Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/77903/

This is the author's version of a work that was submitted to / accepted for publication.
Citation for final published version:
Broadley, Kenneth John, Buffat, Maxime G. P., Davies, Robin H. and Thomas, Eric J. 2016. A stereoselective synthesis of a 3,4,5-substituted piperidine of interest as a selective muscarinic (M1) receptor agonist. Synlett 14 (6) , pp. 2057-2089. 10.1039/C5OB02588E file Publishers page: http://dx.doi.org/10.1039/C5OB02588E http://dx.doi.org/10.1039/C5OB02588E

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

A stereoselective synthesis of a 3,4,5-substituted piperidine of interest as a selective muscarinic $\left(\mathrm{M}_{1}\right)$ receptor agonist

Kenneth J. Broadley ${ }^{\text {a }}$
Maxime G. P. Buffat
Robin H. Davies $\dagger^{\text {a }}$
Eric J. Thomas* ${ }^{\text {b }}$
${ }^{\text {a }}$ Cardiff School of Pharmacy \& Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue Cardiff, CF10 3NB, UK.
${ }^{\mathrm{b}}$ The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
e.j.thomas@manchester.ac.uk

\dagger deceased October 2012

BH_{3}. THF
then oxid.

Dedicated to Steve Ley on the occasion of his $70^{\text {th }}$ birthday.

Received:
 Accepted:
 Published online

Abstract A stereoselective synthesis of ($1 R S, 2 S R, 6 S R$)-7-benzyl-6-cyclobutyl-2 methoxymethyl-4,7-diaza-9-oxobicyclo[4.3.0]nonan-8-one, representative of a novel series of selective muscarinic $\left(\mathrm{M}_{1}\right)$ receptor agonists, is described.

Key words piperidines, oxazolidinones, hydroboration, muscarinic receptors, trifluoroacetimidates

Agonists of muscarinic M_{1} receptors have been identified as potential chemotherapeutic agents for the treatment of Alzheimer's disease. ${ }^{1}$ In particular, they could provide alternatives to cholinesterase inhibitors that tend to lose efficacy over time. Indeed several M_{1} receptor agonists have been found to alieviate the symptoms of Alzheimer's disease. ${ }^{2}$ It is, however, crucial to find compounds selective for M_{1} receptors to avoid side- effects arising from stimulation of other muscarinic receptor subtypes. Early modelling studies using the bovine rhodopsin as a substitute for the M_{1} receptor, led to the identification of the oxazolidinonylpiperidines $\mathbf{1}$ and 2 as possibly selective M_{1} agonists, see Figure 1. ${ }^{3}$ We now describe a stereoselective synthesis of the first representative of these

1

2
novel compounds.

Figure 1 Oxazolidinonylpiperidines of interest as M_{1} receptor agonists

The first member of the series selected for synthesis was the 7-benzyl-6-cyclobutyl-2-methoxymethyl analogue 3. The oxazolidinone 4 was identified as a likely precursor of the piperidine 3 and the alkenyloxazolidinone 5, possibly accessible from the aldehyde 6, was considered a plausible intermediate for the synthesis of the oxazolidinone 4. The aldehyde 6 is the equivalent of an alkylated, reduced serine derivative but the presence of the cyclobutyl group limited the options available for its synthesis. In the end, it was decided to study a preparation of the aldehyde 6 from the ketone 7 that in turn would be prepared from the commercially available cyclobutane carboxylic acid 8, see Figure 2. Although not unreasonable, it was recognised that the stereoselectivities of several of the steps in this proposed synthesis were difficult to predict.

Figure 2 Proposed synthesis of the oxazolidinonylpiperidine $\mathbf{3}$
A synthesis of the racemic modification of the aldehyde 6 is outlined in Scheme 1. The tert-butyldimethylsilyloxymethyl ketone 7 was prepared in four steps from cyclobutanecarboxylic acid by conversion into the methyl ketone 9 , bromination of the ketone and hydrolysis of the known ${ }^{4}$ bromide 10 to give the corresponding alcohol that was protected as its silyl ether 7. A Wadsworth-Emmons-Horner reaction of the protected hydroxyketone 7 followed by reduction of the resulting $\alpha \beta$ -
unsaturated esters gave a $75: 25$ mixture of the geometrical isomers of the alcohols 11, the major alcohol being identified as the (Z)-isomer on the basis of a significant nOe between $2-\mathrm{H}$ and $3-\mathrm{CH}$. This mixture of alcohols was converted into the corresponding trifluoroacetimidates 12 by reaction with trifluoroacetonitrile, and heating the trifluoroacetimidates initiated a [3,3]-sigmatropic rearrangement to give the racemic tertiary trifluoroacetamide 13.5 Cleavage of the trifluoroacetamide was carried out under mild conditions using sodium borohydride in ethanol and the resulting amine 14 was converted into its Cbz-derivative 15 that was ozonolysed to give the required aldehyde (\pm)-6, see Scheme 1.

