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Abstract: Despite the existence of many promising anti-cancer therapies, not all breast cancers are equally treat-
able, due partly to the fact that focus has been primarily on a few select breast cancer biomarkers- notably ERα, PR 
and HER2. In cases like triple negative breast cancer (ERα-, PR-, and HER2-), there is a complete lack of available 
biomarkers for prognosis and therapeutic purposes. The goal of this review is to determine if other steroid recep-
tors, like ERβ and AR, could play a prognostic and/or therapeutic role. Data from various in vitro, in vivo, and clinical 
breast cancer studies were examined to analyze the presence and function of ERβ, PR, and AR in the presence and 
absence of ERα. Additionally, we focused on studies that examined how expression of the various steroid receptor 
isoforms affects breast cancer progression. Our findings suggest that while we have a solid understanding of how 
these receptors work individually, how they interact and behave in the presence and absence of other receptors 
requires further research. Furthermore, there is an incomplete understanding of how the various steroid receptor 
isoforms interact and impact receptor function and breast cancer progression, partly due to the difficulty in detect-
ing all the various isoforms. More large-scale clinical studies must be made to analyze systematically the expression 
of steroid hormone receptors and their respective isoforms in breast cancer patients in order to determine how 
these receptors interact with each other and in turn affect cancer progression.

Keywords: Breast cancer, steroid hormone receptors, prognostic markers, estrogen, progesterone, androgen

Introduction

Though both estrogen and progesterone recep-
tors are commonly used as prognostic markers 
for breast cancer, current endocrine therapy 
primarily targets the estrogen receptor, ERα. 
Unfortunately, for about 10-15% of breast can-
cer patients [1-3]- like those diagnosed with 
triple negative breast cancer, defined as breast 
tumors lacking the expression of estrogen 
receptor alpha (ERα), progesterone receptor 
(PR) and human epidermal growth factor recep-
tor type 2 (HER2), ERα-/PR-/HER2- - the estab-
lished endocrine therapies are ineffective, 
highlighting an urgent need for additional thera-
peutic targets in breast cancer. Therefore, the 
goal of the following review is to examine the 
role of the steroid hormone receptors- ERα, 
ERβ, PR, and androgen receptor (AR)- in the 
progression of breast cancer in order to deter-

mine their role and utility as prognostic markers 
and therapeutic targets.

Steroid receptors: an overview

The steroid hormone receptor subfamily, which 
includes estrogen receptor (ER), progesterone 
receptor (PR), androgen receptor (AR), and glu-
cocorticoid receptor (GR), is part of the larger 
superfamily of nuclear hormone receptors [4]. 
The members of this superfamily function as 
ligand-gated transcription factors that modu-
late the expression of genes [5]. While unbound 
steroid receptors are typically located in the 
cytosol, ligand binding induces receptor dimer-
ization and conformational changes which in 
turn exposes the nuclear localization signal, 
allowing translocation into the nucleus [6]. 
Once inside the nucleus, the receptor dimer 
recognizes and binds specific DNA sequences 
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that in turn results in enhancing or silencing the 
transcription of specific target genes regulated 
by the receptor [7, 8].

As depicted in Figure 1, nuclear hormone 
receptors share common functional domains, 
such as a DNA binding domain (DBD), a ligand 
binding domain (LBD), and two transactivation 
domains (AF-1 and AF-2) [9-12]. DBDs contain 
two zinc finger motifs that allow them to recog-
nize and bind to specific DNA sequences- often 
referred to as hormone response elements 
(HREs)- within the promoter and/or enhancer 
regions to regulate transcription. Different ste-
roid hormone receptors bind to different re- 
sponse elements, thus allowing the receptors 
to regulate subsets of genes that are necessary 
to elicit a physiological response. The LBD is 
involved in the binding of specific hormones, 
which induces dimerization and nuclear trans-
location [9-12]. The two transactivation doma- 
ins, AF-1 and AF-2, are important for modulat-
ing transcription of the target genes. AF-2 is 
located within the LBD and is involved in ligand-
dependent transactivation, while AF-1 is found 
in the N-terminal A/B hypervariable domain 
(NTD) and is responsible for ligand-indepen-
dent transcriptional activation and mediates 
protein-protein interaction with other trans- 
cription factors [13]. AF-1 is also responsive  
to phosphorylation by kinases that are activat-
ed in various signaling pathways, including  
the epidermal growth factor receptor (EGFR) 
pathway.

ERβ are nuclear hormone receptors, GPR-30 is 
not a member of the steroid receptor family but 
is instead a G-protein coupled receptor that 
has been shown to bind and respond to estro-
gen [21-23]. Therefore, since our interest is in 
the role of steroid hormone receptors in breast 
cancer, GPR-30 will not be discussed further in 
this review.

Although ERα and ERβ are both expressed in 
breast tissue and bind to estrogen with similar 
affinities [24], studies have shown that only 
ERα is necessary for normal mammary gland 
development [25, 26] leading researchers to 
question the function of ERβ in normal breast 
tissue. Multiple studies have also reported that 
ERβ expression actually represses ERα expres-
sion and function [27, 28]. In addition to the 
breast, both nuclear receptors are expressed in 
many other tissues within the human body, 
including the endometrium, ovary, testes, cere-
bral cortex, myocardium, and thyroid [29-32]. 
However, their expression patterns do differ in 
certain tissues- for example, ERα is the sole 
estrogen receptor expressed in the hippocam-
pus, and only ERβ is found in prostate tissue 
[32].

In addition to full length ERα (as shown in 
Figure 1), there are 2 truncated splice variants 
of ERα- 46 kDa estrogen receptor (ER46) [33]
and 36 kDa estrogen receptor (ER36) [34, 35]. 
Some of the full length ERα (ER66) along with 
ER36 and ER46 [36] associate with the plasma 

Figure 1. Comparing the functional domains of nuclear hormone receptors. 
NTD, N-terminal A/B hypervariable domain; DBD, DNA binding domain; H, 
hinge region; LBD, ligand binding domain. Adapted from [196].

