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Abstract In this invited review in honor of 100 years since the Stern-Gerlach (SG)
experiments, we describe a decade of SG interferometry on the atom chip. The SG
effect has been a paradigm of quantum mechanics throughout the last century, but
there has been surprisingly little evidence that the original scheme, with freely prop-
agating atoms exposed to gradients from macroscopic magnets, is a fully coherent
quantum process. Specifically, no full-loop SG interferometer (SGI) has been real-
ized with the scheme as envisioned decades ago. Furthermore, several theoretical
studies have explained why it is a formidable challenge. Here we provide a review
of our SG experiments over the last decade. We describe several novel configura-
tions such as that giving rise to the first SG spatial interference fringes, and the
first full-loop SGI realization. These devices are based on highly accurate magnetic
fields, originating from an atom chip, that ensure coherent operation within strict
constraints described by previous theoretical analyses. Achieving this high level of
control over magnetic gradients is expected to facilitate technological applications
such as probing of surfaces and currents, as well as metrology. Fundamental appli-
cations include the probing of the foundations of quantum theory, gravity, and the
interface of quantum mechanics and gravity. We end with an outlook describing
possible future experiments.
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1 Introduction

This review follows the centennial conference held in Frankfurt in the same building
housing the original Stern-Gerlach (SG) experiments. Here we describe the SG inter-
ferometry performed in our laboratories at Ben-Gurion University of the Negev (BGU)
over the last decade.

The trail-blazing experiments of Otto Stern and Walther Gerlach one hundred
years ago [1–4] required a few basic ingredients: a source of isolated atoms with
well-specified momentum components (provided by their atomic beam), an inhomo-
geneous magnetic field and, if we follow the historical account of events in [5], also
a smoky cigar. In this review, we present our approach to these first two ingredients,
with our sincere apologies that we will not be able to adequately address the third.

As Dudley Herschbach notes [4], the SG experiments formed the basis for a “sym-
biotic entwining of molecular beams with quantum theory” and, as shown in many of
the papers at this centennial conference, this symbiotic relationship remains vigorous
to the present day. In this review, our source of isolated atoms is instead provided
by the new world of ultra-cold atomic physics, to which we couple inhomogeneous
magnetic fields that are provided naturally by an atom chip [6]. Current-carrying
wires on such chips were first realized as magnetic traps for ultra-cold atoms at the
turn of the (twenty-first) century [7–9] and reviewed extensively since [6, 10–14].
We are using the atom chip as our basis for coherently manipulating atoms in a way
that is complementary to the atomic and molecular beam techniques pioneered by
Otto Stern and practiced so energetically and creatively by his scientific descendants.

The work presented here is performed with high-quality atom chips fabricated by
our nano-fabrication facility [15]. The atom chip is advantageous for Stern-Gerlach
interferometry (SGI) for 4 main reasons. First, the source (Bose-Einstein conden-
sates, BEC) is a minimal-uncertainty wavepacket so it is very well defined in position
and momentum. Second, the source of the magnetic gradients (current-carrying wires
on the atom chip) is very well aligned relative to the atomic source. Third, due to the
very small atom-chip distance, the gradients are very strong, and significant Stern-
Gerlach splitting can be realized in very short times. Fourth, the gradients are very
well defined in time since there are no coils and the inductance of the chip wires
is negligible. We will describe how these advantages have overcome long-standing
difficulties and have enabled different SG configurations to be realized at BGU (e.g.,
spatial interference patterns [16, 17] and a “full-loop” SGI [18, 19]) alongside several
applications, such as spatially splitting a clock [20, 21]. Finally, let us mention that
while the interferometers presented here are of a new type, it is worthwhile noting
decades of progress in matter-wave interferometry [22].

The discovery of the Stern-Gerlach (SG) effect [1] was followed by ideas concern-
ing a full-loop SGI that would consist of freely propagating atoms exposed to mag-
netic gradients from macroscopic magnets. However, starting with Heisenberg [23],
Bohm [24] and Wigner [25] considered a coherent SGI impractical because it was
thought that the macroscopic device could not be made accurate enough to ensure a
reversible splitting process [26]. Bohm, for example, noted that the magnet would
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need to have “fantastic” accuracy [24]. Englert, Schwinger and Scully analyzed the
problem in more detail and coined it the Humpty-Dumpty1 (HD) effect [28–31]. They
too concluded that for significant coherence to be observed, exceptional accuracy in
controlling magnetic fields would be required. Indeed, while atom interferometers
based on light beam-splitters enjoy the quantum accuracy of the photon momentum
transfer, the SGI magnets not only have no such quantum discreteness, but they also
suffer from inherent lack of flatness due to Maxwell’s equations [32]. Later work
added the effect of dissipation and suggested that only low-temperature magnetic
field sources would enable an operational SGI [33]. Claims have even been made
that no coherent splitting is possible at all [34].

Undeterred, we utilize the novel capabilities of the atom chip to address these
significant hurdles. Let us briefly preview our most recent and most challenging
realization, the full-loop SGI, in which magnetic field gradients act on the atom
during its flight through the interferometer, first splitting, and then re-combining,
the atomic wavepacket. We obtain a high full-loop SGI visibility of 95% with a spin
interference signal [18, 19] by utilizing the highly accurate magnetic fields of an atom
chip [6]. Notwithstanding the impressive endeavors of [35–45] this is, to the best of
our knowledge, the first realization of a complete SG interferometer analogous to
that originally envisioned a century ago.

Achieving this high level of control over magnetic gradients may facilitate fun-
damental research. Stern-Gerlach interferometry with mesoscopic objects has been
suggested as a compact detector for space-time metric and curvature [46], possibly
enabling detection of gravitational waves. It has also been suggested as a probe for
the quantum nature of gravity [47]. Such SG capabilities may also enable searches for
exotic effects like the fifth force or the hypothesized self-gravitation interaction [48].
We note that the realization presented here has already enabled the construction of a
unique matter-wave interferometer whose phase scales with the cube of the time the
atom spends in the interferometer [19], a configuration that has been suggested as an
experimental test for Einstein’s equivalence principle when extended to the quantum
domain [49].

High magnetic stability and accuracy may also benefit technological applications
such as large-momentum-transfer beam splitting for metrology with atom interfer-
ometry [50–52], sensitive probing of electron transport, e.g., squeezed currents [53],
as well as nuclear magnetic resonance and compact accelerators [54]. We note that
since the SGI makes no use of light, it may serve as a high-precision surface probe
at short distances for which administering light is difficult.

For the purpose of this review, it is especially important to also realize that the
atom chip allows our atoms to be completely isolated from their environment. This

1Can a fragile item be taken apart and be re-assembled perfectly? … another tough problem,
according to the popular English rhyme [27]
Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king’s horses
And all the king’s men
Couldn’t put Humpty together again.
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is demonstrated, for example, by the relatively long-term maintenance of spatial
coherence that can be achieved despite a temperature gradient from 300 K to 100 nK
over a distance of just 5 µm [55]. Coherence of internal degrees of freedom close to
the surface has also been measured to be very high [56].

This review is organized into the following sections:

Section 2. Particle Sources: a brief discussion of how the atom chip complements
and extends the century-long use of atomic and molecular beams in Stern-Gerlach
experiments;
Section 3. The Atom Chip Stern-Gerlach Beam Splitter: detailing relevant aspects
of the atom chip and its basic operating characteristics as a platform for SGI;
Section 4. Half-Loop Stern-Gerlach Interferometer: first realization of SGI with
spatial fringe patterns;
Section 5. Full-Loop Stern-Gerlach Interferometer: first realization of the four-field
complete SGI with spin population fringes;
Section 6. Applications: clock interferometry and complementarity, the matter-
wave geodesic rule and geometric phase, and a T 3 interferometer realizing the
Kennard phase;
Section 7. Outlook: extending the atom-chip based SGI experiments to ion beams
and to massive particles.

Finally, we note that the SG effect, in conjunction with the atom chip, may also be
used for novel applications without the use of interferometry. For example, we have
used the SG spin-momentum entanglement to realize a novel quantum work meter.
In this work, done in conjunction with the group of Juan Pablo Paz, we were able to
test non-equilibrium fluctuation theorems [57].

As we hope to show in this review, we believe that the atom chip provides a novel
and powerful tool for SG interferometry, with much yet to learn as SG studies enter
their second century. May we continue to find surprises, fundamental insights, and
exciting applications.