Scheme 1 Synthesis of the aldehyde (\pm)-6 Reagents and conditions (i) MeLi, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt, 3 h (90\%); (ii) $\mathrm{Br}_{2}, \mathrm{MeOH}, 0$ ${ }^{\circ} \mathrm{C}$ to $15{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$ (80\%); (iii) (a) KOCHO, MeOH, heat under reflux, 12 h (71\%) (b) TBSCl, imid., DMAP (cat.), TBAI (cat.), DCM, rt, 1 h (62\%); (iv) (a) (EtO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, \mathrm{THF}, \mathrm{rt}$, 45 min , add 7, rt, 2.5 h (b) DIBAL-H, hexanes, THF, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, \mathrm{rt}$, 30 min [89\% from 7, (Z) : (E) = 75: 25]; (v) NaH, THF, rt, 1 h, add to $\mathrm{CF}_{3} \mathrm{CN}, \mathrm{THF},-115{ }^{\circ} \mathrm{C}$ to $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ (88\%); (vi) xylene heat under reflux 18 h (91\%); (vii) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}$ to rt, 18 h (80\%); (viii) CBzCl, Et ${ }_{3}$ N, DCM, rt, 18 h (83\%); (ix) O3, DCM, -78 ${ }^{\circ} \mathrm{C}$, then $\mathrm{Ph}_{3} \mathrm{P}$, rt (84\%).

The next step was the conversion of the aldehyde 6 into the oxazolidinone 5. This was achieved in one pot using an excess of isopropenylmagnesium bromide with a prolonged reaction time to facilitate cyclisation. ${ }^{6}$ This reaction was highly stereoselective and gave the cyclised product 5 exclusively. The formation of this oxazolidinone is consistent with addition of the Grignard reagent onto the less hindered face of the chelated deprotonated aldehyde 16 to give the adduct 17. This cyclised in situ, possibly via the isocyanate 18 formed by loss of lithium benzyloxide, to give the oxazolidinone after work-up, see Scheme 2. The structure asigned to the oxazolidinone 5 was confirmed by X-ray difraction, ${ }^{7}$ see Figure 3.

To convert the oxazolidinone 5 into the cyclisation precursor 4 it was necessary to oxidise the methyl group, benzylate the oxazolidinone and hydrate the alkene stereoselectively. These conversions are outlined in Scheme 3. Epoxidation of the alkene 5 gave a mixture of the epoxides 19 and 20, ratio 77 : 23, that were reacted as a mixture with lithium 2,2,6,6 tetramethylpiperidide ${ }^{8}$ to give the allylic alcohol 21.

Scheme 2 Preparation of the oxazolidinone 5 Reagents and conditions (i) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{MgBr})=\mathrm{CH}_{2}$, THF, tol., $-78{ }^{\circ} \mathrm{C}$, 2 h then $\mathrm{rt}, 48 \mathrm{~h}$ (66\%).

Figure 3 The structure of the oxazolidinone $\mathbf{5}$ as established by X-ray diffraction.

Alkylation using sodium hydride-benzyl bromide gave the N benzyloxazolidinone 23 as the major product with the bisbenzylated material 22 as only a minor side-product. Methylation of the alcohol 23 led to the methyl ether 24 and hydroboration-oxidation of this alkene using borane in THF at 0 ${ }^{\circ} \mathrm{C}$ gave a mixture of the epimeric alcohols 4 and 25 , ratio 4 : 25 $=85: 15,{ }^{9}$ see Scheme 3 .