Estrogen receptor

The estrogen receptor (ER) 
was identified in the 1950s 
by Dr. Elwood V. Jensen as 
reviewed in [14, 15]. Even- 
tually, it was determined that 
three forms of ER exist- ERα, 
ERβ, and GPR-30 [16-19]. All 
three ERs are encoded by 
different genes located on 
different chromosomes [20]. 
ERα is encoded by the gene 
ESR1 located on chromo-
some 6; ERβ is encoded by 
gene ESR2 on chromosome 
14; and GPR-30 is encoded 
by the GPER gene on chro-
mosome 7. While ERα and 
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membrane and are referred to as mERs due to 
their ability to translocate to the plasma mem-
brane through palmitoylation and caveolin-1 
association, which in turn allows for rapid estro-
gen receptor signaling. ER46 does not have an 
AF-1 transactivation domain, which suggests 
that ER46 does not mediate any nuclear func-
tions. ER36 lacks both AF-1 and AF-2 transacti-
vation domains, and part of the ligand binding 
domain is replaced by a 27 amino acid 
sequence in the C terminus [34]. ER36 has 
been shown to mediate estrogen stimulation 
via mitogen-activated protein kinase (MAPK) 
pathway [35]. 

As with ERα, ERβ also exists as several iso-
forms- ERβ1 (Figure 1), ERβ1 “short form”, 
ERβ2/cx, ERβ3, ERβ4, and ERβ5 [37-40]. Most 
are due to the alternative splicing of exons 7 
and 8, although the truncated form of ERβ1 is 
due to proteolysis at the N-terminus [41, 42].  
Of all the isoforms, only ERβ1 contains the 
ligand-binding domain [43]. However, it has 
been shown that the formation of heterodimers 
between ERβ1 and the other isoforms increas-
es the transcriptional activity of ERβ1 [37]. 

Progesterone receptor

The expression of PR is primarily regulated by 
ERα at the transcriptional level [44, 45]. There 
are two known isoforms of PR, PR-A and PR-B. 
PR-A is a truncated version of PR-B, lacking 
164 amino acids at the N-terminus (Figure 1). 
The two proteins are transcribed from two dif-
ferent promoters located within the same gene 
on chromosome 11 [46] and can form homo- or 
heterodimers. Studies using knockout mice 
confirmed the functional importance of both  
PR isoforms [47, 48]. Although animals lacking 
PR-A did not display significant developmental 
effects in the mammary glands or thymus, they 
did display severe dysfunctions in their ovaries 
and uterus resulting in infertility, suggesting 
that its primary function is maintaining normal 
ovarian and uterine functions [49-52]. Conver- 
sely, PR-B knockout-mice retained normal ovar-
ian, uterine, and thymic functions but exhibited 
a significant decrease in mammary ductal mor-
phogenesis [49-51, 53], indicating that PR-B 
mediates the proliferative effects of progester-
one in the mammary gland.

Structural and functional analyses of each PR 
isoform suggest that they have different tran-

scription activation properties when bound to 
progesterone [53, 54]. According to Richer et 
al., approximately 27% of PR-regulated genes 
are controlled by both PR isoforms. However, 
this study also indicated that PR-B alone con-
trols the majority of the PR-regulated genes in 
comparison to PR-A alone (69% versus 4%) [55]
which may be in part due to PR-B being intrinsi-
cally a stronger transcriptional activator than 
PR-A. In fact, PR-A has been reported to func-
tion as a transcriptional repressor under cer-
tain cellular conditions [56]. Curiously however, 
it is PR-A- not PR-B- that is more frequently 
over-expressed in breast cancer [57]. Some 
studies have even indicated that it is not so 
much the expression of either isoform but rath-
er the ratio of the two isoforms that are impor-
tant in breast cancer development. For exam-
ple, a higher ratio of PR-A/B has been ass- 
ociated with poorer prognosis and response to 
hormone therapy [58].

Androgen receptor

AR is expressed in all tissues, including testis, 
prostate, foreskin, cervix, vagina, mammary 
glands, bone, brain, sebaceous and sweat 
glands of the skin, and breast [59-61]. The 
gene that codes for the androgen receptor (AR) 
is located on the X chromosome [60, 62]. While 
AR is closely related to PR and ER, one distinc-
tive feature of the AR protein is the presence of 
glutamine and glycine repeats in the N-terminal 
activation domain of the receptor which have 
been linked to certain cancers and chronic neu-
rological diseases in humans [60, 63, 64]. In 
1994, Wilson and McPhaul discovered two iso-
forms of AR in human genital skin fibroblasts 
that are structurally very similar to PR-A and 
PR-B [65]. Their formation is due to two distinct 
translation initiation sites which result in the 
full-length receptor (110 kDa) and an N-ter- 
minally truncated form (87 kDa) known as AR-B 
and AR-A, respectively (Figure 1). Since 1994, 
several low molecular weight isoforms of AR 
have been identified, particularly in prostate 
cancer cell lines and tumors (reviewed in [66]). 
A few different mechanisms are responsible for 
these variants, including premature chain ter-
mination during translation, proteolysis by cal-
pains, and alternative splicing [66]. Several iso-
forms, such as AR-V7 (also known as AR3), lack 
the LBD and are thus capable of transcription 
activation in the absence of androgen (i.e. 
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androgen-independent transcription) [67, 68]. 
Though originally found in prostate cancer 
cases that have become androgen deprivation 
therapy (ADT) or castration resistant [67-70], 
AR-V7 has likewise been found in a substantial 
number of primary breast tumors (~50%) and 
most breast cancer cell lines [71]. Another AR 
variant, Δ3AR, has been found exclusively in 
some breast tumors and breast cancer cell 
lines but not in normal breast tissue [72]. 
Originally discovered in patients suffering from 
androgen insensitivity syndrome (AIS), the 
Δ3AR isoform lacks the second zinc finger in 
the DBD, which potentially could reduce its abil-
ity to inhibit cell growth, at least within an ERα+ 
setting [72, 73].

