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Abstract: This paper presents a high accuracy stereovision system for obstacle detection and vehicle environment 
perception in various driving scenarios. The system detects obstacles of all types, even at high distance, 
outputting them as a list of cuboids having a position in 3D coordinates, size, speed and orientation. For 
increasing the robustness of the obstacle detection the non-planar road model is considered. The 
stereovision approach was considered to solve the road-obstacle separation problem. The vertical profile of 
the road is obtained by fitting a first order clothoid curve on the stereo detected 3D road surface points. The 
obtained vertical profile is used for a better road-obstacle separation process. By consequence the grouping 
of the 3D points above the road in relevant objects is enhanced, and the accuracy of their positioning in the 
driving environment is increased. 

1 INTRODUCTION 

Having a robust obstacle detection method is 
essential for a precise 3D environment description in 
driving assistance systems. The traditional approach 
used to detect the position, size and speed of the 
obstacles was the use of active sensors (radar, laser 
scanner). However, recent developments in 
computer hardware and also in image processing 
techniques enable the possibility of employing 
passive video cameras for detecting obstacles, with 
the advantage of a higher level of the environment 
description. 

Obstacle detection through image processing has 
followed two main trends: single-camera based 
detection and two (or more) camera based detection 
(stereovision based detection). The monocular 
approach uses techniques such as object model 
fitting (Gavrila, 2000), color or texture segmentation 
(Ulrich, 2000), (Kalinke, 1998), symmetry axes 
(Kuehnle, 1998) etc. The estimation of 3D 
characteristics is done after the detection stage, and 
it is usually performed through a combination of 
knowledge about the objects (such as size), 

assumptions about the characteristics of the road  
(such as flat road assumption) and knowledge about 
the camera parameters available through calibration.  

The stereovision-based approaches have the 
advantage of directly measuring the 3D coordinates 
of an image feature, this feature being anything from 
a point to a complex structure. The main constraints 
concerning stereovision applications are to minimize 
the calibration and stereo-matching errors in order to 
increase the measurements accuracy and to reduce 
the complexity of stereo-correlation process. The 
real time capability of the method is another 
important constraint. Such a method was proposed 
in (Nedevschi, 2004). The full 3D reconstruction of 
the visible scene is performed only on vertical or 
oblique edges. The list of obtained 3D points is 
grouped into objects based solely on density and 
vicinity criteria. The flat road assumption for the 
ground-obstacle points separation process was used. 
The system detects obstacles of all types, outputting 
them as a list of cuboids having 3D positions and 
sizes. The detected objects are then tracked using a 
multiple object-tracking algorithm, which refines the 
grouping and positioning, and detects the speed and 
orientation.  
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An important part in the obstacle detection 
process is the separation of the obstacle points from 
the road points. Most of the roadway obstacle 
detection methods are based on the flat road 
assumption (Weber, 1995), (Williamson, 1998). This 
is a poor model since deviations from the flat road 
may be as large as or larger than the obstacles we 
wish to detect. In consequence the road objects 
separation and the 3D objects position estimation 
cannot be done. Therefore the non-flat road 
assumption is compulsory for a robust object 
detection method. In literature this assumption was 
introduced by non-flat road approximation by series 
of planar surface sections (Hancock, 1997), 
(Labayrade, 2002) or by modeling of the non-flat 
roads by higher order surfaces (Goldbeck, 1999), 
(Aufrere, 2001). For instance the methods presented 
in (Aufrere, 2001), (Aufrere, 2000), (Takahashi, 
1996) are fitting the parameters of a 3D clothoid 
model of the road lane using a monocular image and 
supplementary lane geometry constraints.  

Our approach presented in this paper will model 
the vertical profile of the road surface with such a 
clothoid curve fitted directly on the detected 3D road 
surface points. These 3D road points are detected 
using a high accuracy stereovision method 
(Nedevschi, 2004). The obtained vertical profile will 
be used for the road-obstacle separation process in 
order to have a proper grouping of the 3D points in 
obstacles and precise estimation of their 3D position 
in the driving environment. 