Scheme 3 Synthesis of the (\pm)-oxazolidinone 4 Reagents and conditions (i) (i) mCPBA, DCM, rt, 18 h (75\%); (ii) 2,2,6,6tetramethylpiperidine, THF, ${ }^{n} \mathrm{BuLi}, 0{ }^{\circ} \mathrm{C}$ to rt, 1 h , added to 19 and 20, THF, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 3 \mathrm{~h}$ (67\%); (iii) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{THF}$, heat under reflux, 6 h (23, 79\%; 22, 6\%); (iv) NaH, THF, MeI, rt, 18 h (90%); (v) $\mathrm{BH}_{3}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$, then EtOH, $\mathrm{NaOAc}, 30 \%$ aq. $\mathrm{H}_{2} \mathrm{O}_{2}$, heat under reflux $1 \mathrm{~h}(95 \%, 4: 25=85: 15)$.

The mixture of hydroboration products was not separated and the structure 4 of the major product, which turned out to be the required epimer, was only confirmed later in the synthesis. The stereoselectivity can be explained by participation of transition structure 26 in the hydroboration step, see Figure 4, but molecular modelling studies of the hydroboration were not carried out.

Figure 4 Facial selectivity of the hydroboration of alkene 24
The completion of the synthesis of the oxazolidinonylpiperidine 3 is outlined in Scheme 4. Desilylation of the mixture of the hydroboration products 4 and 25 gave a mixture of the diols 27 and 28 that was converted into the N-benzylpiperidines $\mathbf{3 0}$ and 31, ratio ca. $85: 15$, by reaction of the mesylates 29 with an excess of benzylamine. ${ }^{10}$ Following separation of the major N benzylpiperidine $\mathbf{3 0}$ by chromatography, a selective transfer hydrogenolysis of the piperidine N-benzyl group gave the required oxazolidinonylpiperidine $3 .{ }^{11}$

Scheme 4 Completion of a synthesis of the (\pm)oxazolidinonylpiperidine 3 Reagents and conditions (i) TBAF, THF, $0{ }^{\circ} \mathrm{C}$ to rt, $30 \mathrm{~min}(67 \%, 27: 28=85: 15)$; (ii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, DCM, $0{ }^{\circ} \mathrm{C}$ to rt, 1 h ; (iii) $\mathrm{BnNH}_{2}, 80{ }^{\circ} \mathrm{C}$, $18 \mathrm{~h}(\mathbf{3 0}, 36 \%$; mixture of 30 and 31, 26\%, $30: 31=55: 45$); (iv) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{H}$, $\mathrm{MeOH}, \mathrm{rt}, 20 \mathrm{~min}$ (71\%); (v) BBr 3 , DCM , THF, $0^{\circ} \mathrm{C}, 4 \mathrm{~h}$ (61\%).

The structures of the products shown in Scheme 4 were consistent with their spectroscopic data, although the configurations of the oxazolidinonylpiperidines at C2 were difficult to assign from their ${ }^{1} \mathrm{H}$ NMR spectra. The structures of these products were eventually confirmed by selective demethylation of the major N-benzylpiperidine $\mathbf{3 0}$ to give the alcohol 32 that was crystalline and whose structure was confirmed by X-ray diffraction, ${ }^{7}$ see Figure 5 . The vicinal coupling constant $J_{1,2}$ of the oxazolidinonylpiperidines was found to be diagnostic of their relative configuration at C 2 , being less than 5 Hz for the major products $\mathbf{3 , 3 0}$ and 32, and greater than 8 Hz for the minor product 31.

Figure 5 The structure of the (\pm)-oxazolidinonylpiperidine 32 as established by X-ray data.

This work has resulted in the synthesis of the first member of a novel series of compounds, oxazolidinonylpiperidines, of interest as potentially selective ligands for muscarinic receptors. Indeed the methyl ether 3 was found to be a 50% partial agonist of muscarinic M_{1} receptors with micromolar potency, as measured by the relaxation responses of rat duodenum compared with the full agonist $\mathrm{McN}-\mathrm{A}-343$. Of interest in the synthetic work was the stereoselectivities of the Grignard addition and hydroboration steps and the overall strategy. This chemistry has been applied to the synthesis of oxazolidinonylpiperidines with both alkoxymethyl and hetaryl sybstituents at C2. This work will be decribed in full elsewhere.