ERα-positive breast cancer 

Prognosis and treatment

In 1896, George Thomas Beatson found that 
removing the ovaries from patients with 
advanced stages of breast cancer resulted in 
significant regression, which later lead to the 
speculation of estrogen’s stimulating effect on 
breast cancer. Hence, oophorectomy and/or 
the use of drugs that target the estrogen recep-
tor have become standard therapies for treat-
ing estrogen responsive breast cancer. To date, 
much of what we know about the relationship 
between ER and breast cancer centers primar-
ily on one particular receptor- ERα. In fact, it is 
the presence or absence of ERα that deter-
mines whether a patient’s breast cancer can 
be classified as either estrogen receptor posi-
tive or negative, respectively. ERα-negative 
breast cancers may express other hormone 
receptors such as PR, AR, and even ERβ, but 
they are often non-responsive to estrogen. Of 
all the breast cancer subtypes, ERα-positive 
breast cancer is the most prevalent, account-
ing for approximately 75% of breast cancers 
diagnosed in women [1].

Studies have shown that patients with ERα-
positive breast cancers have a better prognosis 
because these tumors tend to be lower grade 
and have less aggressive phenotypes. Even 
patients with metastatic tumors that expressed 
ERα often had significantly better survival out-
comes in comparison to patients with ERα-
negative tumors [74], and this is most likely due 
to the fact that most patients with ERα-positive 

tumors also had an increase likelihood of 
responding to the established endocrine thera-
pies [74]. However, not all ER-positive tumors 
respond to endocrine therapy, and even those 
that are initially responsive eventually become 
resistant as the disease progresses. 

Drugs that specifically target ERα- estrogen 
receptor antagonists- can be used to treat or 
manage the disease. ER antagonists specifi-
cally compete with estrogen and block it from 
binding to the receptor. There are two types of 
ER antagonists- 1) selective ER modulators 
(SERMs), also referred to as partial antago-
nists, and 2) pure or complete antagonists, also 
referred to as selective ER down-regulators 
(SERDs) [75]. Among the most common SERMs 
are the anti-estrogens tamoxifen and raloxi-
fene. Tamoxifen is effective in antagonizing 
estrogen-dependent cancer cell growth by 
binding to ERα and promoting the recruitment 
of co-repressors rather than co-activators in 
mediating transcriptional repression of ER tar-
get genes [11, 76]. An example of a pure antag-
onist or SERD is ICI 182, 780, also referred to 
as faslodex or fulvestrant, which binds to either 
ERα or β and promotes receptor degradation 
[77-79]. Ultimately, ERα is considered a good 
prognostic marker for breast cancer not only 
because it is vital in both the development and 
progression of the disease but also because its 
presence determines whether the cancer will 
likely respond to anti-estrogen treatment.

Association with progesterone receptors

Of all the ERα+ mammary tumors, about 
50-60% are PR+ [80-82]. Yet while the ER sta-
tus has been well established as a predictive 
factor for breast cancer prognosis and cancer 
treatment, less is known about the significance 
of PR in the presence of ERα. Studies have 
shown that tumors expressing both receptors 
tend to be less aggressive and least likely to 
metastasize [83, 84]. Others have confirmed 
that the presence of both ERα and PR in tumors 
often translates to better prognosis [83-86]. 
Specifically, Dunnwald et al. examined the cor-
relation between PR/ERα expression and mor-
tality risk amongst 155,175 breast cancer 
patients and found that patients with ERα+/PR+ 
tumors had lower mortality rates compared to 
women with ERα+/PR-, ERα-/PR+, and ERα-/PR-. 
The highest mortality rate was seen in ERα-/PR- 
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patients. A similar study carried out by Salmen 
et al. determined that patients with ERα-/PR- 
tumors had worse prognoses than patients 
with ERα-/PR+ or ERα+/PR+ tumors [87]. 
Furthermore, tumors that have lost PR expres-
sion are often more aggressive and have nega-
tive prognoses, signifying that PR is an impor-
tant indicator of the progression of the disease 
[82].

Compared to ERα+/PR+ patients, a smaller per-
centage of ERα+/PR- breast cancer patients 
respond to tamoxifen treatment [85, 88-91], 
suggesting that PR plays an important role in 
endocrine therapy response. This could account 
for the consistent observation that not all ERα+ 
breast cancer patients respond to endocrine 
therapies like tamoxifen. As noted earlier, the 
presence of ERα may not always be sufficient 
to indicate positive outcome towards endocrine 
based-therapeutics. This may be due in part to 
the fact that expression of the ERα protein 
does not always translate to a functional ERα 
signaling pathway. Since PR is one of the target 
genes of ERα, it has long been proposed that 
the expression of PR may serve as a good indi-
cator of ERα functionality and signaling [92]. 
Studies have in fact confirmed that the pres-
ence PR in ERα+ breast cancer significantly 
improves the outcome prediction for adjuvant 
endocrine therapy [85, 91, 93-96]. Specifically, 
Ferno et al. found that patients with ERα+/PR+ 
tumors had significant increase in response to 
adjuvant tamoxifen therapy compared with 
patients with ERα+/PR- tumors [94, 97]. Other 
studies have also confirmed that PR status can 
be a better indicator of tamoxifen response 
than ERα status alone [96, 98]. We speculate 
that the presence of ERα without PR expres-
sion likely suggests a signaling dysfunction in 
the ERα pathway that reduces its ability to tran-
scriptionally regulate its target genes; there-
fore, it is not surprising that the presence of 
both ERα and PR is a better indicator of endo-
crine therapy responsiveness.