2 ENVIRONMENT MODEL 

All 3D entities (points, objects) are expressed in the 
world coordinates system, which is depicted in 
figure 1.a. This coordinates system, has its origin on 
the ground in front of the car, the X axis is always 
perpendicular on the driving heading direction, the 
Y axes is perpendicular on the road surface and the 
Z axis coincides with the driving heading direction. 
The ego-car coordinates system has its origin in the 
middle of the car front axis, and the tree coordinates 
are parallel with the tree main axes of the car. The 
world coordinates system is moving along with the 
car and thus only a longitudinal and a vertical offset 
between the origins of the two coordinates system 
exists (vector TEW from Figure 1). The relative 
orientation of the two coordinates systems (REW 
rotation matrix) will change due to static and 
dynamic factors. The loading of the car is a static 

factor. Acceleration, deceleration and steering are 
dynamic factors, which also cause the car to change 
pitch and roll angles with respect to the road surface. 
To obtain the pitch and roll angles and the car height 
we measure the distance between the car’s chassis 
and wheels because the wheels are on the road 
surface. Four sensors are mounted between the 
chassis and wheels arms and the car height (TX) and 
the pitch(RX) and roll (RZ) angles are computed. 

Figure 1.a shows also the position of the left and 
the right cameras in the ego-car coordinate system. 
The position is completely determined by the 
translation vectors TCE

i and the rotation matrices 
RCE

i. These parameters are essential for the stereo 
reconstruction process and for the epipolar line 
computation procedure. In order to estimate them an 
offline camera calibration procedure is performed 
after the cameras are mounted and fixed on the car 
using a general-purpose calibration technique. Due 
to the rigid mounting of the stereo system inside the 
car these parameters are considered to be 
unchangeable during driving. 

The stereo reconstruction is performed in the car 
coordinates system. The coordinates XXE =[XE, YE, 
ZE]T of the reconstructed 3D points in the ego-car 
coordinates system can be expressed in the world 
coordinate system as XXW =[XW, YW, ZW]T using 
the following updating equation: 
 

  )( EWEW TXXRXX +⋅= EW
     (1) 

 
where TEW and REW are the instantaneous relative 
position and orientations of the two coordinates 
system and are computed from the damper height 
sensors by adding an offset to the initial value 
(established during camera calibration). The 
transformation between the rotation vector and its 
corresponding rotation matrix is given by the 
Rodrigues (Trucco, 1998) formulas. 
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The objects are represented as cuboids, having a 

position (in the world coordinate system), size, 
orientation and velocity, as in figure 1.b.  The 
position (X, Y, Z) and velocity (vX and vZ) are 
expressed for the central lower point C of the object. 
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Figure 1: a. The world, car and cameras reference systems; b. The object parameters 
 

 

3 STEREO RECONSTRUCTION 

The stereo reconstruction algorithm that is used is 
mainly based on the classical stereovision principles 
available in the existing literature (Trucco, 1998): 
find pairs of left-right correspondent points and map 
them into the 3D world using the stereo system 
geometry determined by calibration.  

Constraints, concerning real-time response of the 
system and high confidence of the reconstructed 
points, must be used. In order to reduce the search 
space and to emphasize the structure of the objects, 
only edge points of the left image are correlated to 
the right image points. Due to the cameras horizontal 
disparity, a gradient-based vertical edge detector was 
implemented. Non-maxima suppression and 
hysteresis edge linking are being used. By focusing 
to the image edges, not only the response time is 
improved, but also the correlation task is easier, 
since these points are placed in non-uniform image 
areas.  

Area based correlation is used. For each left edge 
point, the right image correspondent is searched. The 
sum of absolute differences (SAD) function 
(Williamson, 1998) is used as a measure of 
similarity, applied on a local neighborhood (5x5 or 
7x7 pixels). Parallel processing features of the 
processor are used to implement this function. The 
search is performed along the epipolar line 
computed from the stereo geometry for general 
camera configuration. 

To have a low rate of false pairs, only strong 
responses of the correlation function are considered 
as correspondents. If the global minimum of the 
function is not strong enough relative to other local 
minimums than the current left image point is not 
correlated. In figure 2 a successful correlation is 

shown along the first column, while the last two 
columns show ambiguous similarity functions with 
rejected correspondents. Repetitive patterns are 
rejected and only robust pairs are reconstructed.  
 