Acknowledgment

We thank Dr. J. Raftery for help with X-ray data

References and Notes

(1) Dunbar, P. G.; Durant, G. J.; Fang, Z.; Abuh, Y. F.; El-Assadi, A. A.; Ngur, D. O.; Periyasamy, S.; Hoss, W. P.; Messer, Jr., W. S. J. Med. Chem. 1993, 36, 842.
(2) (a) Fisher, A.; Pittel, Z.; Haring, R.; Bar-Ner, N.; Kliger-Spatz, M.; Natan, N.; Egozi, I.; Sonego, H.; Marcovitch, I.; Brandeis, R. J. Mol. Neuroscience 2003, 20, 349; (b) Caccamo, A.; Fisher, A.; LaFerla, F. M. Curr. Alzheimer Res. 2009, 6, 112; (c) Heinrich, J. N.; Butera, J. A.; Carrick, T.; Kramer, A.; Kowal, D.; Lock, T.; Marquis, K. L.; Pausch, M. H.; Popiolek, M.; Sun, S.-C.; Tseng, E.; Uveges, A. J.; Mayer, S. C. Eur. J. Pharm. 2009, 605, 53; (d) Ragozzino, M. E.; Artis, S.; Singh, A.; Twose, T. M.; Beck, J. E.; Messer, Jr., W. S. J. Pharm. Exper. Therapeutics 2012, 340, 588; (e) Digby, G. J.; Noetzel, M. J.; Bubser, M.; Utley, T. J.; Walker, A. G.; Byun, N. E.; Labois, E. P.; Xiang, Z.; Sheffler, D. J.; Cho, H. P.; Davis, A. A.; Nemirovsky, N. E.; Mennenga, S. E.; Camp, B. W.; Bimonte-Nelson, H. A.; Bode, J.; Italiano, K.; Morrison, R.; Daniels, J. S.; Niswender, C. M.; Olive, M. F.; Lindsley, C. W.; Jones, C. K.; Conn, P. J. J. Neuroscience 2012, 32, 8532.
(3) Davies, R. H. unpublished observations.
(4) (a) Gaudry, M.; Marquet, A. Org. Synth. 1976, 55, 24; (b) Ramig, K.; Dong, Y.; Van Arnum, S. D. Tetrahedron Lett. 1996, 37, 443; (c) Maehr, H.; Yang, R. Tetrahedron Lett., 1996, 37, 5445.
(5) (a) Savage, I.; Thomas, E. J.; Wilson, P. D. J. Chem. Soc., Perkin Trans. I, 1999, 3291; (b) Chen, A.; Thomas, E. J.; Wilson, P. D. J. Chem. Soc., Perkin Trans. I, 1999, 3304.
(6) (4SR,5RS)-4-(tert-Butyldimethylsilyloxymethyl)-4-cyclobutyl-5-propen-2-yl-1,3-oxazolidin-2-one (5) Propen-2ylmagnesium bromide (0.5 M in toluene, $297 \mathrm{~mL}, 148.5 \mathrm{mmol}$, 3.75 eq.) was added over 1 h to the aldehyde $6(15.5 \mathrm{~g}, 39.6$ mmol) in THF (800 mL) at $-78{ }^{\circ} \mathrm{C}$, and the reaction mixture stirred at $-78^{\circ} \mathrm{C}$ for 2 h then allowed to warm to rt overnight. The reaction mixture was stirred for another 36 h at rt before saturated aqueous ammonium chloride (500 mL) was added. The aqueous phase was extracted with ether ($3 \times 500 \mathrm{~mL}$) and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography (ethyl acetate : light petroleum $=1: 10$) of the residue gave the title compound 5 (8.5 $\mathrm{g}, 66 \%$) as a single diastereoisomer, $\mathrm{R}_{f}=0.30$ (ethyl acetate : light petroleum $=1: 4$) as a white solid, m.p. $110-112{ }^{\circ} \mathrm{C}$ (Found: C, 62.76; H, 9.62; N, 4.20\%. $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3}$ Si requires C, 62.73; H, 9.60; N, 4.30; Found: $\mathrm{M}^{+}+\mathrm{H}, 326.2150, \mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Si}$ requires M, 326.2152); $v_{\max } / \mathrm{cm}^{-1} 3240,3137,2952,2935,2892,2859,1756$, 1465, 1384, 1344, 1254, 1106, 903, 840 and 777 ; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.02\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.87\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.69-2.18$ $\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.80\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}_{3}\right), 2.70(1 \mathrm{H}$, pent, $J 8.2 \mathrm{~Hz}, 4-$ $\mathrm{CH}), 3.43\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2}\right), 4.50(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.04$ and 5.13 (each 1 $\left.\mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right)$ and $5.86(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.9,-5.8$, 17.4, 18.1, 19.9, 22.4, 24.3, 25.7, 39.4, 63.9, 65.0, 82.2, 113.9, 138.0 and 158.9; $m / z(\mathrm{CI}+) 343\left(\mathrm{M}^{+}+18,75 \%\right)$ and $326\left(\mathrm{M}^{+}+1\right.$, 100).