Studies have also demonstrated that PR is 
associated with overall survival of cancer 
patients [85, 99]. Specifically, patients diag-
nosed as ERα+/PR+ had less cancer recurrence 
in comparison to ERα+/PR- cancer patients 
[85]. We acknowledge that this reported 
decrease in breast cancer recurrence in ERα+/
PR+ patients contradicted earlier studies [86, 

100], but this may be attributed to the research-
ers’ use of biochemical assays to measure PR, 
which lack the sensitivity of other methods 
such as immunohistochemistry, which is the 
current practice.

Further complicating the analysis of PR’s role in 
breast cancer prognosis and therapeutic 
response is the existence of the two PR iso-
forms mentioned previously- PR-A and PR-B. 
The ratio of PR-A to PR-B has been shown to 
change during the development of breast can-
cer [55, 101], and this may alter prognosis and 
therapeutic response. Although some breast 
cancers may express both isoforms, the ratios 
of the two receptors vary, with PR-A showing a 
higher expression in most tumors [55, 101]. 
This ratio of PR-A to B can impact the prognosis 
and staging of the disease, with an equal to low 
PR-A:PR-B ratio associated with lower tumor 
grading (G1 and G2) and a high PR-A:PR-B ratio 
associated with undifferentiated, higher grade 
tumors (G3) [101]. Recent microarray analysis 
also suggests that the PR-A:PR-B ratio is a criti-
cal determinant of PR target gene selectivity 
and response to hormonal stimuli [102]. This 
indicates the importance of evaluating the 
interplay between PR-A and PR-B when deter-
mining the clinical outcomes and responsive-
ness to endocrine therapy. However, typical 
methods used to determine the presence of PR 
in tumors are either ligand binding assays using 
tumor extracts or antibody-based assays such 
as immunohistochemistry [103-106], and nei-
ther of these assays is capable of differentiat-
ing between the two PR isoforms. In some 
cases, immunohistochemistry may only detect 
PR-A and not PR-B in formalin fixed tissue,  
suggesting that conformational differences 
between the two may interfere with detection 
[105]. Ultimately, further analysis of the role of 
PR-A and PR-B in breast cancer is needed to 
provide a better understanding of PR in progno-
sis and therapeutic response. 

Association with ERβ

ERβ is not commonly used as a prognostic 
marker for breast cancer, partially because the 
presence and function of ERβ in ERα-positive 
tumors are not well understood. As with PR, the 
existence of several isoforms of ERβ adds to 
the confusion and has resulted in conflicting 
data, since the majority of studies that analyze 
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the role of ERβ in ERα+ cells do not differentiate 
between the various ERβ isoforms. Despite this 
complexity, some researchers have had the 
foresight to study the specific ERβ isoforms, 
and several agree that expression of the ligand-
binding isoform ERβ1 in ERα+ cells counteracts 
ERα activity, thereby suppressing cell prolifera-
tion and enhancing apoptosis [39, 107, 108]. 
Two other studies carried out by Ogawa et al. 
and Peng et al. found that overexpression of 
the isoform ERβ2/cx inhibited the transcription-
al activity of ERα [38, 109], while this same iso-
form has been shown to enhance the transcrip-
tional activity of ERβ1 [37]. An in vitro study led 
by John Hawse concluded that the tamoxifen 
metabolite endoxifen worked best at inhibiting 
estrogen-mediated cell proliferation in ERα+ 
cells if ERβ was also expressed [110]. It was 
also determined that endoxifen treatment of 
cells led to ERβ accumulation and subsequent 
increase in ERα/ERβ heterodimers, providing 
further evidence that the observed cancer sup-
pressing activity of ERβ is due in part to a direct 
interaction between ERβ and ERα. However, a 
clinical study analyzing the effect of a 2-year 
tamoxifen treatment on 353 patients with 
stage II primary breast tumors found that 
patients who were ERα-/ERβ+ had significantly 
greater distant disease-free survival compared 
with patients who were ERα+/ERβ+, suggesting 
a mechanism for ERβ independent of ERα 
[111]. Since neither the levels of the tamoxifen 
metabolite endoxifen nor the exact ERβ iso-
forms were determined in these patients, it is 
difficult to directly compare this study with that 
of Hawse’s. Yet these seemingly differing con-
clusions do point to a rather complex role for 
ERβ in breast cancer, which clearly involves 
more than just inactivation of ERα.

Association with androgen receptors

AR expression is most commonly associated 
with prostate cancer, and prostate tumor pro-
gression is as dependent on AR activity as 
breast tumor progression is on ERα activity. In 
fact, the treatment of prostate cancers usually 
involves hindering AR function via ligand deple-
tion, treatment with AR antagonists, or both 
[112]. The role of AR in breast cancer is not 
quite as clear. AR is frequently expressed in 
ductal carcinoma in situ (DCIS) and invasive 
breast carcinoma [113]. In addition, most ERα+ 
breast cancers also appear to express AR, as 