 
 
 

 

 

 

 

 

 

 

 

Figure 2:  Three correlation scenarios are shown on each 
column. Left image point marked by ‘x’ on row I, right 

image search area and the epipolar line on row II and the 
correlation function on row III. 

A parabola is fitted to a local neighborhood (3 or 
5 points) of the global correlation minimum in order 
to detect the stereo correspondence with sub-pixel 
accuracy. The obtained accuracy is about 1/4 to 1/6 
and is dependent of the image quality (especially 
noise level and contrast). Our tests proved that the 3-
neighbors parabola works better than the other one. 

After this step of finding correspondences, each 
left-right pair of points is mapped into a unique 3D 
point. Two 3D projection rays are traced, using the 
camera geometry, one for each point of the pair. By 
computing the intersection of the two projection 
rays, the coordinates of the 3D point are determined. 
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4 VERTICAL ROAD PROFILE 
ESTIMATION 

Many of the obstacle detection methods assume a 
flat road profile. Some take into account the car 
pitching – therefore admitting some degree of 
vertical profile change – but fail to account for a 
possible curved vertical profile. We’ll try to extract 
the vertical profile of the road by approximating it 
with a first order clothoid curve (in the ego-car 
coordinate system): 
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where: 

α, is the pitch angle of the ego-car 
c0,y – vertical curvature 
c1,y – variation of the vertical curvature 

 
In order to extract the coefficients α, c0,v and c1,v 

which will completely describe the vertical profile of 
the road, we’ll make use of the 3D road points 
reconstructed by stereovision. The main advantage 
of using stereovision is the ability of directly 
extracting the vertical profile, independently of the 
lane detection process, sometimes even 
independently of the presence of any kind of 
delimiters. The key assumption, which makes this 
possible, is that there are none or very few 3D points 
under the road plane. Having a list of 3D points, it is 
easy to obtain a lateral projection in the YOZ plane, 
like in figure 3. 

As easily can be seen, there is a lot of noise in 
the set of points, and therefore a simple fitting of the 

curve to the lower points, or a least-square clothoid 
fitting is not enough. Our approach to detecting the 
vertical profile takes two simplifying assumptions: 

- In the close vicinity of the ego-vehicle (20m), the 
points are on a straight line, and the effect of the 
curvature is sensed only after the 20m interval 

- The effect of roll is negligible for the vertical 
profile detection, that is, the vertical 
displacement due to roll is negligible in 
comparison to the displacement due to pitch and 
vertical curvature. 
These assumptions allow us to regard the 

problem as a 2D curve fitting to a set of 2D points 
corresponding to the lateral projection of the 
reconstructed 3D points (figure 3). 

With these assumptions, first we want to estimate 
the pitch angle of the ego car coordinate system 
relative to the road surface (angle α from equation 
3). The pitch angle is extracted using a method 
similar to the Hough transform applied on the lateral 
projection of the 3D points in the near range of 0-20 
m (in which we consider the road flat). Therefore, an 
angle histogram is built for each possible pitch 
angle, using the near points, and then the histogram 
is searched from under the road upwards. The first 
angle having a considerable amount of points 
aligned to it is taken as the pitch angle. 

After detecting the pitch angle, detection of the 
curvature follows the same pattern. The pitch angle 
is considered known, and then a curvature histogram 
is built, for each possible curvature, but this time 
only the more distant 3D points (> 20 m) are taken 
into account, because the effect of a curvature is felt 
only in more distant points. The obtained vertical 
clothoid profile of the road is shown in figure 4. 
 

 

 

 
Figure 3: The 3D points in a lateral projection (YOZ plane) 

 

 
Figure 4: The vertical profile fitted to the ground points 
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5 GROUPING 3D POINTS INTO 
OBJECTS 

We use only 3D points situated above the road 
surface. The road surface is modeled by the 
following clothoid equation in the world coordinates 
system: 
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The road/obstacle separation (figure 5) of the 3D 

points is done using thee following constraints: 
− if  |YW-Y| < τ , the point is on the road 

surface, and classified as road point 
− if  (YW-Y) < -τ , the point is below the road, 

and is rejected 
− if  (YW-Y) > τ , the point is above the road 

The threshold τ is a positive constant and its 
value is chosen depending on the on the error 
estimation of the disparity with the depth, and on the 
error estimation of the clothoid parameters and 
possible torsion of the road. 

