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ABSTRACT 

The tetravalent character of tetrel atoms leaves only limited room for an incoming nucleophile to approach and 

engage in a noncovalent bond with a tetrel atom.  Any such approach can only occur at the expense of internal 

geometric distortions.   The balance between attractive forces and repulsive steric crowding was studied for a 

series of Lewis acids of the type FTR3 (T=Si, Ge, Sn, Pb) which were allowed to interact with various bases.  

The strength and other properties of the tetrel bond are examined as the R groups are made progressively larger, 

varying from H and CH3 to isopropyl and t-butyl, which induce steric crowding with the incoming base.  The 

effects of crowding which impede the bond can be offset by enlarging the T atom, by adding electron-

withdrawing substituents to the Lewis acid, or by considering stronger bases such as anions.  The tetrel bond 

energies reach up to 10 kcal/mol for a pair of neutral molecules with no electron-withdrawing substituents on 

the Lewis acid.  Adding -CF3 substituents grows the interaction energy to as high as 35 kcal/mol, and a further 

increment occurs for an anionic base, taking the maximum up to 54 kcal/mol. 
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1. INTRODUCTION 

Analogous to the venerable and thoroughly studied H-bond 1-3, it is now well accepted that the bridging 

proton can be replaced by any of a litany of larger atoms, without compromising the strength of the interaction 

4-7.  These substitute atoms are typically electronegative ones, drawn from the right side of the periodic table.  

Unlike the H atom which is partially positive within the context of a covalent O-H or N-H bond, the substitute 

atom’s electronegativity leaves it with an overall partial negative charge, which would ordinarily tend to repel 

any incoming nucleophilic basic molecule.  However, the negative charge around the substitute atom X is far 

from uniform, but is rather quite anisotropic.  There is commonly a region of positive electrostatic potential, 

directly opposite the R-X covalent bond, which is surrounded by the expected negative areas.  These positive 

regions are widely denoted as σ-holes, due to their origin and location, directly opposite the R-X σ-bond 8-10.  It 

is this σ-hole which can attract a nucleophile in their initial long range encounter.  As the two molecules are 

drawn together, the interaction incorporates other attractive forces, most notably charge transfer and dispersion. 

Depending on the identity of the atom replacing the bridging proton, and more particularly its familial 

nomenclature, these interactions are generally referred to as halogen, chalcogen, and  pnicogen bonds.  These 

noncovalent bonds have been intensively studied in the last years, leading to a number of general conclusions 

that are common to all 11-28.  In the first place, substituent effects markedly enhance the strength of the bond as 

electron-withdrawing substituents are placed on the electron-accepting Lewis acid molecule.  As one moves 

down a column of the periodic table, e.g. Cl → Br → I the pertinent atom becomes both less electronegative 

and more polarizable, all factors which contribute to a stronger bond.  There is a reluctance of first-row atoms F, 

O, and N to participate as electron acceptors in these bonds, although they can be persuaded to do so by, for 

example, adding strongly electron-withdrawing substituents, as in NFH2 which, unlike NH3, will engage in a 

pnicogen bond 29. 

These ideas have recently been extended one column to the left in the periodic table from the pnicogens, to 

include the tetrel family of atoms.  Although the current moniker of a tetrel bond was coined fairly recently 30, 

evidence of their presence goes back some years earlier.  Early calculations 31 documented the ability of both 

SiH4 and SiF4 to form such a bond with NH3, which was confirmed by rotational spectra 32.  Free-jet IR 

spectroscopy 33 suggested that such a bond can form between SiF4 and either N2 or CO, despite the weakness of 

the latter bases.  The idea of a tetrel bond was also invoked in an experimental study 34 of a reaction mechanism, 

which went on to suggest this bond becomes weaker as the size of the tetrel atom gets smaller, an idea that has 

been echoed since 35-36.  It is accepted 37-38 that like the other related noncovalent bonds, the tetrel bond is also 

strengthened as more electron-withdrawing substituents are added to the Lewis acid 39-40, as in the case of SiF4, 

or if the Lewis acid bears a positive charge 41-42, or likewise in the case of an anionic base 43. 
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 Tetrel bonds can appear within the intramolecular context of a single molecule 44-47 as in 1-methylsilatrane 

48 or trifluorosilylhydrazines 44.  The concept has been broadened to include a variety of Lewis bases 49, such as 

radicals 50-51, anions 43, 52-53, carbenes 54-55, or π-systems 56-58.  There are also indications that an incipient tetrel 

bond is a prime ingredient in the idea of SN2 chemical reactions 6, 36, 53, 59-60, or in biological processes 61, and in 

the formation of metal-organic frameworks 62-63.  Tetrel bonds are not necessarily limited to σ-hole interactions 

where a nucleophile approaches directly opposite a covalent bond, but can also involve π-holes which lie out of 

the molecular plane 64-65.  The study of these interactions has proliferated quite a bit in the last few years 40, 66-70, 

which has included examination of the way tetrel bonds can be strengthened via cooperative effects 71-72.  

There is one essential factor concerning tetrel bonds which makes them rather different from their related 

noncovalent cousins.   Taking the halogen bond as an example, the approaching nucleophile is separated by 

180° from the R group that is covalently attached to the halogen atom.  Things get only a little more crowded 

for the chalcogen and pnicogen atoms.  In the case that the R3Z molecule (Z=pnicogen) is trigonal pyramidal in 

shape, a nucleophile could still approach the central Z atom without incurring substantial steric repulsion with 

the R groups, separated from them by as much as 109°.  But the situation becomes more crowded for tetrel 

atoms.  With roughly tetrahedral spacing of its four substituents, a nucleophile would be separated from the R 

groups by only something on the order of 70°.  In order to reduce the destabilizing effects of the associated 

steric repulsions, the Lewis acid would probably need to undergo a good deal of angular deformation, which 

would introduce its own energetic cost. 

So the issue of steric crowding is a highly important one for tetrel bonds, but nonetheless one which has 

been scarcely studied.  This issue is of special importance as tetrel bonds show evidence of being the strongest 

of the entire family of related noncovalent interactions 73-75.  It is the purpose of the current work to thoroughly 

analyze the effects that steric repulsions can have upon such bonds, and their ability to form at all.  In an effort 

to do so, tetrel atoms T varying in size from Si to Ge, Sn, and Pb are considered as the central atom in FTR3 

Lewis acids, so as to consider how tetrel atom size relates to crowding effects.  (C was not considered as its 

tetrel bonds are quite weak.)  Starting with H as the group attached to T, this substituent is progressively 

enlarged to methyl, and thence to the bulkier isopropyl and t-butyl groups.  The restriction to alkyl groups 

reduces any differences in electron-withdrawing power of the substituents, keeping the focus on purely steric 

factors.  But at the same time, the ability of electron-withdrawing substituents to enhance the tetrel bond 

strength is considered, separately from steric effects, by comparing CF3 to CH3 as R groups, as well as 

considering halogen atoms of varying size and electron-withdrawing power as alternate substituents.  The 

power of stronger nucleophiles to potentially overcome the inhibiting effects of possibly crippling steric 

crowding is evaluated by replacing the neutral NH3 base by various anions. 
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2. SYSTEMS AND METHODS 