exemplified by a study carried out by Hu et al. 
which found that 88% of 1,164 ER positive 
breast cancer cases also expressed AR [114]. 
Another study by Agrawal et al. analyzed the 
importance of using AR as a prognostic marker 
in 488 breast cancer patients who underwent 
radical mastectomies [115]. Data from this 
study suggest that the presence of AR increased 
the success of adjuvant therapy and prognosis 
in patients. Additionally, they found that 50.7% 
of breast cancer patients who were AR negative 
had lower 5-year survival rates, indicating poor-
er prognosis [115]. In yet another study carried 
out by Qu and colleagues, 109 breast cancer 
patients in Shanghai were retrospectively ana-
lyzed between 2003 and 2008 [116]. Of the 
109 patients, 52 were diagnosed AR+. Overall, 
there were 13 deaths and 15 recurrences but 
only two of the deaths and three of the recur-
rences were from the AR+ group, which again 
indicates that AR could be a good marker for 
longer overall survival and lower risk of recur-
rence. Conversely, mammary tumors that do 
not express AR have been shown to respond 
poorly to hormone therapy [117]. The absence 
of AR has also been correlated with higher  
levels of Ki-67, a cell proliferation marker asso-
ciated with cancer progression [118], though 
the molecular mechanism behind this finding 
has not been elucidated. Furthermore, andro-
gen-activated AR appears to directly bind to the 
ERβ promoter and enhance transcription of 
ERβ in both ERα-positive and -negative breast 
cancer cells [119], suggesting that blocking  
AR function may subsequently decrease ERβ-
dependent gene expression.

Although many studies appear to support  
the hypothesis that AR helps counteract the 
tumorigenic effects of ERα, others- such as one 
carried out by Paliouras and Diamandis- report 
a synergistic mechanism between the two 
receptors, resulting in an increase in breast 
cancer progression [120]. Specifically, the ER- 
dependent expression of a group of cancer bio-
markers called kallikrein (KLKs) genes was 
shown to be enhanced significantly by the bind-
ing of androgen to AR. One noteworthy limita-
tion of this study is that it focused on just one 
breast cancer cell line (BT474) and therefore 
may not be indicative of most breast cancer 
cases. Another study by Liao et al. showed that 
simultaneous treatment with androgen and 
estrogen stimulated mammary gland carcino-



Steroid receptors and breast cancer

1623 Am J Cancer Res 2017;7(8):1617-1636

mas in 100% of the Noble rats tested [121]. 
The researchers concluded that high levels of 
androgen and estrogen together may be an 
important risk factor for breast cancer and that 
direct binding of androgens to either AR or PR 
were involved in this carcinogenic process. 
However, although the researchers analyzed 
various isoforms of ER and PR, they only con-
centrated on the two AR isoforms, AR-A and 
AR-B, and used only male rats in their study. 
Additionally-and perhaps most importantly- the 
authors did not sufficiently rule out the possibil-
ity that the results were due to aromatization of 
androgen to estrogen. A more recent study car-
ried out by Richer and colleagues did determine 
that treatment of AR+/ERα+ breast cancer cell 
lines with the AR inhibitor enzalutamide- a drug 
currently used to treat metastatic prostate can-
cer- effectively inhibited cell proliferation both 
in vitro and in animal models, suggesting that 
AR activity may indeed promote cancer pro-
gression in the presence of ERα [122]. Yet 
again, isoforms of AR were neither analyzed nor 
even acknowledged in this study.

In contrast to the above studies, several clinical 
studies have indicated that administration of 
normal, physiological levels of androgen to 
women receiving estrogen therapy actually 
decreases breast cancer risk (reviewed in [59]), 
but the mechanism behind this- particularly in 
regards to AR signaling- is not clear. Agrawal 
and colleagues reported that only in the 
absence of estrogen will androgens directly 
bind to ERα and stimulate the proliferation of 
cancerous cells [115]. Finally, in an excellent, 
in-depth review of AR in breast cancer, K. M. 
McNamara and colleagues acknowledge that 
the role of AR in breast cancer risk and progres-
sion depends greatly on the specific disease 
subtype and the presence or absence of the 
other steroid receptors, such as ERα [123]. The 
authors further assert that in the presence of 
ERα, AR activation appears to counteract dis-
ease progression in most breast cancer sub-
types. However, a further complication involves 
the ratio of AR to ER, which also appears to 
affect progression and efficacy of endocrine 
treatment. A clinical analysis of 192 ERα+ 
breast cancer patients carried out by Richer 
and colleagues revealed that a high AR to ERα 
ratio correlated positively with increased inci-
dence of tamoxifen failure [122]. Despite all the 
confusing and contradictory findings, it does 

appear evident that AR could serve as an 
important prognostic indicator as long as AR 
isoforms, ERα status and estrogen levels are 
also taken into account.

ERα-negative breast cancer

ERβ-positive breast cancer

Although studies have found that both mRNA 
and protein levels of ERβ are significantly lower 
in breast tumors compared to normal breast 
tissue [124, 125], approximately 17% of pri- 
mary breast cancers are ERα-negative/ERβ-
positive [126, 127]. In addition, 47-60% of all 
ERα-negative tumors have been reported to be 
ERβ-positive [42, 126]. Most studies agree that 
the presence of ERβ in these tumors is corre-
lated with a positive prognosis, as the absence 
of ERβ in ERα-negative patients (ERα-/ERβ-) is 
associated with early relapse [111, 128-130]. 
It has also been reported that as breast tumors 
become more malignant, ERβ expression 
decreases (reviewed in [131]). However, one 
recent study carried out by Chen et al. contra-
dicts these findings [132]. The researchers 
found that expression of ERβ actually enhanced 
cancer progression by inducing the expression 
of IL-8, which is known to play a role in angio-
genesis and metastasis [132, 133].