(7) X-Ray data Oxazolidinone 5: $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$; unit cell parameters: a 12.250(3) b 13.606(3) c 12.818(3); P21/c, CCDC number 1413285. Alcohol 32: $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$; unit cell parameters: a $22.546(14)$ b 9.314(10) c 10.283(9); P21/c, CCDC number 1413286.
(8) (a) Yasuda, A.; Tanaka, S.; Oshima, K.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1974, 96, 6513; (b) Tanaka, S.; Yasuda, A.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc., 1975, 97, 3252.
(9) (4SR,5RS)-3-Benzyl-4-(tert-butyldimethylsilyloxymethyl)-4-cyclobutyl-5-[(SR)- and -(RS)-1-hydroxy-3-methoxyprop-2-yl]-1,3-oxazolidin-2-ones (4) and (25) Borane (1 M in THF, 8.2 $\mathrm{mL}, 8.22 \mathrm{mmol}, 5$ eq.) was added dropwise to the alkene 24 (660 $\mathrm{mg}, 1.48 \mathrm{mmol}$) in THF (5 mL) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at this temperature for 18 h before ethanol (7.1 mL), saturated aqueous sodium acetate (23 mL) and hydrogen peroxide (30% in $\mathrm{H}_{2} \mathrm{O}, 8 \mathrm{~mL}$) were added. The reaction mixture was heated under reflux for 1 h then cooled. The aqueous phase was extracted with ether ($3 \times 35 \mathrm{~mL}$) and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography (ethyl acetate : light petroleum =1:4) of the residue gave the title compounds 4 and 25 ($648 \mathrm{mg}, 95 \%$), as a mixture of diastereoisomers, $\mathbf{4}: \mathbf{2 5}=85: 15, \mathrm{R}_{f}=0.21$ (ethyl acetate : light petroleum $=1$: 2) (Found: $\mathrm{M}^{+}+\mathrm{H}, 464.2835$. $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{Si}$ requires $M, 464.2833$); $v_{\text {max }} / \mathrm{cm}^{-1} 3443,2930,2892$, 2859, 1732, 1468, 1409, 1357, 1297, 1255, 1169, 1104, 1036, 840 and 777 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major epimer 40.04 and 0.05 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.88\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.50-2.05\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right)$, $2.22(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 2.37\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.57(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}), 3.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.57 and 3.63 (each $1 \mathrm{H}, \mathrm{dd}, J 6.0,9.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$), 3.66 ($2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2}$), $3.85-3.94\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 4.17(1 \mathrm{H}, \mathrm{d}, J 15.8 \mathrm{~Hz}$, PhHCH), 4.48 ($1 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{d}, J 15.8 \mathrm{~Hz}, \mathrm{PhHCH})$ and 7.24-7.40 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); minor epimer 250.03 and 0.05 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.87\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.83(1 \mathrm{H}$, br. t, $J 5.5 \mathrm{~Hz}, \mathrm{OH})$, $3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.72\left(1 \mathrm{H}, \mathrm{dd}, J 9.5,3.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 3.79(1 \mathrm{H}, \mathrm{dd}$, J 9.5, $\left.5.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}^{\prime}\right), 4.55(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, 5-\mathrm{H})$ and $4.70(1 \mathrm{H}, \mathrm{d}, J$ $15.7 \mathrm{~Hz}, \mathrm{PhHCH})$; $\delta \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major epimer $4-5.9,-5.8$, $17.2,17.9,23.1,23.3,25.7,38.7,40.8,45.8,59.1,61.2,62.3,68.5$, $73.3,77.4,127.3,127.6,128.5,138.4$ and 159.1; minor epimer 25
