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ABSTRACT Steroid biosynthesis and metabolism are reflected by the serum steroid metabolome and, in even

more detail, by the 24-hour urine steroid metabolome, which can provide unique insights into alterations of

steroid flow and output indicative of underlying conditions. Mass spectrometry–based steroid metabolome

profiling has allowed for the identification of unique multisteroid signatures associated with disorders of

steroid biosynthesis and metabolism that can be used for personalized approaches to diagnosis, differential

diagnosis, and prognostic prediction. Additionally, steroid metabolome analysis has been used successfully as a

discovery tool, for the identification of novel steroidogenic disorders and pathways as well as revealing insights

into the pathophysiology of adrenal disease. Increased availability and technological advances in mass

spectrometry–based methodologies have refocused attention on steroid metabolome profiling and facilitated

the development of high-throughput steroid profiling methods soon to reach clinical practice. Furthermore,

steroid metabolomics, the combination of mass spectrometry–based steroid analysis with machine

learning–based approaches, has facilitated the development of powerful customized diagnostic approaches.

In this review, we provide a comprehensive up-to-date overview of the utility of steroid metabolome analysis for

the diagnosis and management of inborn disorders of steroidogenesis and autonomous adrenal steroid excess in

the context of adrenal tumors. (Endocrine Reviews 40: 1605 – 1625, 2019)

T he serum and urine steroid metabolomes
provide significant insights into the biosyn-

thesis, metabolism, and excretion of steroid hormones
and readily reveal underlying enzymatic deficiencies

associated with steroidogenesis. Although alterations
in the steroid metabolome have been used to diagnose
inborn errors in steroidogenesis for several decades,
recent advances have refocused attention on the
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capabilities of steroid metabolome profiling. The
combination of mass spectrometry–based steroid
profiling with machine learning–based data analysis
has created a powerful discovery tool, steroid meta-
bolomics, highly suited as a diagnostic biomarker
approach (–). Furthermore, novel technological
developments have facilitated the development of
high-throughput multisteroid profiling methods soon
to reach clinical practice (–).

Adrenal cortex, gonads, and placenta are the pri-
mary sites of de novo steroidogenesis from cholesterol
(Fig. ). Some of the resulting steroids can directly bind
and activate steroid receptors in target cells of steroid
action, whereas others require downstream activation
but may also be inactivated or diverted to other steroid
pathways. This intracellular steroid prereceptor and
postreceptor metabolism has also been termed
“intracrinology” (), explaining why circulating steroid
concentrations are often not representative of ob-
served biological hormone activity. Moreover, adrenal
steroidogenesis exhibits a diurnal rhythm and, as a
result, single–time point serum steroid measurements
only provide snapshots. This problem is circumvented
by analyzing -hour urine collections, facilitating
quantitation of the net -hour steroid output.

Both endogenous and exogenous steroids undergo
hepatic metabolism (), with phase  reactions altering
the biological activity by adding or revealing functional
groups that can function as targets for subsequent
conjugation (phase ) reactions. Ultimately, this results
in steroid inactivation and increased water solubility,

facilitating urinary excretion, which accounts for ~%
of steroid excretion. Urine steroid metabolites origi-
nate from distinct circulating steroids (Fig. ; Table );
the -hour urine steroid metabolome serves as a
magnifying glass, facilitating the detection of alter-
ations in steroid biosynthesis or metabolism and, thus,
of underlying disorders.

Traditionally, gas chromatography–mass spectrom-
etry (GC-MS) has been employed for comprehensive
urine steroid metabolite profiling. Serum steroids are
now increasingly analyzed by ultra-HPLC–tandemmass
spectrometry (UHPLC-MS/MS), overtaking the use of
immunoassays, which are increasingly recognized as
compromised by cross-reactivity. In the routine clinical
biochemistry context, UHPLC-MS/MS is primarily used
for single steroid analysis; however, recent years have
seen the emergence of multisteroid mass spectrometry
analysis of serum and plasma steroids, and very recently,
also of urine steroid metabolites. The translational ap-
plication of steroidmetabolomics has not only facilitated
novel diagnostic biomarker approaches, but also facili-
tated the elucidation of novel steroid pathways and their
roles in human disease, the discovery of steroidogenic
disorders, as well as the more fine-grained catego-
rization of autonomous steroid excess. In this review,
we provide a comprehensive up-to-date overview of
the distinct steroid metabolome signatures associated
with disorders of steroid biosynthesis and metabolism,
summarizing current knowledge about their utility
for diagnosis, differential diagnosis, and prognostic
prediction.