Predictably, most of the aforementioned stud-
ies failed to differentiate between the various 
isoforms of ERβ, which once again could be 
responsible for these conflicting results. The 
small handful of studies that actually have ana-
lyzed the expression of specific ERβ isoforms 
have found that ERβ1, -2/cx, -3, and -5 are 
expressed at varying degrees in breast tumors 
and breast tumor cell lines [42, 43, 134, 135]. 
ERβ2/cx (also designated simply as ERβ2) is 
the main isoform expressed in the hormone-
sensitive breast tumor cell line T47D, whereas 
ERβ5 is the major isoform in the hormone-
insensitive BT20 breast tumor cell line [134]. 
Increased expression of both ERβ2/cx and 
ERβ5 relative to the full-length isoform ERβ1 
appears to correlate with increased breast can-
cer progression [135], and yet increased 
expression of ERβ5 has also been positively 
correlated with breast cancer survival [136, 
137]. A recent clinical study of 95 patients with 
ERα-negative invasive breast carcinomas dem-
onstrated a correlation between prognosis and 
the ERβ1 to ERβ2 ratio, associating higher lev-
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els of ERβ2 with tumor relapse [138]. Yet de- 
spite their apparent statistical significance, the 
differences between ERβ1, ERβ2 and tumor 
relapse appeared fairly modest, which could be 
due to the relatively modest sample size or to 
the researchers’ sole use of immunohisto-
chemistry to detect the individual isoforms. 
Though the clinical significance of this particu-
lar study is somewhat questionable, an earlier 
prostate cancer study carried out by Leung et 
al. did reveal a correlation between the incre- 
ased expression of ERβ2 and ERβ5 and en- 
hanced metastasis and poor prognosis [139]. 
Clearly more studies are needed to better 
understand the prognostic value of the various 
ERβ isoforms in breast cancer.

Regardless, the overwhelming consensus that 
ERβ is a positive prognostic marker is due 
largely to the fact that a significant number of 
ERβ+ patients respond well to endocrine thera-
py, such as tamoxifen. Several clinical studies 
have shown that patients who are ERα-negative 
or even triple negative (ERα-/PR-/HER2-) but 
express high levels of ERβ respond well to 
tamoxifen [111, 128, 130], whereas low levels 
of ERβ correlate with resistance to tamoxifen 
treatment [140, 141]. In addition, other chemo-
therapeutic agents such as doxorubicin and cis-
platin have been found to be more effective on 
breast cancer cell lines that express ERβ5 
[142]. Aside from drug response, modification 
of ERβ has recently been shown to indicate 
good prognosis as well. Specifically, a clinical 
study led by Valerie Speirs found that breast 
cancer patients expressing ERβ phosphory- 
lated at serine 105 had more favorable progno-
sis [143]. Though the mechanism behind this 
finding is unknown, it adds yet another level of 
complexity to an already complicated ERβ 
narrative.

PR-positive breast cancer

ERα-/PR+ breast cancers only account for about 
2-7% of total breast cancer cases [81, 144-
146], although there is controversy over wheth-
er or not such cancers actually exist. While 
many studies have supported the claim that 
ERα-/PR+ is a distinct class of breast tumors 
[81, 94, 144-152], skeptics contend that since 
PR is an ER target gene, ER expression is a pre-
requisite for the expression of PR [153-155]. 
They maintain that the PR positivity in ERα-

negative tumors may simply reflect method-
ological errors in detecting PR and/or ERα, 
resulting in either a false-negative ERα result or 
a false-positive PR result [153, 154]. In fact, it 
is possible that tumors denoted as ERα-/PR+ 
may actually have fairly low levels of ERα- far 
below the sensitivity of the current assays 
[153]. Furthermore, results from Iwase et al. 
have indicated the possibility that the presence 
of ERα variants may exist in ERα-/PR+ tumors, 
specifically a variant with a deletion of exon 5 
[156]. Though the presence of this variant in 
human breast tumors was confirmed in three 
other studies [157-159], this and other ERα 
variants may be difficult to detect via the tradi-
tional ERα assays used in immunohistochemis-
try, thus complicating the ERα status of certain 
mammary tumors. However, ERα aside, the PR 
promoter has been shown to be regulated by 
other transcription factors such as AP-1 and 
SP-1 [160-162]. In fact, an earlier study by 
Encarnación et al. indicated that while most of 
the ERα+ tumors converted to an ERα- pheno-
type, the PR status remained unchanged, fur-
ther supporting the existence of an ERα-/PR+ 
clinical subtype and the possibility that PR can 
be regulated by signaling pathways other than 
ERα [163]. 

Although the expression of PR in breast cancer 
cells has been linked to both positive endocrine 
response and clinical outcome [82], it is unclear 
how PR affects the outcome in ERα-negative 
breast cancers. Multiple reports have indicated 
that ERα-/PR+ breast tumors constitute a dis-
tinct clinicopathological group of cancers that 
results in outcomes worse than those that are 
ERα+/PR+ or ERα+/PR-, yet results in a better 
prognosis than double negative tumors (ERα-/
PR-) [144, 152, 164-166]. It is questionable 
whether this clinical subtype of tumor is respon-
sive to endocrine therapies like tamoxifen. As 
noted earlier, PR has been shown to be an indi-
cator of responsiveness to endocrine therapy in 
the presence of ERα, and thus it is conceivable 
that ERα-/PR+ tumors may also respond to 
tamoxifen. On the other hand, since current 
endocrine therapies are believed to target the 
ERα signaling pathway, it seems counterintui-
tive to attempt such therapeutic options on 
ERα-/PR+ cancer patients, particularly since the 
presence of PR in ERα+ tissues merely indi-
cates a functional ERα, the presence of which 
is believed necessary for tamoxifen to have any 
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effect. Yet a recent study by Yang et al. found 
that patients with low-grade ERα-/PR+ tumors 
did experience an overall survival benefit from 
adjuvant hormone therapy using tamoxifen; 
and conversely, no benefit was observed in 
patients with high-grade ERα-/PR+ tumors [96]. 
Unfortunately, the scarcity of studies on this 
particular clinical subtype limits our ability to do 
a complete evaluation of the effectiveness of 
tamoxifen.