2 Particle Sources

Molecular beam experiments exhibiting quantum interference, diffraction, and reflec-
tion have been brought very skillfully into the modern era in presentations at this
Conference by Markus Arndt, Maksim Kunitski, and Wieland Schöllkopf, and as
outlined in the keynote address by Peter Toennies. In particular, Stern’s vision—and
realization—of diffraction of atomic and molecular beams (see, for example [4])
have found their modern expression in the work of all these experts, and many oth-
ers. Here we will concentrate on a complementary approach to precisely specify
internal and external quantum states and how they can be used to study interference
phenomena in particular.
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Let us begin by comparing experimental parameters used in the ultra-cold atomic
environment in our laboratory, typically achieved with BECs of 87Rb, with cor-
responding state-of-the-art parameters for atomic beams. Table 14.1 summarizes
parameters that are most relevant for these experiments. Note that the beam experi-
ments are conducted in a horizontal plane, transverse to the beam propagation direc-
tion, while our BEC interference experiments are conducted in an exclusively longi-
tudinal direction with the atoms falling vertically due to gravity (and with all applied
forces also acting in the longitudinal direction).

We see that ultra-cold atom localization and velocity spreads are on the same
order as transverse localization from the exemplary atomic and molecular beam
experiments quoted here but, of course, ultra-cold atoms are also localized in all
three dimensions, whereas the beam techniques do not achieve localization along
the beam propagation axis.

3 The Atom Chip Stern-Gerlach Beam Splitter

In order to apply Stern-Gerlach splitting, our ultra-cold atomic sample needs to
have at least two spin states. However, our initial atomic sample is purely in
the |F, m F 〉 = |2, 2〉 state of 87Rb. After preparing a BEC on the atom chip, our SG
implementation therefore begins by first releasing the magnetic trap, and then apply-
ing a radio-frequency (RF) π/2 Rabi pulse to create an equal superposition of the two
internal spin states 1√

2
(|1〉 + |2〉), where |1〉 and |2〉 represent the m F = 1 and m F = 2

Zeeman sub-levels of the F = 2 manifold in the ground electronic state [66]. Tran-
sitions to other m F levels are avoided by retaining a modest homogeneous magnetic
field even after trap release. A field of about 30 G is sufficient to create an effective
two-level system by pushing the m F = 0 sub-level about 200 kHz out of resonance
with the |2〉 → |1〉 RF transition due to the non-linear Zeeman effect. The intensity
of the RF Rabi pulses is calibrated such that a pulse duration of 20 μs corresponds
to a complete population inversion between the two states, i.e., a π -pulse. This cor-
responds to a Rabi frequency of �RF = 2π · 25 kHz.

We now consider the second factor crucial to the success of our SGI experiments:
fast and precise magnetic fields, in both magnitude and direction, may be delivered
by pulsed currents passed through micro-fabricated wires on the atom chip. Simple
Biot-Savart considerations for atom chip wires, as used in our experiments, yield
magnetic field gradients of about 200 G/mm at ∼100 μm from the chip, which is
the starting distance for most of our experiments. Accurate control of this initial
position, which is also crucial for the success of the experiments, is ensured by
accurate control of chip wire currents and the homogeneous magnetic field referred
to above. In addition, the straight atom chip wires have very low inductance, thereby
enabling the generation of well-defined magnetic force pulses with currents that are
typically tens of μs long. Such pulses are, in principle, able to induce momentum
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changes of hundreds of �k.2 Our earliest implementations of these experimental
characteristics [67] were improved in subsequent apparatus upgrades [64].

Since the experiments proceed after turning off the magnetic trap, the observation
time is limited by the time-of-flight (TOF) of the falling atoms and the field-of-view
of our absorption imaging detection system. The latter is limited to about 4 mm,
corresponding to a maximum TOF of about 28 ms. The optical detection system has
a spatial resolution of about 5 μm, an important consideration for measuring spatial
interference patterns (Sect. 4). Further experimental details may be found in several
recent Ph.D. theses from our laboratory [64, 67, 68].

The Stern-Gerlach beam splitter (SGBS), first implemented in [16], begins with
an equal superposition of |1〉 and |2〉 as described above and depicted schematically
in Fig. 1. We then apply a magnetic field gradient ∇|B| for duration T1, which creates
a state-dependent force Fm F

= m F gFμB∇|B| on the atomic ensemble, where μB ,
gF , and m F denote the Bohr magneton, the Landé factor, and the projection of the
angular momentum on the quantization axis, respectively.

The magnetic potential created by the atom chip can be approximated as a sum
of a linear part with characteristic force F and a quadratic part with characteristic
frequency ω. After this magnetic gradient splitting pulse, the new state of the atoms
is given by ψ f = 1√

2
(|1, p1〉 + |2, p2〉), where pi = Fi T1 (i = 1, 2). This state rep-

resents a coherent superposition of two distinct momentum states, which are then
allowed to separate spatially, thereby completing the operation of momentum and
spatial splitting.

As we discuss further in the following sections, the SGBS can be extended as
a tool for SGI. We describe two main configurations: a “half-loop” configuration
in which the separated wavepackets are allowed to propagate freely, expand and
eventually overlap, producing spatial interference patterns analogous to a double-slit
experiment, and a “full-loop” configuration in which the wavepackets are actively
re-combined, analogous to a Mach-Zehnder interferometer.

By applying additional pulses with different timing, these methods have been used
to demonstrate, to the best of our knowledge, the first Stern-Gerlach spatial fringe
interferometer (Sect. 4, [16, 17]), the first full-loop Stern-Gerlach interferometer
(Sect. 5, [18, 19]), and several applications that we will describe in Sect. 6, including
experiments to simulate the effect of proper time on quantum clock interference
[20, 21].

4 Half-Loop Stern-Gerlach Interferometer

The two separated wavepackets generated by the SGBS initiate the pulse sequence
shown in Fig. 2. Just after the SG splitting pulse, another RF π/2 pulse (10 μs dura-

2We express the momentum transfer in units of �k, a reference momentum of a photon with 1 μm
wavelength, in order to compare with atom interferometry based on optical beam splitters.
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Fig. 1 The Stern-Gerlach beam-splitter (SGBS) at work [16, 67]. SGBS (a) input and (b, c) output
images, and the corresponding schematic descriptions. The top row depicts our atom chip, with a
pulsed current I being used to generate the magnetic gradient ∂ B/∂z (we currently use three parallel
wires with equal currents but opposing polarities). The chip faces downwards so that atoms can
separate vertically during their free fall. (a) A magnetically trapped BEC in state |2〉 before release.
(b) After a weak splitting of less than �k using a 5 μs magnetic gradient pulse and allowing a TOF
of 14 ms. (c) After a strong splitting of more than 40 �k using a 1 ms magnetic gradient pulse and
allowing a TOF of 2 ms. Interferometric signals are formed either as spatial interference fringes by
passively allowing overlap of the wavepackets (the “half-loop” SGI), or as spin-state population
oscillations upon actively recombining them (the “full-loop” SGI), as described in Sects. 4 and 5
respectively. Adapted from [16].

tion) is applied, creating a wavefunction consisting of four wavepackets [67], of
which we are concerned only with the two |2〉 wavepackets having momenta p1

and p2 (the |1〉 components can be disregarded since they appear at different final
positions on completing the pulse sequence and a TOF).

The time interval between the two RF pulses (in which there are only two
wavepackets, each having a different spin) is reduced to a minimum (∼40μs) to
suppress the hindering effects of a noisy and uncontrolled magnetic environment,
thereby removing the need for magnetic shielding. After a magnetic gradient pulse of
duration T2, designed to stop the relative motion of the two wavepackets, the atoms
fall under gravity for a relatively long TOF, expanding freely until they overlap to cre-
ate spatial interference fringes as shown schematically in Fig. 2 and experimentally
in Fig. 3.
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Fig. 2 Schematic depiction of the longitudinal half-loop SGI giving rise to spatial interference
fringes (vertical position z in the center-of-mass frame vs. time). The initial wavepacket |2〉 (extreme
left) is subjected to a π/2 pulse (blue column) that transfers the atoms into the superposition state
|1〉 + |2〉. The first magnetic gradient pulse of duration T1 (purple column) induces a Stern-Gerlach
splitting into |1〉 (green curve) and |2〉 (purple curve) having momenta p1 and p2, respectively.
We then immediately apply a second π/2 pulse that places these diverging |1〉 and |2〉 states into
equal superpositions |1〉 ∓ |2〉 as shown. The delay time Td allows these wavepackets to spatially
separate (in the z direction). The duration T2 of a second gradient pulse is tuned to bring the
momentum difference between the |2〉 components close to zero (see text), allowing their space-time
trajectories to become parallel (solid purple curves) while expelling the |1〉 components (dotted green
trajectories). The atoms then fall freely under gravity. Given sufficient time-of-flight, the two |2〉
wavepackets expand (dotted purple lines) and eventually overlap to generate spatial interference
fringes, which are measured by taking an absorption image of the atoms. We note that due to the
curvature of the magnetic field forming the magnetic gradient pulse, the long T2 pulse also focuses
the wavepackets, as depicted in the figure. In fact, this focusing accelerates the process of final
expansion, thereby creating the two-wavepacket overlap in a shorter time. Adapted from [17] with
permission © IOP Publishing & Deutsche Physikalische Gesellschaft. CC BY 3.0