 

 
Figure 5: Lateral view of the road surface in the world 

coordinate system 

 
Some supplementary constraints are used to 

restrict the 3D points above the road: points higher 
then 4m above the road surface, points that are too 
lateral or too far are rejected. The remaining points 
belong to the so-called Space of Interest (SOI) in 
which is performed the grouping of the 3D points in 
objects. For the road geometry we have made the 
following assumptions: in highway and most of 
country road scenarios the horizontal curvature is 
slowly changing and the torsions can be neglected in 
our detection range (up to 100m). Therefore 
knowing the road vertical profile would be enough 
to characterize the driving surface in the SOI. 

In our SOI, no object is placed above other. Thus, 
on a satellite view of the 3D points in SOI, we are 
able to distinguish regions with high points density, 
representing and locating objects. Regions with low 
density are assumed to contain noisy points and are 
neglected. The satellite view (figure 6.b) of the 3D 
points detected from the scene depicted in figure 6.a 
is analyzed to identify objects. 

An important observation is that the 3D points are 
more and more rare as the distance grows. To 
overcome this phenomenon, we compress the 
satellite view of the space (Nedevschi, 2004), 
depending on distance, in such a way that local 
density of points, in the new space, is kept constant 
(figure 6.c. Regardless the distance to an object, in 
the compressed space, the region where that object is 
located will have the same points density. The 
objects are identified as dense regions (figure 6.c). 
In figure 6.d the cuboids circumscribing objects are 
shown. 

 

 
Figure 6:  a. Reconstructed scene; b. Satellite view of 

points. c. The compressed space and the identified objects; 
d. Perspective view of object cuboids painted over the 

image 
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6 OBJECT TRACKING 

Object tracking is used in order to obtain more stable 
results, and also to estimate the velocity of an object 
along the axes X and Z. The Y coordinate is tracked 
separately, using a simplified approach of simply 
averaging the current coordinate by the last detected 
coordinate. 

The mathematical support of object tracking is 
the linear Kalman filter. The position of the object is 
considered to be in a uniform motion, with constant 
velocity. The position and speed parameters of the 
object along the axes X, Y and Z at the moment k 
are components of the state vector X(k) that we try 
to evaluate through the tracking process. The actual 
detection of the object will form the measurement 
vector Y(k), which consists only of the coordinates 
of the detected object. 
 

[ ]T
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The evolution of the X vector is expressed by the 
linear equation: 
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where the state transition matrix A(k) is 
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The steps of tracking a single object are: 
 
Prediction: a new position of the object is computed 

using the last state vector and the transition matrix, 
through equation (6).  

Measurement: around the predicted position (pX 
,pY, pZ) we search for objects resulted from 
grouping which have the distance to the 
prediction below a threshold. The distance is 
computed by equation (8), which gives different 
weights to displacements along the three 
coordinate axes, and take into consideration also 
the current object speed, which is seen as an 
indetermination factor.  
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The objects that satisfy the vicinity condition 
are used to form an envelope whose position is 
computed and used as measurement, and the 
size of the envelope is used as the current 
measurement of the tracked object’s size. By 
creating an envelope object out of the objects 
near a track we can join objects that were 
previously detected as separate. This merging 
becomes effective only if the separated objects 
have the same trajectory. This is ensured by the 
object-track association, when track compete 
for objects, and a false object joining won’t last 
for too long. 

Update: The measurement and the prediction are 
used to update the state vector X through the 
equations of the Kalman filter. The Y coordinate 
and the object’s size are tracked by averaging the 
current measurement with the past 
measurements. If in the current frame there is no 
measurement that can be associated to the track, 
the prediction is used as output of the tracking 
system. The track is considered lost after a 
number of frames without measurement. 
 