Theoretically, tumors that are ERα-/PR+ should 
be treatable with selective progesterone recep-
tor modulators (SPRM), also referred to as anti-
progestins. Anti-progestins such as mifepris-
tone (RU-486) have been proposed as a new 
form of endocrine treatment or as an adjunct to 
the anti-estrogenic treatments for breast can-
cer. Multiple in vitro studies using cancer cell 
lines have indicated that low doses of anti-pro-
gestins can inhibit PR- and estrogen-mediated 
cell proliferation [167-169]. Contrary to these 
observations, other studies have demonstrat-
ed that at higher concentrations, mifepristone 
and other anti-progestins can actually stimu-
late proliferation of the ER+/PR+ breast cancer 
cells, T47D and MCF7 [170-172], indicating that 
the effect of anti-progestins on proliferation is 
dose-dependent and perhaps even dependent 
on the level of functional ERα. The few clinical 
studies that have tested the effectiveness of 
anti-progestins show limited to minimal efficacy 
in treating PR+ breast cancer [173-175]. Yet 
there is evidence that anti-progestins can aug-
ment the effects of anti-estrogens like tamoxi-
fen [176-178]. Clearly, further clinical studies 
are necessary to determine if PR is a viable 
therapeutic target in ERα- breast cancer.

AR-positive breast cancer

AR has been found in a significant number of 
ERα-negative tumors as well, with 22 to 49% of 
ERα-negative breast tumors expressing AR, 
depending on the clinical study [114, 118, 179, 
180]. The presence of AR in ERα- breast cancer 
is often associated with lower tumor grade, 
smaller tumor size, and significant increase in 
survival rates. Results inconsistent with these 
clinical data have been reported by some 
researchers who have found that androgen-
enhanced expression of AR in the ER-/PR-/
HER2+ breast cancer cell line MDA-MB-453 
increases cell proliferation [181, 182], which 

can be inhibited by the AR antagonist bicalu-
tamide [182]. Additionally, Richer et al. found 
that the AR inhibitor enzalutamide inhibited cell 
proliferation in ERα-/AR+ breast cancer cell 
lines [122]. Given that isoforms of AR were not 
taken into consideration in any of these stud-
ies, such contradictory findings between clini-
cal and in vitro studies are not that surprising.

A fraction of triple-negative breast cancer 
cases (13-35%) appear to express AR [180, 
183, 184]. Although some in vitro studies on 
triple-negative/AR+ cell lines have demonstrat-
ed an androgen-induced increase in cell prolif-
eration [182, 185], most clinical studies find 
that the presence of AR in triple-negative 
tumors is correlated with a lower recurrence 
rate, fewer positive lymph node and distant 
metastases, lower histological grade, and high-
er overall survival rate compared to triple-nega-
tive tumors that are AR-negative [180, 183, 
184, 186]. These data support the notion that 
AR can be used as a positive prognostic factor, 
not only in ERα-negative but also triple-nega-
tive breast cancers. 

In addition to its prospective use as a prognos-
tic biomarker for breast cancer, additional stud-
ies have indicated that AR may also serve as a 
potential therapeutic target for those breast 
cancer patients who traditionally have had very 
few treatment options, such as those whose 
tumors are ER-/PR-/AR+. Hardin and colleagues 
tested the effectiveness of the androgen dehy-
droepiandrosterone sulfate (DHEAS) on ER-/
PR-/AR+ breast cancer cell lines and found that 
DHEAS stimulation of AR hampered cell growth 
by enhancing apoptosis [187]. Conflicting stud-
ies by Ni et al. and Arce-Salinas et al. showed 
that inhibiting AR with the antagonist bicalu-
tamide led to growth inhibition and enhanced 
cell death [182, 188]. Interestingly, AR expres-
sion seems to be correlated with the over-
expression of the oncogene HER2 via a compli-
cated signaling cascade that involves 
upregulation of HER2 by AR and transcription 
factor β-catenin [182]. In addition, expression 
of the constitutively active AR variant AR-V7 in 
both ERα- breast cancer cell lines (e.g. MDA-
MB-453) and ERα- primary tissues is actually 
enhanced by the AR antagonist enzalutamide, 
which in turn increases cell growth and, as with 
more advanced stages of prostate cancer, 
could result in ADT resistance [71]. Clearly the 
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use of AR as a therapeutic target is wrought 
with complications, as both agonists and antag-
onists of AR have succeeded in either sup-
pressing or promoting tumor progression, and 
success appears to be highly dependent on AR 
isoform expression and ERα levels.

Discussion and conclusion

Triple negative breast cancer (i.e. ER-/PR-/
HER2-) is virtually impossible to treat with the 
established endocrine-based therapies, as 
such therapies were originally intended for can-
cers that are ERα-positive. However, our review 
illustrates how confining the triple negative 
designation can be, potentially preventing clini-
cians from considering other factors that play a 
role in breast cancer progression. Data 
obtained from basic and translational research 
studies indicate that there are indeed many 
other proteins involved in breast cancer devel-
opment and progression; but despite these 
findings, most clinical pathologists continue to 
follow the standard practice of categorizing 
breast tumors using only the three established 
markers- ERα, PR, and HER2. This apparent 
disconnect between the bench and the clinic is 
alarming when one considers that 10-15% of 
breast cancers are diagnosed as triple negative 
[2, 3] and that even patients diagnosed as ERα-
positive do not all respond equally well to anti-
estrogen treatment, which further demon-
strates the complexity of breast cancer and 
emphasizes the need for more therapeutic 
targets.