The period of the interference fringes must be large enough to be observable with
the spatial resolution of our imaging system (about 5 μm). This is accomplished
if two conditions are fulfilled. First, the distance between the two wavepackets, d,
should not be too large, since in principle the fringe periodicity varies as ht/md

when the relative momentum is zero, where h, t , and m are the Planck constant,
TOF duration, and the atomic mass, respectively. Second, the momentum difference
between the two wavepackets should be smaller than their momentum width to avoid
orthogonality. This is accomplished by tuning the duration T2 of the second gradient
pulse, which can stop the relative motion of the two |2〉 wavepackets; despite being
in the same spin state, the slower wavepacket experiences a stronger impulse than

http://creativecommons.org/licenses/by/3.0/
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Fig. 3 Spatial interference patterns from the Stern-Gerlach interferometer. a A single-shot inter-
ference pattern of a thermal cloud with a negligible BEC fraction, fitted to Eq. (1) with a visibility
of V = 0.65 (only slightly lower than single-shot visibilities typically measured for a BEC). b A
multi-shot image made by averaging 40 consecutive interference images using a BEC (no correction
or post-selection) with a normalized visibility of VN = 0.99. c Polar plot of phase 0◦ ≤ φ ≤ 360◦

versus visibility 0 ≤ V ≤ 1 obtained from fitting each of the 40 consecutive images averaged in
(b). The experimental parameters are (T1, Td , T2) = (4, 116, 200) μs. Adapted from [64]

the faster one since it is considerably closer to the atom chip after the relatively long
delay time Td . We have found that zeroing the momentum difference between the
two wavepackets is very robust [67].
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Given that the final momentum difference between the two interfering wavepack-
ets is smaller than their momentum spread, they overlap after a sufficiently long TOF
and an interference pattern appears with the approximate form:

n(z, t) = A exp

[

−
(z − zCM)2

2σz(t)2

]

×
[

1 + V cos

(

2π

λ
(z − zref) + φ

)]

, (1)

where A is the amplitude, zCM is the center-of-mass (CM) position of the com-
bined wavepacket at the time of imaging, σz(t) ≈ �t/2mσ0 is the final Gaussian
width, λ ≈ 2π�t/md is the fringe periodicity (d = |z1 − z2| is the distance between
the wavepacket centers), V is the interference fringe visibility, and φ = φ2 − φ1 is
the global phase difference. The vertical position z is relative to a fixed reference
point zref . The phases φ1 and φ2 are determined by an integral over the trajectories
of the two wavepacket centers. We emphasize that Eq. (1) is not a phenomenological
equation, but rather an outcome of our analytical model [16].

In order to characterize the stability of the phase, which is the main figure of
merit in interferometry, we average multiple experimental images with no post-
selection or alignment (each single-shot image is a result of one experimental cycle).
Large fluctuations in the phase and/or fringe periodicity in a set of single-shot images
would result in a low multi-shot visibility, while small fluctuations correspond to high
multi-shot visibility. The multi-shot visibility is therefore a measure of the stability
of the phase and periodicity. Single-shot and multi-shot visibilities are all extracted
by fitting to Eq. (1) after averaging the experimental images along the x direction
(see Fig. 3) to reduce noise. We note that these procedures have been used over
several years of half-loop SGI studies [16, 17], while the experimental results were
simultaneously being greatly improved by significant modifications to the original
apparatus [64, 67].

For a pure superposition state, as in our model, perfect fringe visibility V would
be 1. A quantitative analysis of effects reducing V appears in [17, 64]. Some of these
effects are purely technical, e.g., imperfect BEC purity and wavepacket overlap in 3D,
as well as various imaging limitations etc. Such technical effects are irrelevant to the
phase and periodicity stability shown by the multi-shot visibility, so we normalize the
latter to the mean of the single-shot visibilities taken from the same sample: VN ≡
Vavg/〈Vs〉, where Vavg is the (un-normalized) visibility of the multi-shot average
extracted from the fit and 〈Vs〉 is the mean visibility of the single-shot images which
compose that multi-shot image. The normalized multi-shot visibility thus reflects
shot-to-shot fluctuations of the global phase φ and the fringe periodicity λ. We
note that some BEC intrinsic effects, such as phase diffusion, would not lead to
a reduction of the single-shot visibility, but may cause the randomization of the
shot-to-shot phase. However, such effects are expected to be quite weak, since atom-
atom interactions rapidly become negligible as the BEC expands in free-fall, and the
experiment may be described by single-atom physics.
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Representative results from the above analysis are shown in Fig. 3. The very high
(normalized) visibility shown in (b) demonstrates that the phase and periodicity
are highly reproducible for each experimental cycle, the former being particularly
emphasized in plot (c). High-visibility fringes (V > 0.90) were observed over a
wide variety of experimental parameters, covering a range of maximum separations
and velocities between the wavepackets. In particular, we conducted experiments
at the apparatus-limited maximum value of Td = 600 μs (which also required a
long TOF = 21.45 ms) in order to maximize the spatial separation of the wavepack-
ets during their time in the interferometer. These measurements achieved a sepa-
ration d = 3.93 μm, a factor of 20 larger than the atomic wavepacket size (after
focusing, see Fig. 2), while maintaining a normalized visibility of VN = 0.90 [17].

Given that our observed stable interference fringes arise from such well-separated
paths, these experiments demonstrate what is, to the best of our knowledge, the first
implementation of spatial SG interferometry. This achievement is due to three main
differences compared with previous SG schemes. Firstly, we have used minimal-
uncertainty wavepackets (a BEC) rather than thermal beams. Secondly, while the
splitting is based on two spin states, the wavepackets in the two interferometer arms
are in the same spin state for most of the interferometric cycle, thus reducing their
sensitivity to disruptive external magnetic fields. Finally, chip-scale temporal and
spatial control allows the cancellation of path difference fluctuations. It should also
be noted that a longitudinal SGI, based on a particle beam source, cannot take images
of spatial fringes due to the high velocity of the fringe pattern in the lab frame.

This, however, is not yet the four-field SGI originally envisioned shortly after
the original Stern-Gerlach experiments (as recounted in [26]), since the separated
wavepackets are not actively recombined in both position and momentum. The two
remaining magnetic gradients required to complete such a “closed” SGI are discussed
in the following section.

5 Full-Loop Stern-Gerlach Interferometer

Clearly, if a wavepacket can be coherently reconstructed after SG splitting and recom-
bination in a four-field configuration [26], it should be possible to observe an inter-
ference pattern at the output of such an SGI. To the best of our knowledge however,
no such interference pattern has heretofore been measured experimentally, and this
is the task that we now describe, many details of which are taken from [64] and
references therein.

The device envisioned consists of four successive regions of magnetic gradients
giving rise to the operations of splitting, stopping, reversing and, finally, stopping
the two wavepackets, as shown schematically in Fig. 4a. If executed perfectly, the
two wavepackets would arrive at the output of such an interferometer with a minimal
relative spatial displacement and momentum difference, so that an arbitrary initial
spin state should be recoverable, using the spin state of the recombined wavepacket
as the interference signal. However, the operation of such an interferometer was
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Fig. 4 The longitudinal full-loop SGI giving rise to spin population oscillations, plotted in the
center-of-mass frame as in Fig. 2. a The sequence consists of RF pulses (blue) to manipulate the inner
(spin) degrees of freedom and magnetic gradients (purple) to control the momentum and position
of the wavepackets. The interferometer is prepared from the initial wavepacket |2〉 (extreme left)
by applying a π/2 pulse that transfers the atoms into the superposition state |1〉 + |2〉 [Bloch sphere
shown in (b)]. The first magnetic gradient pulse at t = 0 induces a Stern-Gerlach splitting into |1〉
(green curve) and |2〉 (purple curve). Three additional magnetic gradient pulses are used to stop the
relative motion of the wavepackets (at their maximum separation 
zmax), reverse their momenta, and
finally stop them at the same position along z. The re-combined wavepacket at t = 2T is therefore
written as ψ1(z, 2T )|1〉 + ψ2(z, 2T )|2〉, shown in (c) for an arbitrary interferometer phase δ�.
After recombination, the population in |1〉 is measured by applying a second π/2 pulse with variable
phase ϕRF, followed by a magnetic gradient to separate the populations and a subsequent pulse of
the imaging laser. We expect to observe spin population fringes, i.e., oscillations in the m F = 1
population, as we scan ϕRF, as indeed shown by the experimental results in (d), for which the
measured visibility is 95%. The Bloch spheres in (d) show the particular case in which the initial
vector (dashed black arrow) acquires an interferometer phase δ� = π/2 (blue arrow) followed
by rotations about the +x (ϕRF = π/2) or −x (ϕRF = 3π/2) axes respectively (red arrows). The
states |F, m F 〉 = |2, 2〉 ≡ |2〉 and |2, 1〉 ≡ |1〉 are defined along the z axis in the Bloch spheres.
Adapted from [64].

considered to be technically impractical, since coherent recombination of the two
beam paths would require extremely precise control of the magnetic fields [24].

