different Si-
or Re-face at the α-carbon of amide substrate. In the following step
of C-O bond cleavage, transition state TS_cis with bond breaking

via Si-face side was 9.7 kcal/mol more stable than that via Re-face
cleavage-formed TS_trans, suggesting the final 2a_cis from TS_cis
is kinetically favorable and highly stereospecific. Furthermore,
calculations indicate that the reaction mechanism is not a typical
[1,3]-rearrangement (for more details, see Supplementary Figs. 114–
117)66–70. We are able to locate the transition states of C-O bond
cleavage, but failed to locate transition states of C-C bond
formation, which indicate that the mechanism seems not to be
stepwise. Quantitative Sensory Testing method was used and three
levels of methods (B3LYP-D3, M062X, ωB97XD) were tried in our
calculations. All of them give substantially similar kinetic and
thermodynamic results (for more details, see Supplementary
Figs. 111–117). However, more inspections for transition states
imply that the developing negative charge on the α-carbon of amide
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substrate tends to be stabilized by aromatic rings forming formal
[3,3]-rearrangement transition states. A regular spiro[5,5] product
spiro-int is not accessible because of its high energy instability for
22.5 kcal/mol, compared to the energy of 2a-cis. Indeed, transition
states of C-C bond formation are facile to the final product during
our calculations. Based on energy profiles, the pathway to form
favorable 2a-cis is kinetically irreversible and thermodynamically
exothermic for 11.8 kcal/mol, which is in agreement with our
experiment. When chiral Brønsted acid is employed, the resulting
keteniminium intermediate A′ leads to chiral 6a via ion pairing and
H-bonding interactions54,55, which undergoes stereospecific [1,3]-
rearrangement to form 2a-ent with complete chirality transfer.

Discussion
In summary, we have achieved a metal-free intramolecular
hydroalkoxylation/[1,3]-rearrangement, and significantly, this
[1,3]-rearrangement is highly stereospecific, and a mechanistic
rationale for this stereospecificity is also strongly supported by
DFT calculation. This method leads to the practical and atom-
economical synthesis of a diverse array of valuable medium-sized
lactams from readily available ynamides in high yields with broad
substrate scope and excellent diastereoselectivity. Furthermore,
this asymmetric cascade cyclization has also been realized via
kinetic resolution by chiral spiro phosphoramide catalysis, thus
constituting a rare example of chiral Brønsted acid-catalyzed
kinetic resolution. In addition, biological tests reveal that some of
these medium-sized lactams displayed their bioactivity as anti-
tumor agents against melanoma cells, esophageal cancer cells, and
breast cancer cells. We anticipate that the mechanistic insights of
this chemistry may provoke new developments in related stereo-
specific [1,3]-rearrangement and chiral Brønsted acid-catalyzed
kinetic resolution, and the present protocol will find broad
applications in synthetic and medicinal chemistry.

Methods
Materials. Unless otherwise noted, materials were obtained commercially and used
without further purification. All the solvents were treated according to general
methods. Flash column chromatography was performed over silica gel (300–400
mesh). See Supplementary Methods for experimental details.

General methods. 1H NMR spectra and carbon-13 nuclear magnetic resonance
(13C NMR) spectra were recorded on a Bruker AV-400 spectrometer and a Bruker
AV-500 spectrometer in chloroform-d3. For 1H NMR spectra, chemical shifts are
reported in p.p.m. with the internal tetramethylsilane signal at 0.0 p.p.m. as a
standard. For 13C NMR spectra, chemical shifts are reported in p.p.m. with the
internal chloroform signal at 77.0 p.p.m. as a standard. Infrared spectra were
recorded on a Nicolet AVATER FTIR330 spectrometer as thin film and are reported
in reciprocal centimeter (cm−1). Mass spectra were recorded with Micromass
QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron
spray ionization. 1H NMR, 13C NMR, and HPLC spectra (for chiral compounds)
are supplied for all compounds: see Supplementary Figs. 1–110. See Supplementary
Methods for the characterization data of compounds not listed in this part.

General procedure for the synthesis of 3-benzazocinones 2. To a mixture of the
ynamide 1 (0.20 mmol) in PhCl (3.75 mL) at room temperature, HOTf (0.001
mmol/0.25 mL) in 0.25 mL PhCl was added. Then, the reaction mixture was stirred
at 80 °C and the progress of the reaction was monitored by thin layer chromato-
graphy (TLC). The reaction typically took 4 h. Upon completion, the mixture was
concentrated and the residue was purified by chromatography on silica gel (eluent:
hexanes/ethyl acetate) to afford the desired 3-benzazocinone 2.

General procedure for the synthesis of chiral 2-ent. To a mixture of the yna-
mide 1 (0.1 mmol) and 5 Å MS (60 mg) in Et2O (2 mL) at room temperature, Cat.
3 (0.02 mmol, 17.6 mg) was added during stiring. Then, the reaction mixture was
stirred at 25 °C and the progress of the reaction was monitored by TLC. After the
corresponding reaction time (6–32 h), Et3N (0.03 mmol, 4.2 μL) and PhCl (1 mL)
was added to the reaction mixure to quench the Cat. 3. The resulting reaction
solution was stirred at 60 °C for another 24 h. The mixture was concentrated and
the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl
acetate) to afford the desired chiral 3-benzazocinone 2-ent.

Data availability
Data for the crystal structures reported in this paper have been deposited at the
Cambridge Crystallographic Data Center (CCDC) under the deposition numbers CCDC
1880379 (2a), 1880411 (2ac), 1880414 (2ai), and 1887308 (2p-ent). Copies of these data
can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. All other data
supporting the findings of this study, including experimental procedures and compound
characterization, are available within the paper and its Supplementary Information files,
or from the corresponding authors on request.
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