The goal of this review was to determine if other 
steroid hormone receptors- most notably ERβ 
and AR- should also be routinely analyzed and 
used as additional targets for breast cancer 
treatment and prognosis. Although a significant 
number of studies exist describing the pres-
ence of ERβ, AR, and PR in breast cancer cells 
or tissues, obtaining truly accurate expression 
levels from the literature proved difficult as all 
three of these receptors exist in at least two 
isoform states. Most studies did not account 
for this variability. Therefore, it is probable that 
many isoforms went undetected, which in turn 
could have led to an underestimate of a recep-
tor’s actual expression level. Yet, quantitative 
inaccuracies aside, we still found very strong 
evidence that each of these receptors influenc-
es tumor progression, either negatively or posi-

tively, depending upon which isoforms are pres-
ent and the level of ERα expression. For 
example, ERα+/PR+ breast tumors are generally 
found to be more responsive to endocrine treat-
ment than ERα+/PR- tumors [85, 91, 93-96], 
and yet a higher expression level of the PR-A 
isoform compared to PR-B has been associat-
ed with anti-estrogen resistance and subse-
quently poorer prognosis [102]. The isoforms of 
ERβ are capable of forming heterodimers with 
ERα, inhibiting ERα activity and consequently 
resulting in tumor suppression. However, other 
studies have shown a positive correlation 
between tumor progression and increased lev-
els of ERβ2/cx and ERβ5 isoforms relative to 
ERβ1 [135, 138, 139]. The expression of cer-
tain isoforms, such as ERβ5, has also been cor-
related with positive drug response [142]. 
Unfortunately, due to the relative scarcity of 
studies analyzing AR in breast tumors, few clini-
cally significant associations were found 
between a specific AR isoform and breast 
tumor progression. However, certain splice vari-
ants such as the ligand-independent isoform 
AR-V7 have been shown to impact tumor devel-
opment and progression in prostate cancer 
[67, 68], and a recent study by the Tilley lab 
strongly suggest that it may have the same 
impact on breast cancer progression [71]. 
Additionally, the available data do show that 
the presence of AR is correlated with good 
prognosis for both ERα-positive and ERα-
negative breast cancer, indicating that anti-
androgen therapy might be a viable option in 
certain breast cancers as it is in prostate 
cancer.

We acknowledge that more basic research is 
necessary to elucidate the molecular mecha-
nisms behind the steroid hormone receptors’ 
effects on breast cancer development and pro-
gression. In particular, more studies are need-
ed to better understand how ERβ, PR, and AR 
influence cell proliferation, apoptosis, and 
metastasis. However, in the interest of saving 
lives, we feel that the existing data justify col-
lecting more clinical data on a more massive 
scale. We contend that all breast tumor biop-
sies should be analyzed not only for ERα, HER2, 
and overall PR expression but also for each iso-
form of ERα, PR, ERβ, and AR. Obviously this is 
an ambitious undertaking that would require 
developing new techniques and improving cur-
rent detection methods for each isoform. In 
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addition, subsequent large-scale analysis of 
the data will be necessary to determine if con-
sistent patterns emerge linking the various 
expression levels of these markers and their 
isoforms with particular grades and stages of 
breast cancer.

More and more clinical labs are trending 
towards molecular diagnostic procedures such 
as next generation sequencing (NGS), RNA 
sequencing, and high-throughput qRT-PCR, all 
of which will allow scientists to analyze more 
genetic markers in a relatively short period of 
time. Additionally, the isolation and analysis of 
circulating cell-free DNA (ccfDNA) could allow 
for initial prognosis using very little sample. In 
fact, several clinical and translational studies 
have already shown how NGS and ccfDNA anal-
ysis can aid in breast cancer prognosis and 
tumor classification [189-193]. However, tech-
niques such as NGS are best suited for patients 
who may have a genetic predisposition for a 
particular cancer (e.g. BRCA1 and BRCA2 in 
some familial breast cancers); and though RNA 
sequencing and qRT-PCR do give information 
regarding transcriptional expression, it is at the 
protein level that phenotypes are often 
determined.

Therefore, although the utilization of molecular 
techniques will enable clinicians to obtain more 
information about a patient’s tumor, these 
techniques should always be used in conjunc-
tion with protein expression analyses- particu-
larly since not all of the steroid receptor iso-
forms are due to splicing variations but instead 
are generated post-translationally. In addition, 
post-translational modifications such as phos-
phorylation and glycosylation cannot be detect-
ed at the DNA or RNA level but only by analyzing 
the protein expression profiles of tumors. 
Finally, the heterogeneity of the cell population 
within an individual tumor must be taken into 
account when analyzing all the data this new 
technology will generate. To date, the most 
common procedures for studying protein ex- 
pression are immunohistochemistry and west-
ern blotting. Though immunohistochemistry 
provides an important visual of protein expres-
sion variations between tissues and even 
between cells within the tumor, and western 
blotting is a more stringent and exact method 
for detecting isoforms of varying molecular 
weights, both depend on antibody-binding, 

which is an indirect method of protein detec-
tion. Recent advances in multiplexed protein 
analysis include mass spectrometry immuno-
histochemistry (MSIHC), in which metal tags of 
varying masses are used to label antibodies, 
thus allowing for the simultaneous detection of 
up to 100 different protein targets [194]. Such 
a technique has been used successfully in ana-
lyzing various markers such as ERα, PR, and 
HER2 in breast tumor samples [195]. Again, 
however, such a technique still relies on anti-
body recognition and binding. Another tech-
nique that involves rapid protein isolation and 
sequencing on a large-scale would need to be 
developed in future to directly identify the vari-
ous steroid receptor isoforms expressed in a 
given tumor. Ultimately, we envision a multi-
pronged approach to breast cancer analysis 
that will allow detection of a variety of markers, 
including the many isoforms of ERα, ERβ, PR, 
and AR, coupled with the pathology of the 
tumor. The overall goal would be to provide 
each patient with a more personalized and 
accurate prognosis and more effective treat-
ment options, and maybe even render obsolete 
the term “triple negative breast cancer”.
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