The unsubstituted TH4 molecules (T=Si, Ge, Sn, Pb) were each taken as a starting point Lewis acid; one H 

atom was replaced by F so as to provide a reasonably strong σ-hole opposite this F atom in FTH3, with which a 

base can interact.  The possibility of steric crowding was introduced in stages, replacing each of the three H 

atoms first by CH3, and then by isopropyl and t-butyl.  In order to consider the ability of electron-withdrawing 

substituents on the tetrel atom to overcome steric crowding, a number of CF3 groups were placed on the T, as 

well as halogen atoms of varying size.  NH3 was employed as the primary electron donor, due to its simplicity, 

containing a single lone pair and with no π bonds that might complicate the analysis.  A larger, and more 

crowded NMe3 base was considered as well, as were the highly nucleophilic F- and Br- anions.  In each case, the 

base was initially positioned directly opposite the F atom of FTR3 and the entire geometry of the complex fully 

optimized. 

Quantum calculations were carried out via the Gaussian-09 76 program.  MP2 was used in order to account 

for electron correlation.  The aug-cc-pVDZ basis set was applied to all atoms with the exception of Sn and Pb 

which were represented by the aug-cc-pVDZ-PP pseudopotential from the EMSL library 77-78 which accounts 

for relativistic effects.  This level of theory has demonstrated its accuracy and effectiveness in numerous 

previous studies 79-87 of related systems. 

 All geometries were fully optimized, and checked to ensure they were true minima by frequency 

calculations.  The binding energy, ∆E, was defined as the difference between the energy of the complex and the 

sum of the energies of the optimized monomers.  This quantity was corrected by the counterpoise procedure to 

remove basis set superposition error 88.  The interaction energy of each dimer differs in that it involves the 

energies of the monomers within the context of their geometry within the dimer.  As such, this quantity 

represents the interaction between two monomers that have already been deformed into the structures they will 

ultimately adopt within the dimer.  Thus, the binding and interaction energies differ by the strain or deformation 

energy of each monomer that takes it from its optimized structure to that within the dimer. 

Molecular electrostatic potentials surrounding each molecule were visualized via the Chemcraft program 89 

and quantified by the Multiwfn program 90 to locate its maxima and minima on the isodensity surface 

corresponding to ρ=0.001 au.  Charge transfer was evaluated by the Natural Bond Orbital (NBO) technique 91.  

The AIM formalism elucidated bond paths through analysis of the topology of the electron density 92-93, making 

use of the AIMALL program 94. 

3. RESULTS 

3.1   T=Si 

As the smallest of the four tetrel atoms considered here, one might expect Si to suffer from the largest 

degree of steric crowding.  The geometries of various FSiR3···NH3 equilibrium structures are pictured in Fig 1, 
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and their salient characteristics summarized in Table 1.  There is little evidence of substantial steric repulsion in 

the FSiH3···NH3 complexes where the N is able to approach within 2.56 Å of the Si atom.  The binding energy 

is 5.49 kcal/mol, which is fairly large, comparable to that in the classically H-bonded water dimer.  Despite the 

nearly unimpeded approach of the two molecules, the formation of this complex induces a certain amount of 

strain in the FSiH3 molecule, amounting to 1.93 kcal/mol.  Much of this deformation energy arises from the 

bending back of the H atoms away from the approaching nucleophile, with the θ(FHN) angle dropping by 5° 

from 107.7° in the monomer to 102.8° within the complex. 

When the 3 H atoms are enlarged to methyl groups, a new dynamic emerges.  The larger CH3 is associated 

with a certain degree of steric repulsion with the NH3.  But there is also the possibility that H-bonds can be 

formed from an H atom of each methyl group to the N.  And these H-bonds are favored by a laonger 

intermolecular separation which permits them to be less distorted from linearity.  Another factor in this change 

is the electron-releasing property of the methyl groups.  As may be seen in the first two rows of Table 2, the 

substitution of the three H atoms of FSiH3 by methyls reduces the maximum in the electrostatic potential at the 

σ-hole from 41 to 27 kcal/mol.  This decrease reduces the force pulling the N atom in toward the Si, permitting 

the CH··N H-bonds to better take hold.  Consequently the R(Si··N) distance is much longer at 3.75 Å.  The 

binding energy of 2.24 kcal/mol can be attributed more to the three CH··N H-bonds and less to a tetrel bond 

(see below). 

One can counter the electron-releasing ability of the three methyl groups by replacing one or more of them 

with CF3 which ought to have an opposite effect.  And indeed, Table 2 shows that each such substitution 

enhances the σ-hole magnitude by 3-7 kcal/mol.  It is thus no surprise to see that the tetrel bond is now able to 

overcome the CH··N HBs, and bring the N atom progressively closer.  R(Si··N) diminishes from 3.75 Å for 

FSiMe3 down to 2.39, 2.21, and 2.12 Å as each such substitution is put in place.  With this contraction comes a 

growing binding energy, from 2.11 kcal/mol for a single CF3 group up to 18.2 kcal/mol when all three are 

exchanged.  The strength of this bond is reflected also in the contracting intermolecular distance, a scant 2.12 Å 

for the trisubstituted Lewis acid.  Note that this closer proximity comes with a price in the form of growing 

distortion energy of the Lewis acid, rising all the way up to 17.3 kcal/mol for FSi(CF3)3.  The binding energy of 

18.2 kcal/mol thus comes at the expense of this large deformation energy, so must reflect quite a strong 

attractive force.  Indeed, when the deformation energies are accounted for, the final column of Table 1 shows 

that the interaction energy in the FSi(CF3)3···NH3 complex is more than 35 kcal/mol, quite a strong interaction.  

This quantity is enlarged by some 10-11 kcal for each CH3 to CF3 substitution, reflecting the sensitivity of the 

tetrel bond to the electron-withdrawing capacity of the latter group. 

A further enlargement of the R groups to isopropyl (Iso) makes it more difficult for the NH3 base to 

approach the Si.  There is a minimum that occurs for R=3.091 Å.  Similar to the trimethyl case, the tetrel bond 
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is reinforced by several CH··N HBs.  Because of the long intermolecular distance, the binding energy is rather 

small, and is in fact very slightly repulsive (∆E= +0.2 kcal/mol) when counterpoise corrections are included.  

There is a small distortion energy which makes the interaction energy between the pre-deformed monomers 

attractive, by 2.3 kcal/mol.  

 Interestingly, for the tri-isopropyl case, one sees a competition of sorts between two possibilities.  If the 

isopropyl groups are rotated a bit, one can generate a second minimum, with a much closer approach of the Si 

and N atoms, R= 2.50 Å.  However, this second minimum is higher in energy than the first, by some 6 kcal/mol.  