Our experiments begin, as before, with a π/2 pulse creating a superposition of
the two spin states |1〉 and |2〉 of 87Rb that is subsequently split into two momentum
components by a magnetic gradient pulse (along the vertical axis z) as described in
Sects. 3 and 4. Additional magnetic gradient pulses are needed to “close” the loop
of such an interferometer, i.e., to overlap the wavepackets spatially and with zero
relative momentum. To stop the relative motion of the two wavepackets after the
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first pulse, and to accelerate them backwards, we reverse the current on the atom
chip, causing the force applied by the magnetic field gradient to be in the opposite
direction. Alternatively, we can apply a spin inversion procedure by using a π Rabi
pulse that inverts the population between the two internal states, following which
a magnetic gradient pulse will then apply the opposite differential momentum to
the two wavepackets. We obtain the signal with the help of a second π/2 pulse,
followed by a spin population measurement. We measure the visibility by scanning
the phase ϕRF of this π/2 pulse.

Our full-loop interferometer is implemented with an experimental system in which
care is taken to reduce a wide range of hindering effects relative to our earliest
work [16]. For example, a new atom chip was installed, utilizing a 3-wire configu-
ration to produce a quadrupole magnetic field whose zero is at the precise height of
the BEC. This reduces phase fluctuations by exposing the wavepackets to a weaker
magnetic field while still generating strong magnetic gradients.

The practical difficulty encountered in re-assembling the original wavefunction
was named the Humpty-Dumpty (HD) effect [28–30], implying that the initial
wavepacket breaks under the SG field and cannot be reunited, as noted in the brief
historical perspective given in Sect. 1. Quantitatively, the spin coherence, which is
measurable as the visibility V of the observed spin fringes, is expressed as [29]

V = exp

{

−
1

2

[

(


z(2T )

σz

)2

+
(


pz(2T )

σp

)2
]}

, (2)

where 
z(2T ) and 
pz(2T ) denote the mismatch between the wavepackets in
their final position and momentum respectively, after the interferometer duration 2T

(Fig. 4a), and σz and σp are the corresponding initial wavepacket widths. Equation (2)
summarizes the main result of the HD papers in relation to our experimental observ-
able. We emphasize that this reduction in visibility has nothing to do with effects
of decoherence due to some coupling with the environment. We also note that the
above HD calculation is done for a minimal-uncertainty wavepacket. For the general
case, one can identify lz = �/σp and lp = �/σz as the relevant scales for coher-
ence [26, 29], where lz and lp are the spatial coherence length and the momentum
coherence width, respectively.

Let us discuss the meaning of this equation. The quantities σz and σp characterize
the initial atomic wavefunction, and are thus microscopic quantities. The quanti-
ties 
z and 
pz describe the experimental imprecision in the final recombination. In
a “good” SG experiment (i.e., one which allows “unmistakable” splitting [29]) the
maximum values of splitting in position and momentum should be much larger than
their respective initial widths, meaning they should be macroscopic. On the other
hand, according to Eq. (2), a nearly perfect maintenance of spin coherence (V ≃ 1)
requires both 
z ≪ σz and 
pz ≪ σp. Consequently, Eq. (2) tells us that we need
to recombine macroscopic quantities with a microscopic level of precision. This is
the challenge facing SG interferometer experiments.



14 Stern-Gerlach Interferometry with the Atom Chip 277

It is interesting to note that in the half-loop experiments, we found that 
pz can
be quite large (rendering the trajectories during the TOF period in Fig. 2 slightly
non-parallel) without significantly reducing the measured spatial interference fringe
visibility, so the stability of the half-loop experiments cannot be used to examine
the HD equation. This robustness of the half-loop may also be understood by con-
sidering the fact that the expansion of the wavepackets creates an enhanced local
coherence length, since for every region of space the k vector variance becomes
smaller as TOF increases (see also [69, 70]).

A practical full-loop SG experiment must consider and address two effects. First,
as noted above, the HD effect requires accurate recombination, namely, small 
z

and 
pz . These small values must be maintained for many experimental cycles, and
thus a high level of stability in these values is also important. Achieving accurate
recombination means that the overlap integral, calculated in Eq. (2), will have a sig-
nificant non-zero value. Second, one must maintain a stable interferometer phase δ�,
so that it has the same value shot-to-shot. This requires that the coupling to external
magnetic noise is kept to a minimum, either by shielding the experiment and stabi-
lizing the electronics (e.g., responsible for the homogeneous magnetic fields), or by
conducting the experiment extremely quickly so that such environmental fluctuations
do not have time to introduce significant phase noise.

Our full-loop SGI yields a visibility up to 95% (Fig. 4d), proving that we are able to
use the SG effect to build a full-loop interferometer as originally envisioned almost
a century ago. We note three differences between our realization and the scheme
considered in the HD papers: (1) We use a BEC, which is a minimum-uncertainty
wavepacket, whereas the HD papers considered atomic beam experiments with large
uncertainties on the order of σzσp ≃ 103; (2) We implement fast magnetic gradient
pulses generated by running currents on the atom chip, in contrast to using constant
gradients from permanent magnets that were considered in the original proposals;
(3) Our interferometer is a 1D longitudinal interferometer, while the originally envi-
sioned SGI was 2D, i.e., it enclosed an area.

The full-loop experiments include a wide variety of optimizations and checks
(see [64] for additional details). To make sure the spin superposition is not dephased
due to some slowly varying gradients in our bias fields, we add π pulses giving rise
to an echo sequence. To access a larger region of parameter space and to ensure the
robustness of our results, we use several different configurations by, for example,
implementing the reversing pulse (T3) by inverting the sign of the atom chip currents
vs. inverting the spins with the help of π pulses. We also utilize a variety of magnetic
gradient magnitudes, and scan both the splitting gradient pulse duration T1 and the
delay time between the pulses Td . All results are qualitatively the same. For weak
splitting we observe high visibility (∼95%), while for a momentum splitting equiv-
alent to �k the visibility is still high (∼75%), indicating that the magnet precision
enabled coherent spin-state recombination to a high degree.

Finally, we briefly compare our experiments to previous work in an elaborate series
of SGI experiments over a period of 15 years using metastable atomic beams [35–
42, 44] and, more recently, thermal and ultra-cold alkali atoms [43, 45]. A detailed
discussion is given in [64]. While these longitudinal beam experiments did observe
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spin-population interference fringes, the experiments reviewed here are very differ-
ent. Most importantly, an analogue of the full-loop configuration was never realized,
as only splitting and stopping operations were applied (i.e., there was no recombi-
nation) and wavepackets emerged from the interferometer with the same separation
as the maximal separation achieved within (see Fig. 2 of [40] and Footnote [10]
of [43]). We have not found anywhere in the many papers published by this group
(only some of which are referenced here) evidence of four operations being applied as
required for a full-loop configuration, whether the experiment was with longitudinal
or transverse gradients. In addition, no spatial interference fringes were observed,
as the spatial modulation they observed was a signature of multiple parallel longitu-
dinal interferometers, each having its own individual relative phase between its two
wavepackets.

To conclude, we have shown that a full-loop has been realized [18, 121]. In addi-
tion, as previously shown in Heisenberg’s argument, the momentum splitting is the
figure of merit in determining the phase dispersion. In our experiment, coherence is
observed up to a momentum splitting as high as 
pz(T1)/σp = 60. However, in con-
trast, the visibility is more sensitive to spatial splitting and we achieve 
z(T )/σz = 4,
much lower than for the half-loop, where we achieved 
z/σz = 18. The splitting
is coherent but its, limits in terms of the HD effect are yet to be explored quantita-
tively. Many mysteries remain to be solved, such as why is the observed reduction
not symmetric in momentum and spatial splitting, in contrast to Eq. 2. A simple
answer, which is yet to be examined in detail, is the existence of some sort of spatial
decoherence mechanism due to the environment.

Having now described the SG beam-splitter, the SG half-loop, and the SG full-
loop, we show in the next section how these techniques may be used for different
applications.

6 Applications

The pulse sequence in the half-loop experiments creates two spatially separated
wavepackets in the state |2〉 with zero relative momentum (left-most frame of Fig. 5a–
c). We now take advantage of the long free-fall period in the experiment (labelled TOF
in Fig. 2, i.e., after the “stopping pulse”) to further manipulate these wavepackets
while they are allowed to expand and ultimately to overlap. The experiments are
based on imposing a differential time evolution between the two wavepackets, which
we measure as the interference patterns generated upon their recombination.