$-5.8,17.1,17.9,23.1,23.4,25.6,38.7,40.3,45.8,59.3,60.8,64.4$ 68.8, 73.6, 75.4, 127.2, 127.6, 128.4, 138.5 and 159.5; $\mathrm{m} / \mathrm{z}(\mathrm{CI}+)$ $464\left(\mathrm{M}^{+}+1,1 \%\right)$ and 90 (100).
(10) (1RS,6SR)-4,7-Bis-benzyl-6-cyclobutyl-2-methoxymethyl-4,7-diaza-9-oxabicyclo[4.3.0]nonan-8-ones (30) and (31) Freshly distilled methane sulfonyl chloride ($0.112 \mathrm{~mL}, 1.42 \mathrm{mmol}, 3 \mathrm{eq}$.) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.20 \mathrm{~mL}, 1.42 \mathrm{mmol}, 3$ eq.) were added successively to a mixture of the diols $\mathbf{2 7}$ and $\mathbf{2 8}$ ($166 \mathrm{mg}, 0.475 \mathrm{mmol}$) in DCM (5 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt and was stirred for 1 h before the addition of ether (5 mL) and saturated aqueous ammonium chloride (10 mL). The aqueous phase was extracted with ether ($3 \times 10 \mathrm{~mL}$) and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to leave a mixture of the bis-mesylates $29(228 \mathrm{mg})$ that was used without purification. The bis-mesylates 29 (228 mg) were dissolved in benzylamine (15 mL) and the solution heated at $80^{\circ} \mathrm{C}$ for 18 h . After cooling to rt , the benzylamine was removed by distillation under reduced pressure. Chromatography (ethyl acetate : light petroleum $=1: 20$ to $1: 10$) of the residue achieved partial separation of the piperidines $\mathbf{3 0}$ and $\mathbf{3 1}$ to give the title compound 30 ($72 \mathrm{mg}, 36 \%$), $\mathrm{R}_{f}=0.28$ (ethyl acetate : light petroleum $=1: 2$) (Found: $\mathrm{M}^{+}, 420.2410 . \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires M, 420.2413); $v_{\max } / \mathrm{cm}^{-1} 3083,3060,3029,2924,2872,2811,1744$, 1494, 1453, 1405, 1349, 1294, 1201, 1168, 1117, 1090, 1060, $1028,978,818$ and 746 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40-1.78(5 \mathrm{H}, \mathrm{m}$, cyclobutyl H), $2.00(1 \mathrm{H}, \mathrm{m}$, cyclobutyl H), $2.10(1 \mathrm{H}, \mathrm{d}, J 12.5 \mathrm{~Hz}$, $5-\mathrm{H}), 2.22(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.36(1 \mathrm{H}, \mathrm{t}, J 10.5 \mathrm{~Hz}, 3-\mathrm{H}), 2.41(1 \mathrm{H}, \mathrm{d}, J$ $\left.12.5 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 2.49(1 \mathrm{H}$, pent, $J 8.7 \mathrm{~Hz}, 6-\mathrm{CH}), 2.58(1 \mathrm{H}, \mathrm{dd}, J 7.25$, $10.5 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}$), 3.32-3.37 ($6 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}, \mathrm{OCH}_{3}, \mathrm{PhCH}_{2}$), 3.57 ($1 \mathrm{H}, \mathrm{t}$, $J 8.5 \mathrm{~Hz}, 2-\mathrm{CH}^{\prime}$), 3.91 and 4.28 (each $1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathrm{PhHCH}$), 4.51 ($1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 1-\mathrm{H}$) and 7.21-7.34 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta \mathrm{c}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 17.6,22.9,23.3,36.7,39.2,44.7,50.6,53.0,59.1,61.9,64.4$, $72.0,74.3,127.2,127.3,127.9,128.3(2), 128.9,138.0,138.3$ and 159.1; m / z (EI) $420\left(\mathrm{M}^{+}, 1 \%\right)$ and 91 (100). The second fraction was a mixture of the title