Due to the much closer proximity of the two molecules, there is a correspondingly higher distortion energy of 

14.2 kcal/mol.  Thus the interaction energy in the last column of Table 1 shows a larger interaction energy for 

this contracted dimer, 7.4 vs 2.3 kcal/mol for the more stable conformation.  In other words, the steric 

repulsions present in certain tetrel bonding situations can lead in some cases to either i) a long and weak tetrel 

bond, perhaps reinforced by secondary HBs or ii) a short but stronger tetrel bond which must overcome strong 

internal deformations and may result in a positive overall value of ∆E. 

As a final point, one can again strengthen the interaction by introduction of an electron-withdrawing CF3 

group.  As may be seen in Table 2, the inclusion of only a single such group ramps Vs,max up from 9.9 to 23.1 

kcal/mol.  This powerful σ-hole pulls the NH3 in toward the Si to a distance of only 2.38 Å, and eliminates any 

secondary minimum at a longer separation.  The small binding energy of only 2.7 kcal/mol masks a large 

distortion energy of 10.3 kcal/mol which leads to an interaction energy of 13.0 kcal/mol, quite similar to the 

case where a single Me group is replaced by CF3. 

The replacement of each of the three isopropyl groups by the still larger tert-butyl (Tb) groups, can be 

anticipated to add a higher degree of steric hindrance.  Nonetheless, the N atom can still approach within 2.52 Å 

of the central Si atom.  However, the repulsion is reflected in the positive ∆E, +10.8 kcal/mol.  As the two 

molecules pull one another together, the three t-butyl groups must move apart to make room for the approaching 

ligand.  As may be seen in the next column of Table 1, the strain induced in the FSiTb3 molecule amounts to 

17.4 kcal/mol.  When this deformation energy is taken into account, the interaction energy between the two 

monomers in the complex, once they have appropriately distorted, is attractive and equal to -6.6 kcal/mol.  Due 

to the positive value of ∆E, it was thought that perhaps there might be a second minimum with a longer 

intermolecular separation, as was observed for FSiIso3.  However, no such minimum was found.  It might be 

noted that the properties of Vs,max for FSiTb3 are unlike most of the Lewis acids in Table 2 (see below). 

Rather than incorporation of alkyl groups of increasing size, another means of introducing steric repulsions 

into the Lewis acids is the replacement of the three H atoms of FSiH3 by halogen atoms of increasing size.  

Although such substitutions also introduce the possibility that NH··X HBs can compete with the desired FSi··N 

tetrel bond, the equilibrium geometry of FSiX3 ··NH3 is characterized by a linear FSi··N tetrel bond for X=Cl, 
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Br, and I, as exhibited in Figs 2a, 2b, and 2c, respectively.  The binding energies for these three trihalogenated 

Lewis acids diminish from 5.5 to 3.3 kcal/mol as the halogen is enlarged and gets progressively less electron-

withdrawing, as may be seen in the last three rows of Table 1.  The R(Si··N) tetrel bond lengths are rather short, 

around 2.1 Å for these three halogen substitutions, suggesting any detrimental effects from steric repulsions are 

overshadowed by the stronger tetrel bonds connected with the electron-withdrawing halogen substituents.  The 

close approach of the two monomers does in fact lead to very substantial monomer deformation energies, 

between 15 and 20 kcal/mol.  When corrected by these distortions, the interaction energies are quite large, 

ranging between 18 kcal/mol for FSiI3 up to 25 kcal/mol for FSiCl3.  So even though these halogenated Lewis 

acids incur quite large monomer deformations, their attraction toward the base outweighs this crowding effect.  

It might be added parenthetically, that the situation is quite different when Si is replaced by the smaller C atom.  

The weakness of any C··N tetrel bond is easily overwhelmed by the NH··X HBs, which are in fact observed in 

the equilibrium geometries for X=Cl and Br. 

3.1.1   Analysis of Wave Functions 

Some further insights into the nature of the binding within these complexes can be gleaned from Table 2.  

The first column displays the maximum in the molecular electrostatic potential (MEP) of each Lewis acid 

monomer, on the ρ=0.001 au isodensity surface, which corresponds to the σ-hole position, viz. directly opposite 

the F atom.  This quantity is fairly large, 41.0 kcal/mol for the unsubstituted SiH3.  As noted in the second 

column of Table 2, this point lies 1.940 Å away from the Si atom.  The replacement of the three H atoms by 

electron-releasing methyl groups lowers Vs,max by 34%, down to 26.9 kcal/mol, while also displacing it 0.2 Å 

further away from the central Si atom.  This drop in Vs,max can be recovered by replacing each methyl group by 

the electron-withdrawing CF3, with each such substitution providing a boost of roughly 5 kcal/mol, as indicated 

earlier. 

The addition of larger isopropyl (Iso) groups adds an interesting wrinkle.  It was noted in Table 1 that there 

are two minima for the FSiIso3···NH3 complex, with R differing by 0.5 Å.  The two structures differ in the 

orientations of the isopropyl groups.  If these groups are situated as they are in the slightly more stable structure 

a, with the longer R, the maximum in the MEP is 22.0 kcal/mol, and lies 2.24 Å from Si.  But the reorientation 

of the isopropyl groups which permits the closer approach of the NH3 pulls this point 0.8 Å further away from 

Si, and drops its value to less than half, at 9.9 kcal/mol.  The replacement of one of these Iso groups by CF3 

eliminates the second, and more distant, maximum in the MEP, and raises the value of Vs,max back up over 20 

kcal/mol.  The value of this maximum for FSiTb3 is similar to structure a for FSiIso3, while lying further away 

from Si. 

The values of Vs,max for the three FSiX3 monomers in the last three rows of Table 2 are quite sensitive to the 

nature of the halogen.  The most electron-withdrawing Cl substituents yield a value of 27.0 kcal/mol, which is 
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reduced to half that amount for FSiI3.  This point moves progressively further from the central Si atom as the X 

atom becomes larger, out to 2.41 Å for FSiI3.  It might be interesting to note that even with these three electron-

withdrawing substituents, Vs,max remains lower than for the unsubstituted FSiH3, and generally lower than 

FSiMe3, despite the weakness of the tetrel bonds involving the latter two monomers.  Indeed, FSiI3 has a Vs,max 

that is as low as any of the other acids considered here.  This observation contrasts with the rather high 

interaction energies of the FSiX3 acids.  