In particular, we create a “clock” state for each of the two wavepackets by first
applying an RF pulse that prepares the atoms in a superposition of two Zeeman
sublevels |1〉 and |2〉 whose coefficients depend on the Bloch sphere angles θ and φ.
This superposition state is a two-level system evolving with a known period, as in
the regular notion of an atomic clock. The RF pulse (duration TR) controls the value
of C = sin θ , while a subsequent magnetic gradient pulse (duration TG) controls
the value of DI = sin(φ/2) by changing the relative “tick” rate 
ω of the two
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clock wavepackets, as illustrated in Fig. 5a–c. The quantities C and DI describe
the clock preparation quality and the ideal distinguishability between the two clock
interferometer arms respectively, which we will find quantitatively useful in our
discussion of clock complementarity [see Eqs. (4) and (5)]. We note that, although
the magnetic gradient pulse applies a different SG force to each of the states within
the clock, we have evaluated this effect for our experimental parameters and find
that it is smaller than our experimental error bars (≤2%, Supplementary Materials
of [21]).

6.1 Clock Interferometery

Let us first discuss the motivation for clock interferometry [20]. Time in standard
quantum mechanics (QM) is a global parameter, which cannot differ between paths.
Hence, in standard interferometry [71], a height difference in a gravitational field
between two paths would merely affect the relative phase of the clocks, shifting
the interference pattern without degrading its visibility. In contrast, general relativ-
ity (GR) predicts that a clock must “tick” slower along the lower path; thus if the paths
of a clock passing through an interferometer have different heights, a time differential
between the paths will yield “which path” information and degrade the visibility of
the interference pattern according to the quantum complementarity relation between
the interferometric visibility and the distinguishability of the wavepackets [72]. Con-
sequently, whereas standard interferometry may probe GR [73–75], clock interfer-
ometry probes the interplay of GR and QM. For example, loss of visibility because
of a proper time lag would be evidence that gravitational effects contribute to deco-
herence and the emergence of a classical world [76].

Here we describe the use of this new tool—the clock interferometer—for its poten-
tial to investigate the role of time at the interface of QM and GR. Since the genuine GR
proper time difference is too small to be measured with existing experimental tech-
nology, our experiments instead simulate the proper time difference between the
clock wavepackets using magnetic gradients, thereby causing the clock wavepackets
to “tick” at different rates. Our results in this proof-of-principle experiment show
that the visibility does indeed oscillate as a function of the simulated proper time lag.

In the ultimate experiment, each part of the spatial superposition of a clock, located
at different heights above Earth, would “tick” at different rates due to gravitational
time dilation (so-called “red-shift”). We can easily calculate the proper time differ-
ence between two arms of the clock interferometer as a figure-of-merit for this effect.
Using a first-order approximation of gravitational time dilation, and assuming a large
separation between the arms of 
h = 1 m, an interferometer duration of T = 1 s
yields a proper time difference between the arms of only 
τ ≃ T g
h/c2 ≃ 10−16 s.
Such a small time difference means that a very accurate and fast-ticking clock must
be sent through an interferometer with a large space-time area in order to observe the
actual GR effect. Both requirements are beyond our current experimental capabili-
ties. Our “synthetic” red-shift is created by applying an additional magnetic gradient
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Fig. 5 Clock interferometry. a Timing sequence (not to scale): Following a coherent spatial splitting
by the SGBS and a stopping pulse, the system consists of two wavepackets in the |2〉 state (separated
along the z axis) with zero relative velocity, as in Sect. 4. The clock is then initialized with an RF
pulse of duration TR (usually a π/2 pulse, TR = 10 μs) after which the relative “tick” rate 
ω

of the two clock wavepackets may be changed by applying a magnetic field gradient ∂ B/∂z of
duration TG . Clock initialization occurs 1.5 ms after trap release, the first 0.9 ms of which is used
for preparing the two wavepackets. The wavepackets are then allowed to expand and overlap and an
image is taken. b Evolution in time, synchronized with (a). Each ball represents a clock wavepacket,
where the hand represents its Bloch sphere phase φBS. When the clock reading (i.e., the position
of the clock hand) in the two clock wavepackets is the same (φBS = φ0 + 
ωTG = 0, 2π ), fringe
visibility is high. c When the clock reading is opposite (orthogonal, φBS = φ0 + 
ωTG = π ), there
is no interference pattern. (d)-(f) Corresponding interference data of the two wavepackets, i.e., of the
clock interfering with itself. All data samples are from consecutive measurements without any post-
selection or post-correction. Single-shot patterns for φBS = φ0 + 
ωTG = π also show very low
fringe visibility (see Fig. 2c of [20]). Adapted from [20] and reprinted with permission from AAAS;
e is adapted from [64]
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(of duration TG) that causes the clock wavepackets to “tick” at different rates. We
denote the “tick” rate difference by 
ω.

Our results, some of which are presented in Fig. 5d–f, with more details in [20,
64], show that the relative rotation between the two clock wavepackets affects the
interferometric visibility. In the most extreme case, when the two clock states are
orthogonal, e.g., one in the state 1√

2
(|1〉 + |2〉) and the other in the state 1√

2
(|1〉 − |2〉),

the visibility of the clock self-interference drops to near zero (Fig. 5e). By varying the
duration of the magnetic gradient TG and thereby scanning the differential rotation
angle φBS between the two clock wavepackets, we show quantitatively that the visibil-
ity oscillates as a function of our “synthetic” red-shift with a period of 
ωTG = 2π

(Fig. 5d,f). As an additional test of the clock interferometer, we modulate its prepa-
ration by changing the duration of the clock initialization pulse TR , which influences
the relative populations of the two states composing the clock. This changes the state
of the system from a no-clock state to a full-clock state in a continuous manner. The
results show that the visibility behaves as expected in each case, further validating
that it is the clock reading which is responsible for the oscillations in visibility that
we observe as a function of TR [20].

6.2 Clock Complementarity

These measurements of visibility may naturally be extended to study quantum com-
plementarity for our self-interfering atomic clocks, which we again remark is at the
interface of QM and GR. Our central consideration here is the inequality [77]

V 2 + D2 ≤ 1, (3)

where V is the “visibility” of an interference pattern such as discussed throughout
this review, and D is the “distinguishability” of the two paths of the interfering
particle. The latter quantity can also be measured directly in the clock experiments
by controlling the angle φBS, where (θ = π/2, φBS = 
ωTG = π) prepares two
perfectly distinguishable clocks such that D = 1 (Fig. 5e). A brief account of recent
work theoretically and experimentally verifying this fundamental inequality is given
by [21] and references therein.

It is important to investigate clock complementarity, particularly in view of recent
theoretical work showing that spatial interferometers can be sensitive to a proper time
lag between the paths [78] and speculation (see Table 1 in [72]) that the inequality
of Eq. (3) may be broken such that V 2 + D2 > 1 when the effect of gravity is
dominant. Zhou et al. summarize the importance of this work as follows: “… on
the one hand, if the ‘ticking’ rate of the clock depends on its path, then clock time
provides which-path information and Eq. (3), developed in the framework of non-
relativistic QM, must apply. Yet, on the other hand, gravitational time lags do not
arise in non-relativistic QM, which is not covariant and therefore not consistent with



282 M. Keil et al.

the equivalence principle [79]. Hence our treatment of the clock superposition is a
semiclassical extension of quantum mechanics to include gravitational red-shifts.”

The experiments we conducted in [21] set out to test Eq. (3) quantitatively. Imper-
fect clock preparation (i.e., with θ �= π/2) reduces the measurable distinguishabil-
ity D from its ideal value DI as

D2 = (C · DI )
2, where C ≡ sin θ = 2

√

P(1 − P) (4)

and

DI = |sin(
φ/2)| (5)

with P and 1 − P denoting the populations (occupation probabilities) of the two
energy eigenstates of the clock and 
φBS ≡ φu

BS − φd
BS, where u and d denote the

upper and lower paths of the interferometer, respectively.
The experiment now has the task of measuring the three quantities V , DI and C

independently. We use the normalized visibility VN as discussed in Sect. 4. We eval-
uate DI independently by measuring the relative phases in two single-state interfer-
ometers, one for each of the two clock states, and we measure C , also independently,
in a separate experiment by measuring P after the clock is initialized. Our results for
these independently-measured quantities are shown in Fig. 6a, c, and e, where the
results in (c) and (e) are based on analyzing the data in (b) and (d) respectively. We
then combine these three quantities in the complementarity expression

(VN )2 + (C · DI )
2 ≤ 1, (6)

whereupon we see from Fig. 6f–g that the complementarity inequality [Eq. (3)] is
indeed upheld for the clock wavepackets superposed on two paths through our SG
interferometer.

While the relation in Eq. (6) is specific to clock complementarity, it is unusual in
linking non-relativistic quantum mechanics with general relativity. A direct test of
this complementarity relation will come when DI reflects the gravitational red-shift
between two paths which traverse different heights.