Steroid Metabolome Signatures of Inborn
Errors of Steroid Biosynthesis and Metabolism

The steroid metabolome in congenital

adrenal hyperplasia

The variants of congenital adrenal hyperplasia (CAH)
comprise five autosomal recessive inborn disorders de-

fined by glucocorticoid deficiency resulting from inac-

tivating mutations in enzymes involved in adrenal

steroidogenesis (). Reduced cortisol feedback within

the hypothalamic–pituitary–adrenal (HPA) axis drives

continuous stimulation of the adrenal cortex by pituitary
ACTH, with subsequent adrenocortical hyperplasia and

enhanced activity of the unaffected adrenal steroidogenic

pathways. Dependent on the position of the enzymatic

block, mineralocorticoid and androgen production can

be decreased, increased, or normal, respectively.

CAH due to CYP21A2 deficiency

More than % of CAH cases are caused by mutant
-hydroxylase (CYPA) (), a key enzyme in

glucocorticoid and mineralocorticoid biosynthesis

ESSENTIAL POINTS

· The steroid metabolome reflects biosynthesis, metabolism, and excretion of steroid hormones and readily reveals

underlying conditions altering steroid flow and output

· The 24-hour urine steroid metabolome can be used to measure global steroid metabolism and net steroid output

· Unique urine steroid metabolome signatures (“steroid fingerprints”) result from inborn disorders of steroid biosynthesis

and conditions associated with autonomous adrenal steroid excess and can be used for diagnostic purposes

· The combination of mass spectrometry–based steroid profiling with machine learning–based data analysis has created a

powerful discovery tool, steroid metabolomics, which offers the prospect of personalized approaches to diagnosis,

prognostic prediction, and therapy
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(Fig. ); the presence and severity of loss of cortisol
and aldosterone production CYPA deficiency is
OHP, but OHPreg, Prog, and Preg are also in-
creased (). In the absence of CYPA activity,
CYPB atypically converts OHP to -deoxy-
cortisol. Therefore, diagnostic ratios of the urinary
metabolites of -deoxycortisol (PTONE) or OHP
(PT and HP) over glucocorticoid metabolites are
invaluable for the diagnosis of CYPA deficiency
() [Fig. A (–); Table  (, , , )].

In the past, diagnosis of CYPA deficiency has
been challenging in neonates and preterm infants, as
OHP radioimmunoassay results are compromised
by cross-reactivity of abundant neonatal b-OH-D

steroids (). When using GC-MS, polar OHP
metabolites such as b-pregnane-b,b,a-triol-
-one (, , ), as well as the ratio of PTONE
over a-hydroxylated cortisone metabolites, can
help discriminate affected from unaffected infants (,
), with additional diagnostic value provided by

Figure 1. Schematic overview of steroidogenesis and corresponding urine steroid metabolites. Steroids are color-coded according to

their bioactivity or commitment to a specific pathway: general precursors (yellow), mineralocorticoid precursors (light green), active

mineralocorticoid (dark green), glucocorticoid precursors and inactive metabolite (light orange), active glucocorticoid (dark orange),

androgen precursors (light blue), and active androgens (dark blue). Corresponding urinary metabolites are shown in yellow boxes. Arrows

are labeled with the catalyzing enzyme and isoform. Essential cofactor proteins are also indicated: ADX, adrenodoxin; b5, cytochrome b5;

PAPSS2, PAPS synthase 2; PRO, cytochrome P450 oxidoreductase; StAR, steroidogenic acute regulatory protein.
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Table 1. Urine Steroid Metabolites as Assessed by Gas Chromatography–Mass Spectrometry (GC-MS)

No. Abbreviation Common Name Chemical Name Metabolite of

Androgen metabolites

1 An Androsterone 5a-Androstan-3a-ol-17-one Androstenedione, testosterone,

5a-dihydrotestosterone

2 Et Etiocholanolone 5b-Androstan-3a-ol-17-one Androstenedione, testosterone

Androgen precursor metabolites

3 11b-OHAn 11b-Hydroxyandrosterone 5a-Androstane-3a,11b-diol-17-one 11b-Hydroxyandrostenedione