One can obtain an alternate view of the strength of the intermolecular interaction via AIM analysis of the 

topography of the electron density of each complex.  In particular, the density at the bond critical point 

connecting a pair of atoms is thought to be directly related to the strength of the noncovalent bond 25, 95-105.  This 

quantity is reported as ρBCP in Table 2.  So for example, the density at this point is equal to 0.0233 au in the 

bond connecting Si with N in the FSiH3··NH3 heterodimer, as displayed in the first row.  When the three H 

atoms of FSiH3 are replaced by methyl groups, the bond path between Si and N disappears, and is replaced by 

three such paths, each connecting N with one H atom of each methyl group.  It is for this reason that the 

R(Si··N) distance is so long in this complex, as noted in Table 1.  The Si··N bond path reappears when one of 

the methyl groups is replaced by CF3, with ρ=0.0325 au.  This bond is augmented by a weaker bond between N 

and one of the F atoms of the CF3 group.  The latter bond is not present in the dimers containing two and three 

CF3 groups, and ρBCP grows continuously with each such replacement, up to 0.055 au for the trisubstituted 

species.  This increase in the AIM quantity is mirrored in the binding energy ∆E, and even more so in the 

interaction energy. 

There are two minima for the FSiIso3 complex.  The AIM data for the more stable of the two, structure a, 

reflects the long R(Si··N) distance in that there is no bond path between these two atoms.  Instead, the complex 

is held together by three N··H H-bonds, one to each isopropyl group, and a C··N bond which might be 

characterized as a tetrel bond to one C of an isopropyl group.  It is thus not surprising that this complex is only 

weakly bound.  The electron-withdrawing capacity of a CF3 group, when substituted for one isopropyl re-

establishes the Si··N tetrel bond, in addition to providing a negative value of ∆E.  This bond is elongated and 

weakened, for the tri-t-butyl derivative, and ∆E becomes positive once again, with ρBCP dipping to 0.0264 au.  

The largest of all the values of ρBCP are associated with the halogenated FSiX3 acids in the last three rows of 

Table 2. 

NBO offers a means of examining charge transfers, in particular those between individual orbitals, as an 

alternate window into the nature of intermolecular interactions.  In most cases of bonds of the tetrel type 

examined here, the chief intermolecular transfer takes charge from the N lone pair into the σ*(Si-F) antibonding 

orbital.  These quantities are reported in the penultimate column of Table 2 and show that there are other 

interorbital transfers that contribute to the interaction.  In the FSiH3···NH3 complex for example, the Si-F 
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transfer perturbation energy E(2) of 17.97 kcal/mol is supplemented by transfers of 3.90 kcal/mol into each of 

the three Si-H antibonding orbitals.  Hence while AIM would attribute the binding here to be solely due to the 

Si··N tetrel bond, NBO would assign a substantial contribution from three SiH··N H-bonds.  The situation 

changes for FSiMe3···NH3 where AIM finds no evidence of a tetrel bond, whereas NBO again identifies not 

only the three CH··N H-bonds characterized by AIM, but also a weak tetrel bond.  Indeed, NBO finds there is a 

tetrel bond in all cases, even in the long Si··N bond in FSiIso3···NH3, where again AIM fails to locate a tetrel 

bond.  It is characteristic of the NBO interpretation to find multiple sources of bonding.  For example, the tetrel 

bond in FSiMe(CF3)2··NH3 is augmented by transfer of charge from the N lone pair to all three of the σ*(Si-C) 

antibonds even though these orbitals do not point directly to the N, but which add nonetheless to the Si··N tetrel 

bond strength.  These same subsidiary transfers to antibonds not directly opposite the N atom are in fact 

contributing factors to the tetrel bonds of all Lewis acids.  The transfer into the σ*(SiF) antibonding orbital is 

rather large, ~20 kcal/mol, for the halogenated FSiX3 complexes.  These contributions are supplemented by 

three secondary transfers, into each of the SiX antibonds, of nearly equal magnitude. 

As there is a significant amount of charge that is being placed into the antibonding SiF orbital, one would 

expect to see a weakening and consequent lengthening of this bond.  Such a stretch is indeed observed, as 

displayed in the last column of Table 2.  The amount of this elongation varies from 0.005 Å for the weak tetrel 

bond involving FSiMe3 to a maximum of 0.042 Å for FSi(CF3)3 which is associated with the strongest Si tetrel 

bond of all those considered. 

Summarizing the competition between attractive tetrel bonding and steric repulsions as substituents are 

placed on the Si, FSiH3 is unimpeded so can form a fairly strong tetrel bond with NH3.  The replacement of H 

by methyl groups induces a certain amount of steric hindrance, which is compensated to some degree by the 

formation of three CH··N HBs, although they cannot fully make up for the loss of the tetrel bond.  The NH3 is 

drawn in despite any steric repulsions as one or more methyl groups are replaced by the much more electron-

withdrawing CF3, which amplifies the Si σ-hole.  The interaction is exothermic, even though formation of the 

complex must overcome monomer deformation energies between 11 and 17 kcal/mol.  In contrast, when the 

methyls are replaced by the larger isopropyl groups, the ensuing steric repulsions lead to an endothermic 

complexation.  There is a fine balance observed between an attractive tetrel bond and steric repulsion, which 

leads to the presence of more than one minimum.  One structure keeps the Si and N atoms 3.09 Å apart, and 

another permits a closer association of 2.50 Å but at the expense of a high monomer deformation energy.  The 

same steric problems lead to an endothermic complexation, despite an attractive tetrel bond and a negative 

interaction energy, when the isopropyl groups are replaced by the even bulkier t-butyl.  Although the FSiX3 

Lewis acids suffer from substantial monomer deformation, the attraction is strong enough to pull the base in to 

short intermolecular contact distance, and an exothermic ∆E. 
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3.2  Heavier Tetrel Atoms 

Given the observation that the Si atom has difficulty in accommodating a tetrel bond while covalently 

attached to certain bulky groups, it would be interesting to see how some of the heavier tetrel atoms might fare 

in this regard.  One might expect that their larger size might expand the space around them, pushing the bulky 

groups further away, and perhaps better make room for an incoming Lewis base.  There should also be a greater 

attractive force, based on the idea that along with larger atomic size will come lesser electronegativity and 

higher polarizability, both factors that should enhance the intensity of a σ-hole. 

The ability of the heavier tetrel atoms to enable noncovalent bonding to a NH3 molecule is summarized in 

Table 3, and their full geometries illustrated in Fig 3.  FGeH3 is nearly unimpeded, allowing the N to approach 

within 2.63 Å, only 0.07 Å longer than in the case of the Si analogue, as evident in Fig 3a.  The binding energy 

of -5.8 kcal/mol is slightly stronger than for the lighter Si analogue.  And the heavier molecule suffers a 0.5 

kcal/mol lesser distortion energy.  As in the Si case, the replacement of H atoms by methyl groups in Fig 3b 

again reduces the binding energy, but with the difference that the N atom is not pushed as far from Ge as it is 

from Si, approaching to within 2.78 Å.  Enlargement of the substituents to isopropyl groups in Fig 3c does not 

lead to the same steric problems for the larger Ge: The NH3 approaches to within 2.82 Å, without a second, 

more distant, minimum, and the binding energy is clearly exothermic.  Note also that the deformation energy of 

FGeIso3 is only 2.4 kcal/mol in this complex, as compared to more than 14 kcal/mol for the Si-analogue. 