6.3 Geometric Phase

The geometric phase due to the evolution of the Hamiltonian is a central concept
in quantum physics. In noncyclic evolutions, a proposition relates the geometric
phase to the area bounded by the phase-space trajectory and the shortest geodesic
connecting its end points [80–82]. The experimental demonstration of this geodesic
rule proposition in different systems is of great interest, especially due to its poten-
tial use in quantum technology. Here, we report a novel experimental confirmation
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Fig. 6 Clock complementarity: a–e V , DI , and C measured independently and f–g combined in
the complementarity relations of Eqs. (3)-(6). a The visibility of an ideal clock (C = 1) interference
pattern vs. TG , fitted to |cos(φ/2)|; b–c the distinguishability is calculated from Eq. (5) using the
difference in relative angles φ2 − φ1, each measured separately and shown in (b); and d–e the
clock preparation quality C is calculated from Eq. (4) using the data in (d). Finally, f shows the
combination of all three parameters (VN )2 + (C · DI )

2 for four values of C when DI is scanned
and g shows the same combination for four values of DI when C is scanned. Only the data point
in (f) for TG near 22 μs differs from unity, due to a relatively large experimental error in measuring
the interferometric phase. These data therefore verify clock complementarity. Adapted from [21]
with permission © IOP Publishing & Deutsche Physikalische Gesellschaft, all rights reserved
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of the geodesic rule for a noncyclic geometric phase by means of a spatial SU(2)
matter-wave interferometer, demonstrating, with high precision, the predicted phase
sign change and π jumps. We show the connection between our results and the
Pancharatnam phase [83].

In the clock complementarity application just described, we scanned the third RF
pulse (duration TR) to vary the clock preparation parameter C = sin θ . In our case,
a π/2 pulse typically corresponds to TR = 10 μs, so TR < 10 μs places the Bloch
vector in the northern hemisphere of the Bloch sphere with P1 < P2, while 10 <

TR < 30 μs places the Bloch vector in the southern hemisphere (P1 > P2), i.e., the
selected hemisphere is a periodic function of TR such that an unequal superposition
of |1〉 and |2〉 is created for each of the wavepackets unless θ lies on the equator.
After applying this RF pulse (with some chosen duration TR), we adjust the phase
difference between the two superpositions by applying the third magnetic gradient
pulse of duration TG . This rotates the Bloch vectors along the latitude that was selected
by the RF pulse to points A and B in the northern hemisphere (or A′, B ′ in the southern
hemisphere) as shown in Fig. 7a, thereby affecting the phase difference 
φBS, which
we simply call 
φ hereafter.

The two wavepackets are allowed to interfere as in our half-loop experiments,
enabling a direct measurement of the geometric phase. As usual, we extract the
“total” interference phase (labeled �) by fitting the fringe patterns using Eq. (1). For
general values of θ and 
φ (i.e., after the application of both TR and TG), we write
the total phase between the two wavepackets as [84]

� = arctan

{

sin2(θ/2) sin(
φ)

cos2(θ/2) + sin2(θ/2) cos(
φ)

}

. (7)

Measurements of �, combined with values of θ deduced independently from the
relative populations of states |1〉 and |2〉, then allow us to fit 
φ to high precision as
a function of TG . These measurements verified that 
φ depends linearly on TG , and
we found that 
φ = π occurs at TG = 17 μs.

Figure 7b–c shows interference fringe images for this specific value of TG , from
which we extract the total phase as shown in Fig. 7e. We see immediately that this
phase is independent of θ within each hemisphere, an observation we call “phase
rigidity”. Moreover, the (constant) phase in each hemisphere differs by π , which
can also be deduced from the vanishing visibility shown in Fig. 7d in which we
have combined the data from both hemispheres. Evidently, there is a sharp jump in
the phase of the interference pattern as θ crosses the equator, as suggested by the
singularities in Eq. (7) that arise when θ = π(n + 1/2) (integer n) and 
φ = π .

To understand the non-cyclic geometric phase, we need to further examine the
Bloch sphere. We see that the path from A → B along the latitude θ and returning
along the geodesic (or “great-circle route”) from B → A encloses an area [blue
shading in Fig. 7(a)] in a counter-clockwise direction, whereas the corresponding path
from A′ → B ′ and back again in the southern hemisphere proceeds in a clockwise
direction. One-half of this area is the “geometric phase” that we now wish to calculate.
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Fig. 7 Geometric phase. a Bloch sphere for the two wavepackets (green and red arrows labeled A

and B, respectively) prepared by an RF pulse (duration TR , rotation angle θ) and a subsequent
magnetic gradient pulse (duration TG ) that induces a rotation angle difference of 
φ. The rota-
tion A → B lies along a constant latitude (solid purple line), while the returning geodesic B → A

lies along the “great circle” curve (dashed purple line). Bloch vectors for corresponding wavepack-
ets prepared in the southern hemisphere are shown as A′ and B ′. b–c Interference fringes generated
by the half-loop SGI, averaged over a total of 330 experimental shots with varying 0 < TR < 40 μs,
while keeping a fixed value of TG = 17 μs (this value of TG corresponds to 
φ = π , see text). The
dashed green lines show that the maxima in (b) lie exactly where the minima occur in (c), corre-
sponding to Bloch vectors prepared in the northern and southern hemispheres, respectively. Adding
all these interference patterns together in (d) shows near-zero visibility, i.e., they are completely out
of phase. The fact that exactly the same pattern is observed while in the same hemisphere, indepen-
dent of θ (duration of TR), is called “phase rigidity”. e Total phase extracted from the interference
fringes measured as a function of the RF pulse duration (lower scale) and the corresponding latitude θ

(upper scale). Phase rigidity is clearly visible. f–g Dynamical and geometric phases extracted from
the data in (e) and independently measured values of θ and 
φ (see text). The range of TR in (e–g)
(TG is fixed at 17 μs) corresponds to a full cycle from the northern hemisphere (0 < TR < 10 μs)
through the southern hemisphere (10 < TR < 30 μs), and back to the north pole at TR = 40 μs.
Adapted from [84] with permission © the authors, some rights reserved; exclusive licensee AAAS.
CC BY 4.0

http://creativecommons.org/licenses/by/4.0/
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The total phase change � for closed paths like A → B → A and A′ → B ′ → A′

is a sum of two contributions, the dynamical phase �D and the geometric phase �G .
The dynamical phase is given by [80]

�D =

φ

2

(

1 − cos θ
)

, (8)

which can be determined by measuring θ and 
φ independently. For the partic-
ular value of 
φ = π chosen as a sub-set of our experimental data, we are then
able to present �D in Fig. 7f. Finally, we subtract the phases �D , as plotted in (f),
from the total phases � plotted in (e) (which, as noted above, are extracted directly
from the observed interference pattern) to obtain the phases �G . Namely, we per-
form � − �D and get �G , which is presented in Fig. 7g. Let us emphasize that the
total phase � is also the Pancharatnam phase [83], and thus our experiment is also a
direct measurement of this phase.

Our plot of �G exactly confirms the prediction shown in Fig. 4d of [81], also
reproduced as the dashed blue line in Fig. 7g. The predicted sign change as the
latitude crosses the equator is clearly visible. The evident phase jump is due to the
geodesic rule. When 
φ = π , the geodesic must go through the Bloch sphere pole
for any θ �= π/2. As the latitude approaches the equator (i.e., increasing θ ), the blue
area in Fig. 7a (twice �G) grows continuously, reaching a maximum of π in the limit
as θ → π/2. As the latitude crosses the equator, the geodesic jumps from one pole
to the other pole, resulting in an instantaneous change of sign of this large area and
a phase jump of π .

Finally, our approach for testing the geodesic rule is unique for the following
reasons: (1) the use of a spatial interference pattern to determine the phase in a single
experimental run (no need to scan any parameter to obtain the phase); (2) the use of
a common phase reference for both hemispheres while scanning θ , enabling verifi-
cation of the π phase jump and the sign change; and (3) obtaining the relative phase
by allowing the two coherently-prepared wavepackets to expand in free flight and
overlap, in contrast to previous atom interferometry studies that required additional
manipulation of θ and 
φ to obtain interference.

6.4 T 3 Stern-Gerlach Interferometer

Here we consider an application of the full-loop SGI wherein we minimize the
delay times between successive SG pulses as much as allowed by our electronics.
In such an extreme scenario, it is expected that the phase accumulation will scale
purely as T 3, thus representing the first pure interferometric measurement of the
Kennard phase [19] predicted in 1927 [85, 86] (see also [87–89]). The theory for
this experiment was done by the group of Wolfgang Schleich.

In order to describe the phase evolution of an atom moving in a time- and state-
dependent linear potential, it is sufficient [90] to know the two time-dependent
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forces Fu ≡ Fu(t)ez and Fl ≡ Fl(t)ez acting on the atom along the upper and lower
branches, respectively, of the interferometer shown in Fig. 8, where z is the axis of
gravity, the axis of our longitudinal interferometer, and also the axis of our magnetic
gradients.