4 DHEA Dehydroepiandrosterone 5-Androsten-3b-ol-17-one DHEA 1 DHEA sulfate (DHEAS)

5 16a-OHDHEA 16a-Hydroxy-DHEA 5-Androstene-3b,16a-diol-17-one DHEA 1 DHEAS

6 5PT Pregnenetriol 5-Pregnene-3b,17a,20a-triol 17b-Hydroxypregnenolone

7 5PD Pregnenediol 5-Pregnene-3b,20a-diol Pregnenolone

Mineralocorticoid and mineralocorticoid precursor metabolites

8 THA Tetrahydro-11-dehydrocorticosterone 5b-Pregnane-3a,21-diol-11,20-dione 11-Dehydrocorticosterone

9 5a-THA 5a-Tetrahydro-11-dehydrocorticosterone 5a-Pregnane-3a,21-diol-11,20-dione 11-Dehydrocorticosterone

10 THB Tetrahydrocorticosterone 5b-Pregnane-3a,11b,21-triol-20-one Corticosterone

11 5a-THB 5a-Tetrahydrocorticosterone 5a-Pregnane-3a,11b,21-triol-20-one Corticosterone

12 THDOC Tetrahydro-11-deoxycorticosterone 5b-Pregnane-3a,21-diol-20-one 11-Deoxycorticosterone

13 18OHTHA 18-Hydroxy-tetrahydro-11-

dehydrocorticosterone

5b-Pregnane-3a,18,21-triol-11, 20-dione 18-Hydroxycorticosterone

14 THAldo 3a,5b-Tetrahydroaldosterone 5b-Pregnane-3a,11b,21-triol-20-one-18-al Aldosterone

15 18OHF 18-Hydroxycortisol 4-Pregnene-11b,17a,18,21-tetrol-3,20-dione Cortisol (hybrid steroid generated by

CYP11B2 18-hydroxylation)

16 18oxoF 18-Oxo-cortisol 4-Pregnene-11b,17a,21-triol-3,20-dione-18-al Cortisol (hybrid steroid generated by

CYP11B2 18-oxidation)

17 18oxoTHF 18-Oxo-tetrahydrocortisol 5b-Pregnane-3a,11b,17a,21-tetrol-20-one-18-al Cortisol (hybrid steroid tetrahydro

metabolites)

Glucocorticoid precursor metabolites

18 PD Pregnanediol 5b-Pregnane-3a,20a-diol Progesterone

19 5a-17HP 17a-Hydroxy-3a,5a-pregnanolone 5a-Pregnane-3a,17a-diol-20-one 17a-Hydroxyprogesterone

20 17HP 17a-Hydroxypregnanolone 5b-Pregnane-3a,17a-diol-20-one 17a-Hydroxyprogesterone

21 PT Pregnanetriol 5b-Pregnane-3a,17a,20a-triol 17a-Hydroxyprogesterone

22 PTONE Pregnanetriolone 5b-Pregnane-3a,17a,20a-triol-11-one 21-Deoxycortisol

23 THS Tetrahydro-11-deoxycortisol 5b-Pregnane-3a,17a,21-triol-20-one 11-Deoxycortisol

Glucocorticoid metabolites

24 F Cortisol 4-Pregnene-11b,17a,21-triol-3,20-dione Cortisol

25 6b-OHF 6b-Hydroxycortisol 4-Pregnene-6b,11b,17a,21-tetrol-3, 20-dione Cortisol

26 THF Tetrahydrocortisol 5b-Pregnane-3a,11b,17a,21-tetrol-20-one Cortisol

27 5a-THF 5a-Tetrahydrocortisol 5a-Pregnane-3a,11b,17a,21-tetrol-20-one Cortisol

28 a-Cortol a-Cortol 5b-Pregnane-3a,11b,17a,20a,21-pentol Cortisol

(Continued )
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a-pregnane-b,a,a-triol-,-dione and b-
pregnane-a,b,a-triol--one (, ).