The steric hindrance does become a problem, though, when t-butyl groups are placed on the Ge.  Although 

the N can approach to within 2.67 Å in Fig 3d, the large deformation energy of 12.7 kcal/mol leads to an 

endothermic binding energy of +6.6 kcal/mol, a situation similar to that of its smaller FSiTb3 cousin.  The 

possibility of a second minimum, with longer R, was hence considered by a second optimization that began 

with R=3.0 Å, but this did not lead to a separate minimum.   

The situation changes for the larger tetrel atoms Sn and Pb.  Even when encumbered by three t-butyl 

substituents, there is still ample room for the approach of the base, leading to negative values of ∆E.  NH3 

approaches to within 2.65 and 2.85 Å, respectively, for FSnTb3 and  FPbTb3, as indicated in Figs 3e and 3f.  

Moreover, the deformation energies become progressively smaller, lowering from 12.7 kcal/mol for FGeTb3, 

down to 6.4 for FSnTb3, and as little as 2.9 kcal for the larger FPbTb3.  This reduction in the steric repulsion 

also enables the binding energy to become progressively more exothermic, -3.4 and -4.8 kcal/mol for these two 

complexes, respectively.  In terms of the interaction energy between pre-distorted monomers in the last column 

of Table 3, it is the intermediate FSnTb3 which forms the strongest native bond of -9.8 kcal/mol, although Ge 

and Pb are not far behind.  It is noted finally that perusal of the data in the penultimate columns of Tables 1 and 

3 demonstrates that the NH3 base undergoes very little distortion as it approaches any of the Lewis acids, as it is 
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the latter that must distort to accommodate the base.  The possibility of a second minimum with a longer value 

of R was considered in both cases, with none found. 

3.2.1   Analysis of Wave Functions 

The intensity and locations of the sigma holes in these heavier tetrel Lewis acids reflect some of the trends 

witnessed in the energetics.  As the three H atoms of FGeH3  are replaced by methyl, isopropyl, and then t-butyl 

groups, there is a steady erosion of the magnitude of Vs,max, as may be seen in Table 4. As occurred in the tri-

isopropyl Si monomer, the maximum in the MEP moves some distance away from the tetrel atom in FGeTb3, 

longer than 3 Å, which is in part responsible for its particularly small magnitude of only 13.9 kcal/mol.  The 

dropping value of Vs,max as the substituent is enlarged is associated with the generally diminishing binding and 

interaction energies although the latter energetic patterns are disrupted for the trimethyl derivative.  The 

enlargement of the tetrel atom from Ge to Sn to Pb intensifies the σ-hole without pulling it any further away 

from the tetrel atom.  This trend conforms to ∆E but not to Eint. 

AIM and NBO analyses can again offer insights into the sources of bonding in these complexes.  The 

electron density at the Ge··N bond critical point is lowest for the methyl and isopropyl derivatives.  This trend is 

consistent with Eint, although not with ∆E which must contend with monomer deformation energies.  This same 

quantity is unaffected by the transition from Ge to Sn but is diminished for Pb, a trend which does not mirror 

either of the energetic parameters.  Note that as in the Si cases in Table 2, there are several subsidiary bond 

paths involving the N atom which augment T··N to some degree.  For example, all of the complexes involving 

Tb3 species show evidence of one or more CH··N HBs.   

Like the AIM values of ρBCP, the Ge-F values of E(2) are smallest for FGeMe3 and FGeIso3.  NBO suggests 

a number of other interactions as well.  Most surprising of these is the set of three GeH··N HBs in the FGeH3 

case, which are not verified by AIM.  For the larger substituents, one sees charge transfer into all three σ*(Ge-

C) antibonding orbitals, an interaction which differs from the simpler CH··N HBs indicated by AIM.  

Enlargement of the tetrel atom induces a small but steady drop in the Nlp→σ*(T-F) E(2), which is not mirrored 

by the energetics.  As in the Ge analogue, the Tb3 derivatives of Sn and Pb show substantial charge transfer into 

the σ*(T-C) orbitals which are not well aligned for such a transfer.  Nonetheless, the particularly large such 

transfers for FSnTb3 may be responsible for the large magnitude of Eint for its complex with NH3. 

As in the case with the Si-containing systems, there is again a stretch in the T-F bond caused by charge 

transfer into its antibonding orbital.  As may be seen in the last column of Table 4, these stretches vary between 

0.022 Å for FGeIso3 up to a maximum of 0.049 Å for FPbTb3.  Comparison with the stretches for the Si systems 

in Table 2 suggests that these elongations are larger for the heavier tetrel atoms, when compared to the actual 

energetics. 
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3.3  Correlations between Properties 

One might anticipate there to be some connection between the various metrics that arise from analysis of the 

wave functions and the geometries and energetics of these complexes.  For example, the stretching of the T-F 

bond ought to increase as more charge is transferred into the σ*(T-F) antibonding orbital.  The correlation 

between these two quantities is modest, with a correlation coefficient of 0.88, as indicated in the first row of 

Table 5.  The same charge transfer should have a direct influence upon the interaction energy, but their 

correlation coefficient is only a poor 0.56.  On the other hand, it was shown above that there is a good deal of 

charge that is transferred into other antibonding orbitals of the Lewis acid.  When all of these contributions in 

Tables 2 and 4 are summed, this total E(2) correlates much better with the interaction energy, with R2=0.89.  

Excellent prediction of the interaction energy is also achieved when considering the density at the T∙∙N bond 

critical point, with a correlation coefficient of 0.88.  Due to the differing sizes of the four T atoms, one would 

expect only a rough correlation between the interaction energy and R(T∙∙N).  And indeed, the correlation 

coefficient for this pair of parameters is only 0.75.  The importance of due consideration of steric crowding is 

evident in the last two rows of Table 5.  When the binding energy ∆E, prior to corrections for monomer 

deformation, is used in place of the interaction energy, these correlations deteriorate.  For example, the 

correlation coefficient involving ρBCP drops from 0.88 to 0.47.  Likewise for the total NBO term, which sees a 

deterioration from 0.89 to 0.49. 