In the present case, these forces comprise the gravitational force Fg = mg and
the state-dependent magnetic forces Fi = −μB(gF )i (m F )i (∂|B|/∂z) ez, (i = 1, 2):

Fu,l(t) = Fg + F2,1F(t), (9)

where μB , gF , and m F are the Bohr magneton, the Landé factor, and the projection of
the angular momentum on the quantization (y-)axis, respectively. The function F(t)

provides the time-dependent modulation shown as the orange curve in Fig. 8(b):

F(t) ≡�(t) − �(t − T1) − �(t − T1 − Td) + �(t − 3T1 − Td)

+ �(t − 3T1 − 2Td) − �(t − 4T1 − 2Td). (10)

Here we are using the Heaviside step function �(t) and we are assuming that
the duration of each gradient pulse is identical, i.e., T2,3,4 = T1, as are the two delay
times, Td1,d2 = Td . We are also careful to ensure experimentally that the magnetic
field is linear in the vicinity of the atoms and acts only along the vertical (z-)axis.3

As in the full-loop SGI experiments of Sect. 5, we measure the spin population
in state |1〉 which, in this configuration, is a periodic function of the interferometer
phase [91].

P1 =
1

2
[1 − cos (δ� + ϕ0)] , (11)

where

δ� =
1

�

T
∫

0

dt F̄(t)δz(t), (12)

with the total time T ≡ 4T1 + 2Td . Note that the interferometer will be closed in
both position and momentum provided that the differences

δp(t) =
t

∫

0

dτδF(τ ) (13)

3Magnetic field linearity is ensured to a good approximation by the three-wire chip design and by
carefully positioning the atoms very close to the center of the quadrupole field that they produce,
as well as by the short distances that the atomic wavepackets travel (∼1 µm) compared to their
distance from the chip (∼100 µm). We also adjust the duration of T4 slightly, relative to T1, to
better optimize the visibility and account for any residual non-linearity. See [19, 68] for further
details.
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Fig. 8 Pulse sequence of our longitudinal T 3-SGI (not to scale). a Trajectories of the atomic
wavepackets with internal states |1〉 (green curve) and |2〉 (purple curve). Here we are using the
freely-falling reference frame (gravity upwards), distinct from the center-of-mass reference frame
used for Figs. 2 and 4. Also shown are the RF (blue) and magnetic gradient (red) pulses. The
magnetic field gradients result in a state-dependent force along the z-direction while the strong bias
magnetic field along the y-direction defines the quantization axis and ensures a two-level system.
b Time dependence of the relative force F = F(t) [orange curve, Eq. (10)] and the corresponding
relative momentum δp(t) [blue dashed curve, Eq. (13)] between the wavepackets moving along the
two interferometer paths. In the experiment, we achieved the maximal separation 
zmax = 1.2 μm
in position and 
pmax/mRb = 17 mm/s in velocity. Reprinted from [19] with permission © (2019)
by the American Physical Society

and

δz(t) =
1

m

t
∫

0

dτδF(τ )(t − τ) (14)

both vanish at t = T . Here ϕ0 is a constant phase taking into account possible
technical misalignment, while F̄(t) ≡ [Fu(t) + Fl(t)] /2 = Fg + 1

2 (F1 + F2)F(t)

and δF(t) ≡ Fu(t) − Fl(t) = (F2 − F1)F(t) are the mean and relative forces respec-
tively. From Eq. (11) we finally obtain

δ� =
mgaB

�

(

μ1 − μ2

μB

)

(

2T 3
1 + 3T 2

1 Td + T1T 2
d

)

+
ma2

B

�

(

μ2
1 − μ2

2

μ2
B

) (

2

3
T 3

1 + T 2
1 Td

)

, (15)

with aB ≡ μB∇B/m being the magnetic acceleration.
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Fig. 9 Measurement of the cubic phase with the T 3-SGI presented in Fig. 8. The solid red line
represents a fit based on Eq. (15), as described in the text. The dashed blue line is a fit with Td = 0,
showing that the interferometer phase scales purely as T 3

1 for T1 � 20 μs. The visibility drops
from 68% to 32% over 70 μs with a decay time of 75 μs. This reduction results from inaccuracies
in recombining the two interferometer paths. The dashed gray horizontal lines depict the maximal
and minimal values of the population P1 measured independently without magnetic field gradients.
Reprinted from [19] with permission © (2019) by the American Physical Society

As sketched in Fig. 8, the experiment begins with an on-resonance RF π/2-pulse
that transfers the initially prepared internal atomic state |2〉 to an equal superposi-
tion, 1√

2
(|1〉 + |2〉). This π/2 pulse is applied 1 ms after the atoms are released from

the trap in which they were prepared, in order to ensure that the trapping fields are
fully quenched. Following a free-fall time of 400 μs (the first “dark time”), we apply
an RF π -pulse that flips the atomic state to 1√

2
(|1〉 − |2〉). After a second dark time of

another 400 μs, a second π/2 pulse completes the spin-echo sequence. The π -pulse
inverts the population between the two states of the system thereby allowing any
time-independent phase shift accumulated during the first dark time to be canceled
in the second dark time. The experiment is completed by applying a magnetic gra-
dient to separate the spin populations and a subsequent pulse of the detection laser
to image both states simultaneously.

As with all our previous full-loop experiments, the four magnetic field gradient
pulses are produced by current-carrying wires on the atom chip. This magnetic pulse
sequence sends the spin states |1〉 and |2〉 along different trajectories in the SGI
and ultimately closes the interferometer in both momentum and position. Careful
calibration measurements verified that reversing the wire currents (the current flow
is reversed during T2 and T3 relative to T1 and T4) provides magnetic accelerations that
are equal in magnitude (but opposite in sign) to within our experimental uncertainty
of < 1%.

The experimental data shown in Fig. 9 are measured as a function of the time 2 <

T1 < 70 μs. From Eq. (15), it is apparent that the T 3 dependence will be most evident
if Td ≪ T1, which is satisfied for most of the experimental range by using a fixed
experimental value of Td = 2.6 μs (limited by the speed of our electronic circuits).
Note that T1 � 100 μs is limited by the duration of the second dark time.

The experimental data (dots) agree very well with the theory (solid red line) based
on Eq. (15), where the fitting parameters are the magnetic acceleration aB as well
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as the decay constant of the visibility and a constant phase ϕ0. The dashed blue line
is obtained by setting Td = 0, leading to a pure T 3

1 scaling that is indistinguishable
from the full theoretical fit for T1 � 20 μs:

δ�(T 3) ∼=
maB

32�

(

μ1 − μ2

μB

) (

g +
μ1 + μ2

3μB

aB

)

T 3. (16)

The maximum visibility displayed by the gray lines is first measured by perform-
ing only the RF spin-echo sequence (π/2 − π − π/2) without the magnetic field
gradients and changing the phase of the second π/2 pulse. The maximal visibility
is limited by imperfections in the RF pulses. As discussed above, utilizing an echo
sequence allows us to cancel out contributions to the interferometer phase from the
bias magnetic field, and to increase the coherence time.

The excellent fit to these data allows a precise determination of the magnetic
field acceleration, afit

B = 246.97 ± 0.09 m/s2. Separate measurements were used to
independently determine the magnetic field gradient using time-of-flight (TOF) tech-
niques, which gave a value of aTOF

B = 249 ± 2 m/s2.4 While these measurements
agree with one another, the difference in measurement errors clearly shows that
our T 3-SGI provides a much more precise measurement of the magnetic field gradi-
ent.

Let us now consider the case when T1 ≪ Td , such that during Td the relative
momentum δp0 ≡ maB T1(μ1 − μ2)/μB between the paths is kept constant, i.e., we
take the magnetic field gradient pulses to be delta functions.

In this limit the interferometer phase from Eq. (15) becomes

δ�(T 2) ∼=
δp0

4�
gT 2, (17)

scaling quadratically with the total time T ∼= 2Td , since we now maintain a piece-
wise constant momentum difference between the two arms. This is similar to the T 2-
SGI [18] or the Kasevich-Chu interferometer [90], although the momentum trans-
fer δp0 is provided by the magnetic field gradient in the case of the T 2-SGI, rather
than by the laser light pulse.

We conclude our discussion of this unique T 3 interferometer by comparing the
scaling of the interferometer phases δ�(T 3) and δ�(T 2) with the total interferometer
time T , as given by Eqs. (16) and (17) respectively. The data in Fig. 10 are taken from
Fig. 9 and from our T 2-SGI (when experimentally realizing the condition T1 ≪ Td ),
showing clearly that the T 3-SGI significantly outperforms the T 2-SGI with respect
to total phase accumulation, even though the latter can currently operate for total
times T up to three times longer than the former. Finally, let us briefly note that this T 3

realization has already been coined a proof-of-principle experiment for testing the
quantum nature of gravity [49].