compounds $\mathbf{3 0}$ and $\mathbf{3 1}$ ($53 \mathrm{mg}, 26 \%$), 30 : 31 = 56:44, $\mathrm{R}_{f}=0.28-0.22$ (ethyl acetate : light petroleum = 1 : 2) (Found: $\mathrm{M}^{+}, 420.2412 . \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M, 420.2413$); $v_{\max } / \mathrm{cm}^{-1} 3083,3061,3029,2927,2869,2823,1746,1495,1453$, $1436,1403,1355,1334,1193,1170,1106,1053,1027,996,923$, 809 and 743 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ minor epimer 31 2.75-2.85 (2 H, m, 3-H, 5-H), $3.24(1 \mathrm{H}, \mathrm{d}, J 12.8 \mathrm{~Hz}, \mathrm{PhHCH}), 3.47(1 \mathrm{H}, \mathrm{dd}, J 3.0$, $9.5 \mathrm{~Hz}, 2-\mathrm{CH}), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J 5.25,9.5 \mathrm{~Hz}, 2-\mathrm{CH}^{\prime}\right), 4.02(1 \mathrm{H}, \mathrm{d}, J$ $15.5 \mathrm{~Hz}, \mathrm{PhHCH}), 4.40(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, 1-\mathrm{H})$ and $4.45(1 \mathrm{H}, \mathrm{d}, J$ $15.5 \mathrm{~Hz}, \mathrm{PhHCH})$; δ ($\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) minor epimer 3116.9 , 23.3, 23.7, 41.2, 41.6, 44.4, 53.3(2), 59.1, 62.4, 63.6, 71.8, 73.8, 127.4(2), 128.0, 128.3, 128.4, 129.3, 137.9, 138.1 and 158.4; m / z (CI+) $421\left(\mathrm{M}^{+}+1,100 \%\right)$.
(11) (1RS,2SR,6SR)-7-Benzyl-6-cyclobutyl-2-methoxymethyl-4,7-diaza-9-oxabicyclo[4.3.0]nonan-8-one (3) A solution of formic acid ($93 \mu \mathrm{~L}, 0.025 \mathrm{mmol}, 0.4$ eq.) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to the N-benzylpiperidine $\mathbf{3 0}$ ($26 \mathrm{mg}, 0.062 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$ (41 mg) under N_{2} and the reaction mixture was stirred at rt for 20 min. Potassium carbonate (50 mg) was added, the reaction mixture was filtered through celite and the residue was washed with ether. After concentration under reduced pressure, chromatography (MeOH : ether $=1: 50$, saturated in ammonia) of the residue gave the title compound 3 ($14 \mathrm{mg}, 71 \%$), $\mathrm{R}_{f}=0.38$ $(\mathrm{MeOH}$: ether $=1: 10$ saturated in ammonia) (Found: $\mathrm{M}^{+}, 330.1941$. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M, 330.1943$); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3343$, 3086, 3062, 3029, 2935, 2871, 2832, 2815, 1742, 1672, 1496, 1454, 1432, 1409, 1345, 1199, 1167, 1146, 1112, 1090, 1071, 984, 759 and 707 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.54-2.00 $\left(7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right.$, $6-\mathrm{CH}), 2.12(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{d}, J 14.2 \mathrm{~Hz}, 5-\mathrm{H}), 2.57(1 \mathrm{H}, \mathrm{t}$, $J 12.0 \mathrm{~Hz}, 3-\mathrm{H}), 2.61\left(1 \mathrm{H}, \mathrm{d}, J 14.2 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 2.91(1 \mathrm{H}, \mathrm{dd}, J 6.5$, $\left.12.0 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right), 3.31(1 \mathrm{H}, \mathrm{dd}, J 6.0,9.0 \mathrm{~Hz}, 2-\mathrm{CH}), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.52\left(1 \mathrm{H}, \mathrm{t}, J 9.0 \mathrm{~Hz}, 2-\mathrm{CH}^{\prime}\right), 4.22$ and 4.43 (each $1 \mathrm{H}, \mathrm{d}, J 15.7 \mathrm{~Hz}$, PhHCH), $4.71(1 \mathrm{H}, \mathrm{d}, J 2.7 \mathrm{~Hz} 1-\mathrm{H})$ and $7.24-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta \mathrm{c}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.5,22.2,22.8,35.8,38.5,40.7,44.6,45.0,59.0$,
63.4, 71.4, 73.6, 127.8, 127.8, 128.7, 138.1 and 158.7; m/z (CI+)
$331\left(\mathrm{M}^{+}+1,60 \%\right)$ and 91 (100).