3.4  Bulkier Lewis Base 

As it is clear that a small base like NH3 changes its geometry very little as it approaches even the bulkiest of 

the Lewis acids, it is natural to wonder how enlarging the base might affect its ability to engage in tetrel 

bonding.  The three H atoms of NH3 were thus enlarged to methyl groups and allowed to interact with three of 

the more crowded Lewis acids.  FGeIso3 was the largest Ge-acid for which ∆E was negative (see Table 3) when 

interacting with NH3.  The enlargement of the base elongated the equilibrium R(Ge··N) distance by 0.2 Å from 

2.823 to 3.027 Å.  On the other hand, the more basic character of NMe3 also raised the binding energy a bit, 

from -3.64 to -6.22 kcal/mol.  The longer intermolecular separation reduces the deformation energy slightly, to 

1.74 kcal/mol.  The interaction energy within the complex then is equal to -7.96 kcal/mol for NMe3, slightly 

greater than the -6.02 kcal/mol for the smaller NH3.  The stronger interaction with the larger base occurs despite 

a less negative Vs,min in the N lone pair area: -34.46 kcal/mol for NMe3, vs -40.16 kcal/mol for NH3.  Also NMe3 

has a dipole moment only half that of NH3, which ought to reduce the electrostatic attraction in the complex 

involving the larger base.  So although stretching the R(Ge··N) separation, the enlarged base is still able to 

engage in a thermodynamically viable tetrel bond, slightly stronger, even if longer, than that noted for NH3.  

The combination of t-butyl groups with the methyl groups on the base leads to complications in identifying 

truly tetrel-bonded complexes.  The results of geometry optimization become highly dependent upon the 
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structures chosen for the individual monomers.  Some optimizations led to minima on the surface, but these 

were quite shallow, and not necessarily of low energy.  In the case of FPbTb3, for example, two minima were 

located, one with R(Pb··N)=2.80 Å, and another longer distance of 3.380 Å.  However, both of these minima 

were higher in energy than the sum of isolated monomers, with positive ∆E.  Even after correction of ∆E by the 

monomer deformation energies, the resulting interaction energies remained positive.  In these cases, then, one 

may infer that while the formation of tetrel bonds between these highly sterically hindered monomers may be 

possible in principle, each monomer must be able to rearrange from their optimal geometry before such an 

association can occur. 

3.5  Anionic Bases 

One would expect that placing a negative charge on the Lewis base would amplify the attractive force, and 

so might better compete against any steric repulsive forces.  The fluoride ion is also small enough that steric 

repulsions should be minimized.  And indeed, when F- was permitted to interact with FSiMe3, it approached the 

Si atom to within 1.828 Å, almost as short as the Si-F bond within the monomer.  The formation of this trigonal 

bipyramid structure is exothermic by 40.57 kcal/mol.  This situation is clearly quite distinct from the complex 

of this same Lewis acid with the neutral NH3, where the R(Si··N) distance is 3.753 Å, and the binding energy is 

only 2.2 kcal/mol.  The situation is much the same for the bulkier FSiIso3, which also forms a trigonal 

bipyramid complex with F-, with R(Si··F)=1.830 Å, and ∆E=-44.76 kcal/mol.  Again, the small fluoride is able 

to evade the steric repulsions which had plagued the complex with the neutral base, leading the latter to positive 

values of ∆E.  The FGeTb3 acid had also suffered from steric constraints when combined with NH3, resulting in 

a positive ∆E.  Replacement of the neutral base by F- fully relieves these issues, leading to a trigonal bipyramid 

structure, and with ∆E= -54.16 kcal/mol. 

Enlargement of the anion to Br- reduces the binding energy relative to F-, but still avoids steric restrictions, 

and permits formation of a tetrel-bonded complex.  When combined with FSiIso3, the bromide approaches to 

within 3.143 Å of Si, and ∆E= -13.88 kcal/mol.  The FGeTb3 acid had its steric constraints relieved by F-.  

Replacement of NH3 by the larger Br- anion again relieves the repulsive forces, allowing this anion to approach 

the Ge atom to within 3.015 Å, and yielding a healthy -9.58 kcal/mol for ∆E.  In summary, then, the enhanced 

attractive force engendered by anions is sufficient to overcome steric issues which limit the tetrel bonding of 

neutral bases. 

4. SUMMARY AND DISCUSSION 

In summary, FSiR3 displays some evidence of steric hindrance to the formation of a tetrel bond with NH3 

when the R is either isopropyl or t-butyl.  While the N can approach to within about 2.5 Å of the Si atom, the 

binding energy is positive, due to deformations that occur within the Lewis acid to accommodate the incoming 

base.  Even with smaller R=Me groups, steric forces are present that push the base out to a longer distance.  The 
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incorporation of electron-withdrawing halogen atoms as substituents on Si act to pull the NH3 in rather close, 

and thereby engender a good deal of monomer geometry deformation.  But even so, the binding energy is 

negative.  Larger tetrel atoms are less electronegative and more polarizable, so exert a stronger pull on the base.  

These FTR3 molecules also appear more flexible, and better able to distort to allow the base to approach.  The 

binding energy of FGeR3 is negative even for the isopropyl R but becomes positive for t-butyl.  Both the Sn and 

Pb analogues can fully accommodate NH3 with a negative ∆E and small R(T··N) even for the bulky t-butyl 

group.  Further stress is placed on the tetrel bonds when the larger NMe3 base is considered.   

In any set of quantum calculations, there is always some question as to the accuracy of the particular level of 

theory that has been chosen.  For example, the next size larger basis set would be the triple-valence aug-cc-

pVTZ set (and corresponding aug-cc-pVTZ-PP for Sn and Pb).  In past studies of similar sorts of noncovalent 

bonds, this expansion of basis set typically leads to a small increase in the interaction energy.  As shown in 

Table 6, these tetrel bonds are no exception.  The rise in this quantity ranges from less than 1 kcal/mol to as 

much as 5 kcal/mol for the most strongly bound.  On a percentage basis, this increase is more uniform, between 

10 and 28%  Most importantly, the expansion of the basis set does not alter any of the trends encountered with 

aug-cc-pVDZ.  Moreover, a good deal of past work has verified the strengthening of the interaction with the 

larger set, but more importantly, that the improvement of the correlation method from MP2 to CCSD(T), 

including extrapolation to a complete basis set, reverses this effect, leaving MP2/aug-cc-pVDZ data quite 

similar to the gold standard CCSD(T)/CBS values 16, 18, 65, 87, 106-111. 

A note of caution should be exercised in the search for minima in complexes such as these.  In the case of 

the complexation of NH3 with FSiIso3, for example, there are two separate minima.  The more stable of the two 

occurs for an intermolecular separation of 3.1 Å, considerably longer than most tetrel bonds.  If the two 

monomers are able to overcome an energy barrier as they continue to approach one another more closely, they 

reach a second minimum, with R=2.5 Å and a legitimate tetrel bond.  While this second minimum is less stable 

than the first by some 6.6 kcal/mol, this energy rise, along with the energy barrier separating the two minima, is 

due largely to internal deformation energy within the monomers.  Consequently, the interaction energy between 

the two monomers, in their pre-deformed geometries, is -7.4 kcal/mol for the complex with the shorter 

intermolecular distance, as compared to only -2.3 kcal/mol for the outer-sphere complex.  