Tracking multiple objects adds a little bit more 

complexity to the algorithm presented above. We 
have to decide which detected object belongs to 
which track, or if a detected object starts a new 
track. The association between detected objects and 
tracks is done using a modified nearest-neighbor 
method, using the distance expressed by equation 
(8). Each object is compared against each track. The 
objects are labeled employing the nearest track 
identity number, provided that there is at least one 
track that has a sufficient low distance to the object. 
The modification from the classical nearest-neighbor 
scheme is that we introduce an “age discount” in the 
distance comparison, and in this way we give 
priority to the older, more established tracks. This 
discounting mechanism is achieved by sorting the 
tracks in the reverse order of their age (the older 
ones first). If we compare an object to a track and 
the object already was labeled with the label of 
another track, we change the owner of the object 
only if the distance object-current track is lower than 
the distance to the older track minus a fixed 
quantity, the age discount. 

For every object that cannot be assigned to an 
existing track and that fulfills some specific 
conditions, a new track is initialized. A new track is 
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started for a single object that has a reasonable size. 
There is no object joining in the initialization phase 
of a track. In this way we avoid initializing tracks to 
noise objects, and thus amplifying the noise. Tracks 
are aborted if the association process fails for a 
predefined number of frames. A tracking validation 
process based on the image of the object is 
employed in order to ensure that there is no track 
switching from one object to another. 

7 RESULTS 

The detection system has been deployed on a 
standard 1 GHz Pentium® III personal computer, 
and the whole processing cycle takes less than 100 
ms processing time, therefore securing a 10 fps 
detection rate. This makes the system suitable for 
real-time applications. The system has been tested in 
various traffic scenarios, both offline (using stored 
sequences) and online (on-board processing), and 
acted well in both conditions. In all situations the 
obstacles were reliably detected and tracked, and 
their position, size and velocity measured. The 
detection has proven to have a maximum working 
range of about 90 m, with maximum of reliability in 
the range 10-60 m. The depth measurement error is, 
naturally, higher than one can obtain from a radar 
system, but it is very low for a vision system: less 
than 10 cm of error at 10 m, about 30 cm of error at 
45 m and about 2 m of error at 95 m. 

In figure 7 the detection results on a non-flat 
road are outlined. The scene from figure 6.a is at the 
end of a concave slope. The detected road surface 
has a concave vertical curvature c0,v ≈ 2e-4. The far 
objects (the two cars at 71m, respectively 81m and 
the traffic sign from 91m have vertical offsets in the 
world coordinates system (having the XOZ plane 
coincident with the road surface below the current 

car position) of 0.51m, 0.66m and 0.96m 
respectively, due to the non flat road. But using the 
non-flat road modeled by a vertical clothoid (figure 
6.b) the objects are detected correctly on the road 
surface. 

8 CONCLUSIONS 

We have presented a stereovision-based obstacle 
detection system that reconstructs and works on 3D 
points corresponding to the object edges, in a large 
variety of traffic scenarios, and under real-time 
constraints. Because the stereovision module 
reconstructs any feature in sight (that means also the 
road features) the vertical profile of the road was 
detected. This way a correct road-obstacle separation 
was possible. The grouping of the 3D points in 
relevant objects was greatly improved, and the 
objects 3D positioning accuracy was increased.  

The functions of this system can be greatly 
extended in the future. An intelligent correlation 
function should be developed, one that can 
disambiguate, not reject, repetitive patterns and 
reconstruct points from horizontal edges. Moreover, 
because any type of object is detected this algorithm 
can form the basis for any type of specific object 
detection system, such as vehicle detection, 
pedestrian detection, or even traffic sign detection. 
The classification routines can be performed directly 
on our detected objects, with the advantage of 
reduced search space and additional helpful 
information such as distance, size and speed, which 
can also reduce the class hypotheses. The vertical 
road profile detection from stereovision can be the 
base for a 3D lane detection algorithm, which will 
give a complete 3D description of the driving 
environment in a lane related coordinates system. 
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Figure 7: a. Image of the scene with the detected object (cuboids with ID and distance); b. Side view of the detected objects 

and the detected road surface; c. Top view of the detected objects. 
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