4These values for afit
B and aTOF

B are different from those presented in [19] due to a different fitting
procedure used there. A full analysis and fitting procedures are presented in the Appendices of [68].
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Fig. 10 Scaling of the interferometer phases δ�(T 3) [squares, Eq.( 16)] and δ�(T 2) [circles,
Eq. (17)], as functions of the total interferometer time T . The solid red line is fitted to our data for
the T 3-SGI and the dashed blue line is fitted to our T 2-SGI data when experimentally realizing
the condition T1 ≪ Td . In its current configuration with Tmax = 285 μs, the phase of the T 3-SGI
is almost six times larger than the phase of the best T 2-SGI, even though the magnetic field gra-
dients and the maximal time Tmax = 924 μs are larger than those of the T 3-SGI by factors of 2.3
and 3.2, respectively. For reference, the green square and green dot represent data for which the
observed visibility is ≈ 30% for both the T 3-SGI and T 2-SGI respectively. Adapted from [19]
with permission © (2019) by the American Physical Society

Looking into the future, we may ask if one may extend the T 3 scaling to yet higher
powers of time. In the Ramsey-Bordé interferometer [92], the phase shift that scales
linearly with the interferometer time T originates from a constant position difference
between two paths during most of this time. In the Kasevich-Chu interferometer [93,
94], the quadratic scaling of the phase with time is caused by a piecewise constant
velocity difference, while a piecewise constant acceleration difference between the
two paths results in the cubic phase scaling δ� ∝ T 3, as presented above.

One can generalize this idea to achieve any arbitrary phase scaling by having a
piecewise difference in the nth derivative of the position difference between the two
paths. By designing an interferometer sequence consisting of pulses with a higher-
order time-dependence of the forces, combined with careful choices of the relative
signs and durations of the pulses, the total phase can be made to scale with the
interferometer time as T n+1 for any chosen n > 2.

7 Outlook

7.1 SGI with Single Ions

The discovery of the Stern-Gerlach effect led to lively discussions early in the quan-
tum era regarding the possibility of measuring an analogous effect for the electron



292 M. Keil et al.

itself (see e.g., [95, 96]). The Lorentz force adds the complicating factor of a purely
classical deflection of the electron beam that would smear out any expected SG
splitting. Here we summarize a generalized semiclassical discussion for any charged
particle of mass m and charge e from [62] (though with the co-ordinate system in
Table 14.1). Assuming a beam momentum px and a transverse beam spatial width 
z,
we calculate the spread of the Lorentz force 
FL due to a transverse magnetic gra-
dient B ′ as


FL =
e

m
px B ′
z. (18)

Since the beam would be well collimated, 
pz < px , so


FL >
e

m
B ′
pz
z ≥

e�

2m
B ′ =

me

m
×

(

e�

2me

B ′
)

=
me

m
FSG, (19)

where the second inequality uses the uncertainty principle and we have introduced
the electron mass me to relate FL to the Stern-Gerlach force FSG.

The spatially inhomogeneous Lorentz broadening is therefore larger than the SG
splitting for electrons (m = me), at least in this semiclassical analysis [97], and this
lively controversy has continued for decades though, as far as we know, without any
conclusive experimental tests for electrons or for any other charged particles (see [98–
100] for reviews of the early history of this issue and recent perspectives). In contrast,
Eq. (19) shows no such fundamental problem if we take ions such that me/m < 10−3,
thereby motivating our proposals, including chip-based designs, for measurements
using very high-resolution single ion-on-demand sources that have recently been
developed using ultra-cold ion traps [61, 101]. As a practical matter, we note that a
suitable ion chip could be fabricated and implemented either based on an array of
current-carrying wires as analyzed in [62] or on a magnetized microstructure like
those implemented in [102, 103].

Although we did not extend our analysis to include the coherence of the spin-
dependent splitting, the suggested ion-SG beam splitter may form a basic building
block of free-space interferometric devices for charged particles. Here we quote
from our collaborative work with Henkel et al. [62]. In addition to measuring the
coherence of spin splitting as in the “Humpty-Dumpty” effect (see Sect. 1), we
anticipate that such a device could provide new insights concerning the fundamental
question of whether and where in the SG device a spin measurement takes place.
The ion interference would also be sensitive to Aharonov-Bohm phase shifts arising
from the electromagnetic gauge field. The ion source would be a truly single-particle
device [61] and eliminate certain problems arising from particle interactions in high-
density sources of neutral bosons [104].

Such single-ion SG devices would open the door for a wide spectrum of fundamen-
tal experiments, probing for example weak measurements and Bohmian trajectories.
The strong electric interactions may also be used, for example, to entangle the single
ion with a solid-state quantum device (an electron in a quantum dot or on a Coulomb
island, or a qubit flux gate). This type of interferometer may lead to new sensing
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capabilities [105]: one of the two ion wavepackets is expected to pass tens to hun-
dreds of nanometers above a surface (in the chip configuration of our proposal [62])
and may probe van der Waals and Casimir-Polder forces, as well as patch potentials.
The latter are very important as they are believed to give rise to the anomalous heat-
ing observed in miniaturized ion traps [106]. Due to the short distances between the
ions and the surface, the device may also be able to sense the gravitational force on
small scales [107]. Finally, such a single-ion interferometer may enable searches for
exotic physics. These include spontaneous collapse models, the fifth force from a
nearby surface, the self-charge interaction between the two ion wavepackets, and so
on. Eventually, one may be able to realize a double SG-splitter with different orien-
tations, as originally attempted by Stern, Segrè and co-workers [108, 109], in order
to test ideas like the Bohm-Bub non-local hidden variable theory [110–112], or ideas
on deterministic quantum mechanics (see, e.g., [113]). Since ions may form the basis
of extremely accurate clocks, an ion-SG device would enable clock interferometry
at a level sensitive to the Earth’s gravitational red-shift (see the proof-of-principle
experiments with neutral atoms in [20, 21]). This has important implications for
studying the interface between quantum mechanics and general relativity.

7.2 SGI with Massive Objects

The main focus of our future efforts will be to realize an SGI with massive objects. The
idea of using the SG interferometer, with a macroscopic object as a probe for gravity,
has been detailed in several studies [46, 47, 114, 115] describing a wide range of
experiments from the detection of gravitational waves to tests of the quantum nature
of gravity. Here we envision using a macroscopic body in the full-loop SGI. We
anticipate utilizing spin population oscillations as our interference observable rather
than spatial fringes, i.e., density modulations. This observable, as demonstrated in
the atomic SGI described above, is advantageous because there is no requirement
for long evolution times in order to allow the spatial fringes to develop, nor is high-
resolution imaging needed to resolve the spatial fringes. Let us note that there are
other proposals to realize a spatial superposition of macroscopic objects [70, 116].

As a specific example, let us consider a solid object comprising 106−1010 atoms
with a single spin embedded in the solid lattice, e.g., a nano-diamond with a single NV
center. Let us first emphasize that even prior to any probing of gravity, a success-
ful SGI will already achieve at least 3 orders of magnitude more atoms than the
state-of-the-art in macroscopic-object interferometry [60], thus contributing novel
insight to the foundations of quantum mechanics. Another contribution to the foun-
dations of quantum mechanics would be the ability to test continuous spontaneous
localization (CSL) models (e.g., [117] and references therein).

When probing gravity, the first contribution of such a massive-object SGI would
simply be to measure little g. As the phase is accumulated linearly with the mass,
a massive-object interferometer is expected to have much more sensitivity to g than
atomic interferometers being used currently (assuming of course that all other fea-
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tures are comparable). This is also a method to verify that a massive-object superpo-
sition can be created [114, 118, 119]. A second contribution would measure gravity
at short distances, since the massive object may be brought close to a surface while in
one of the SGI paths, thus enabling probes of the fifth force. Once the SG technology
allows the use of large masses, a third contribution will be the testing of hypothe-
ses concerning gravity self-interaction [48, 116], and once large-area interferometry
is also enabled, a fourth contribution would be to detect gravitational waves [46].
Finally, placing two such SGIs in parallel next to each other will enable probes of
the quantum nature of gravity [47, 120]. Let us emphasize that, although high accel-
erations may be obtained with multiple spins, we intend to focus on the case of a
macroscopic object with a single spin, since the observable of such a quantum-gravity
experiment is entanglement, and averaging over many spins may wash out the signal.

To avoid the hindering consequences of the HD effect, one must ensure that the
experimental accuracy of the recombination, as discussed in Sect. 5, will be better
than the coherence length. Obviously it is very hard to achieve a large coherence
length for a massive object, but recent experimental numbers and estimates seem
to indicate that this is feasible. Another crucial problem is the coherence time. A
massive object has a huge cross section for interacting with the environment (e.g.,
background gas), but the extremely short interferometer times, as discussed in this
review, seem to serve as a protective shield suppressing decoherence. We are currently
a detailed account of these considerations [121].
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