Possible manifestations of short and long-range minima can be quite varied, depending upon the nature of 

the tetrel atom.  As indicated above, when three bulky isopropyl substituents are added to Si, both of these 

minima occur, both with positive values of ∆E, and negative interaction energies.  Replacement with the 

slightly bulkier tert-butyl groups removes the second, outer-sphere minimum.  The sole remaining minimum has 

a very positive ∆E, but negative interaction energy between pre-distorted monomers.  Enlargement of the tetrel 

atom to Ge eliminates the long-range minimum for both the isopropyl and t-butyl-substituted monomer.  The 
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tetrel-bonded structure for the former has a negative ∆E, but the enlarged monomer deformation energy leads to 

a positive ∆E for the latter (with very similar interaction energies for the two).  

 There thus appears to be a clear and systematic trend that enlarging the tetrel atom reduces the 

consequences of steric crowding.  Considering those Lewis acids with three t-butyl substituents, a tetrel bond 

can be formed for Si, but with a very positive ∆E, which remains positive for Ge.  Both Sn and Pb allow 

negative binding energies to emerge.  The progressive relaxation of steric repulsions is clear in the lowering 

distortion energies: 15.0, 12.7, 6.4, and 2.9 kcal/mol respectively for Si, Ge, Sn, and Pb.  With these 

deformations accounted for, the remaining interaction energies within these same complexes are -4.9, -6.1, -9.8, 

and -7.7 kcal/mol.  As indicated above, the addition of electron-releasing methyl substituents on the Lewis base 

adds to the binding energy of FGeIso3, as well as the interaction energy, even though the added steric repulsions 

of the new methyl groups stretch the tetrel bond by some 0.2 Å.  The combination of this larger NMe3 base with 

t-butyl groups on the acid leads to real complications in bringing the two molecules together. 

The situation can be further complicated by multiple minima for the monomers themselves.   Again using 

the FSiIso3 system as an example, there are a number of orientations of the three isopropyl groups that can be 

envisioned.  The particular arrangement that is most stable in the case of the monomer is not necessarily the 

same as the global minimum for the complex with NH3.  In this particular case, the global minimum for the 

monomer lies some 1.5 kcal/mol lower than the geometry that corresponds to the most stable dimer.  Failure of 

the isopropyl groups of the monomer to rearrange in preparation for complexation, which would need to 

overcome an energy barrier in addition to an overall less stable monomer, results in a complex that is 4.8 

kcal/mol less stable than the global minimum of the dimer. 

The examination of the MEP of the Lewis acid monomer, and its sensitivity to its conformation, brings up 

another issue related to the steric crowding involved in tetrel bonds.  As the base approaches, there is a 

substantial change in the acid’s geometry.  If instead of computing the MEP of the undistorted monomer, one 

instead considers the potential of the monomer within the context of the dimer, distorted to permit its 

complexation with NH3, the data can be quite different.  Taking the FSiIso3··NH3 dimer as a prime example, in 

the case of the outer-sphere complex, with R(Si··N)=3.09 Å, Vs,max is located only 1.99 Å from the Si atom, and 

is enlarged from 21.99 to 38.04 kcal/mol.  The distinction is even more dramatic for the tetrel-bonded structure 

b, with R=2.50 Å.  Adjusting the FSiIso3 monomer to its geometry within this complex brings the Vs,max point in 

from 3.02 to 1.91 Å, and raises the density at this point by five-fold, to 49.28 kcal/mol.  This issue is not 

restricted to only FSiIso3··NH3 which is characterized by two separate minima.  Even in the single minimum of 

FSiTb3··NH, the change of geometry of FSiTb3 from its optimized structure to that within the dimer raises Vs,max 

from 11.14 to 49.89 kcal/mol and draws this point in from 3.22 to only 1.92 Å from the Si nucleus.  So while 

inspection of the MEP is of course a valuable tool in understanding the nature and strength of tetrel bonds, it is 
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important to be wary of complications that arise in terms of which specific geometry is to be considered.  This 

issue may not be restricted purely to tetrel bonds, as it has arisen previously 112 in the context of certain 

pnicogen bonds. 

There are a few prior results that offer points of comparison.  An early spectral measurement 32 of the tetrel 

bond length of 2.09 Å in FSiF3∙∙∙NH3 is consistent with the distances of the related complexes in Table 1, and 

also confirms significant monomer geometric distortions.  A study 113 of the dimer of Me3SnCN at various 

levels of calculation found interaction energies for the Sn∙∙N tetrel bond that are comparable to that computed 

here.  The stronger tetrel bonds formed by NMe3 vs NH3 was verified 35, as was the superiority of Pb and Sn 

over Ge and Si, and several studies 36, 43, 52-53 confirm the enhanced strength when an anionic base is included.   

Grabowski 114 had recently considered the tetrel bonding of SnF4 and PbF4 with N bases, and obtained data 

consistent with our own findings that significant deformation energies accompany the binding of these 

perhalogenated Lewis acids.  The magnitudes of these distortion energies are smaller than those obtained here 

for FSiX3, consistent with the lesser distortions required to bind to the larger Sn and Pb atoms.  This author 114 

also scanned available crystal structures and identified certain geometries with this tetrel-bonded Sn motif.  A 

recent calculation of FGeH3∙∙∙NH3 
100 with a larger basis set yielded nearly identical binding and interaction 

energies as our own data in Table 3. 

In a more general sense, the various forces involved in noncovalent, and indeed other bonds as well, derive 

from Coulombic forces involving nuclei and electrons, coupled with issues related to electron spin.  Various 

components of the intermolecular forces, such as electrostatic, polarization, steric repulsions, and charge 

transfer all fall within this overall umbrella 115-117.  One can also argue that charge transfer is a form of 

polarization.  Nonetheless, a separation into these various terms offers a solid and physically sound conceptual 

basis on which to better understand the nature of intermolecular forces, which have motivated countless 

analyses of this type 118-124. 

In conclusion, tetrel bonding can be quite strong, with interaction energies exceeding 35 kcal/mol for a pair 

of neutral molecules, and up to 54 kcal/mol for an anionic base.  Even when all substituents are nonpolar alkyl 

groups, the interaction energy can reach 10 kcal/mol.  However, steric crowding is an issue that must be 

thoughtfully considered in the context of tetrel bonding.  This issue becomes progressively more important as 

the substituents on the two molecules are enlarged.  Its effects can be partially assuaged if the attractive force is 

particularly large, as for example for anionic bases, or for highly electron-withdrawing substituents on the 

Lewis acid.  But even in such cases, there may be a high degree of monomer deformation which must be 

overcome in order for this bond to occur. 
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Table 1.  Equilibrium R(Si··N) intermolecular distance in complexes of FSiR3 with NH3.  Interaction energies of 

dimers, and deformation energies induced in monomers in order to form dimer.  Energies in kcal/mol. 

FSiR3 R, Å ∆E Edef(LA) Edef(LB) Eint =∆E - Edef 

FSiH3 2.557 -5.49 1.93 0.00 -7.42 

FSiMe3
a 3.753   -2.24 0.12 0.01 -2.37 

FSiMe2(CF3)1 2.392 -2.11 11.02 0.02 -13.15 

FSiMe1(CF3)2 2.208 -9.22 15.70 0.05 -24.97 

FSi(CF3)3 2.116 -18.20 17.29 0.06 -35.55 

FSiIso3   a 

               b 

3.091 

2.499 

+0.24 

+6.80 

2.48 

14.16 

0.02 

0.00 

-2.26 

-7.36 

FSiIso2(CF3)1 2.384 -2.70 10.26 0.02 -12.98 

FSiTb3 2.519 +10.80 17.41 0.00 -6.61 

FSiCl3 2.068 -5.45 19.73 0.16 -25.34 

FSiBr3 2.078 -4.73 17.70 0.19 -22.61 

FSiI3 2.130 -3.31 14.57 0.21 -18.09 
a primarily stabilized by CH∙∙N 
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Table 2.  Maximum electrostatic potential on isodensity surface of FSiR3, density at Si··N bond critical point 

and NBO charge transfer energy from N lone pair (or SiN bonding orbital) to indicated antibonding orbital in 

Lewis acid.   

 

abonds involving N and one H atom of each alkyl group 
bbond involving N and one F atom of CF3 group 
cbond involving N and C atom of one alkyl group 
dAIM and NBO data for complex a 

 

  

FSiR3 Vs,max 

kcal/mol 

R(Si··Vs,max ) 

Å 

ρBCP 

au 

NBO E(2) 

kcal/mol 

∆r(Si-F) 

Å 

FSiH3 41.016 1.940 0.0233 

 

17.97(Si-F) 

3.90(3Si-H) 

0.026 

FSiMe3 26.919  2.134 0.0056 (3Ha) 1.30(Si-F) 

0.57(3C-H) 

0.005 

FSiMe2(CF3)1 31.713 2.178 0.0325 

0.0121(1Fb) 

18.31(Si-F) 

11.10(Si-CF3) 

7.43(2Si-CH3) 

2.19(C-F) 

0.036 

FSiMe1(CF3)2 35.005 2.235 0.0455 21.24(Si-F) 

14.73(2Si-CF3) 

8.93(Si-CH3) 

2.41(2C-F) 

0.041 

FSi(CF3)3 42.369 2.198 0.0551 26.66(Si-F) 

18.75(3Si-CF3) 

2.29(2C-F) 

0.042 

FSiIso3
d a  21.994  

b  9.917 

a  2.241 

b  3.016 

0.0095(3Ha) 

0.0096(1Cc) 

8.25(Si-F) 

1.46(3Si-C) 

0.011 

FSiIso2(CF3)1 23.073 2.268 0.0332 19.67(Si-F) 

11.82(Si-CF3) 

8.81(2Si-Ciso) 

0.036 

FSiTb3 11.140  3.217  0.0264 23.56(Si-F) 

8.13(3Si-C) 

0.037 

FSiCl3 27.019 2.167 0.0605 19.72(Si-F) 

17.05(3Si-Cl) 

0.036 

FSiBr3 21.359 2.260 0.0601 20.11(Si-F) 

17.30(3Si-Br) 

0.035 

FSiI3 14.140 2.414 0.0579 18.67(Si-F) 

15.12(3Si-I) 

0.037 
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Table 3.  Equilibrium R(T··N) intermolecular distance in complexes of FTR3 with NH3, T=Ge, Sn, Pb.  

Interaction energies of dimers, and deformation energies induced in monomers in order to form dimer.  Energies 

in kcal/mol. 

FTR3 R, Å ∆E Edef(LA) Edef(LB) Eint =∆E - Edef 

FGeH3 2.627 -5.84 1.49 0.00 -7.33 

FGeMe3 2.775 -1.36 0.40 0.01 -1.77 

FGeIso3 2.823 -3.64 2.38 0.00 -6.02 

FGeTb3
 2.670 +6.63 12.71 0.00 -6.08 

FSnTb3 2.653 -3.42 6.41 0.01 -9.84 

FPbTb3 2.851 -4.77 2.89 0.00 -7.66 

 

 

 

Table 4.  Maximum electrostatic potential on isodensity surface of FTR3, density at T··N bond critical point and 

NBO charge transfer energy from N lone pair to indicated antibonding orbital in Lewis acid.. 

 

 

 

 

Table 5.  Correlation coefficients between pairs of parameters 

p1 p2 R2 

∆r(T-F) E(2) Nlp→σ*(TF) 0.882 

Eint E(2) Nlp→σ*(TF) 0.564 

Eint E(2) total 0.893 

Eint ρBCP 0.877 

Eint R(T∙∙N) 0.751 

∆E ρBCP 0.471 

∆E E(2) total 0.489 

 

FTR3 Vs,max 

kcal/mol 

R(T··Vs,max ) 

Å 

ρBCP 

au 

NBO E(2) 

kcal/mol 

∆r(T-F) 

Å 

FGeH3 50.085 1.936 0.0236 17.58(Ge-F) 

3.71(3Ge-H) 

0.031 

FGeMe3 30.551 2.116 0.0179 14.04(Ge-F) 

2.95(3Ge-C) 

0.026 

FGeIso3 28.374 2.112 0.0166 16.16(Ge-F) 

3.34(3Ge-C) 

0.022 

FGeTb3 13.892 3.035 0.0288 

0.0092 (C) 

0.0134 (2H) 

0.0052 (H) 

21.39(Ge-F) 

6.13(3Ge-C) 

0.039 

FSnTb3 35.767 2.291 0.0291 

0.0087 H 

0.0094 H 

20.94(Sn-F) 

9.85(3Sn-C) 

0.047 

FPbTb3 45.789 2.142 0.0229 

0.0069 H 

0.0087 H 

0.0042 H 

0.0074 H 

19.28(Pb-F) 

5.52(3Pb-C) 

0.049 
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Table 6.  Interaction energies (kcal/mol) computed at MP2 level with two different basis sets for complexes 

with NH3 

FTR3 aug-cc-pVDZ aug-cc-pVTZ 

FSiH3 -7.42 -8.72 

FSiMe3 -2.37 -2.59 

FSi(CF3)3 -35.55 -40.20 

FSiCl3 -25.34 -29.90 

FSiBr3 -22.61 -27.49 

FSiI3 -18.09 -23.20 

FGeH3 -7.33 -8.08 

FGeMe3 -1.77 -3.40 
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Fig 1. Geometries of indicated FSiR3 Lewis acids with NH3.  Distances in Å. 

 

 

 

 

 

 
Fig 2. Geometries of indicated FSiX3 Lewis acids with NH3.  Distances in Å. 
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Fig 3. Geometries of indicated FTR3 Lewis acids (T=Ge, Sn, Pb) with NH3.  Distances in Å. 
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