Biologically active androgens are increased in
CYPA deficiency, driven by the accumulation of
precursor steroids prior to the enzymatic block,
feeding into all three major androgen biosynthesis
pathways: the classic androgen pathway, the alternative
pathway to DHT, and the -oxygenated androgen
pathway (Fig. ). The accumulation of OHP in-
creases atypical conversion of OHP to androste-
nedione (A) by CYPA ,-lyase activity, which
physiologically has a much higher preference for the
conversion of OHPreg to DHEA (). Accumu-
lating OHP also drives increased androgen pro-
duction by the alternative DHT pathway (), and
increased A feeds enhanced -oxygenated androgen
pathway activity () (Fig. ). An and Et are typically
raised in urines of untreated or poorly controlled
patients, although note that Et is derived solely from
the classic pathway, whereas An can be derived from
both classic and alternative androgen pathways (Table );
urinary DHEA(S) excretion is usually normal or only
mildly elevated. Alternative DHT pathway activity is
reflected by aHP and An (, ), whereas in-
creased -oxygenated pathway activity is reflected by
the major metabolite of OHA, b-OHAn (, ,
) (Figs. A and ; Table ).

CAH due to CYP17A1 deficiency

CYPA is vital for both glucocorticoid and androgen
biosynthesis via its a-hydroxylase and ,-lyase
activities, respectively. Therefore, CYPA deficiency
mostly presents with combined glucocorticoid and
sex steroid deficiency; HPA axis upregulation drives
increased mineralocorticoid production via the only
remaining functional adrenocortical biosynthesis
pathway. Glucocorticoid deficiency is rarely life-
threatening in CYPA deficiency, as increased
corticosterone exerts some glucocorticoid receptor
activation (, ).

Affected patients more commonly present with
symptoms of sex steroid deficiency with associated

hypertension due to very high levels of DOC. Because
not only female but also chromosomally male patients
appear phenotypically female, it is not uncommon that
diagnosis is not made until puberty. In CYPA
deficiency, serum DHEA and A are low at baseline
and after adrenal cosyntropin stimulation (). Urine
steroid profiling (Fig. B) shows a substantial reduc-
tion of all androgen metabolites, and diagnostic ratios
(Table ) indicate largely abolished ,-lyase activity
(, ).

Although milder forms of CYPA deficiency
have been reported, where only sex steroid production
seems to be present (so-called “isolated ,-lyase
deficiency”), stimulated cortisol levels do not rise
sufficiently in these patients, indicating glucocorticoid
deficiency (, ). Similarly, urine steroid profiling
in these milder cases suggests attenuation of a-
hydroxylase activity, assessed by the ratio of miner-
alocorticoid over glucocorticoid metabolites (, ),
which is the most important diagnostic ratio for this
disorder (Table ). In classic forms with severe
CYPA deficiency, DOC and corticosterone me-
tabolites are markedly increased, with mildly increased
Preg and Prog metabolites (). Circulating OHP is
significantly decreased, whereas cortisol and aldoste-
rone levels remain normal (, ). In neonates with
CYPA deficiency, the -keto corticosterone
metabolite -dehydrocorticosterone is dominant in
newborns and, therefore, urine steroid metabolites in-
creased in CYPA deficiency include THA, a-THA,
and a-hydroxy--dehydro-tetrahydrocorticosterone
(a-OHTHA), with the latter the most important
quantitative marker. Thus, useful diagnostic urine steroid
ratios in neonates include a-OHTHA/cortisol metab-
olites and a-hydroxypregnenolone/a-OHDHEA
().

CAH due to P450 oxidoreductase deficiency

P oxidoreductase (POR) is the crucial electron
donor for microsomal cytochrome P (CYP) enzymes,
including the steroidogenic enzymes CYPA,
CYPA, and, to a lesser degree, CYPA (, ).

Table 1. Continued

No. Abbreviation Common Name Chemical Name Metabolite of

29 b-Cortol b-Cortol 5b-Pregnane-3a,11b,17a,20b,21-pentol Cortisol

30 11b-OHEt 11b-Hydroxyetiocholanolone 5b-androstane-3a,11b-diol-17-one Cortisol

31 E Cortisone 4-Pregnene-17a,21-diol-3,11,20-trione Cortisone

32 THE Tetrahydrocortisone 5b-Pregnene-3a,17a,21-triol-11,20-dione Cortisone

33 a-Cortolone a-Cortolone 5b-Pregnane-3a,17a,20a,21-tetrol-11-one Cortisone

34 b-Cortolone b-Cortolone 5b-Pregnane-3a,17a,20b,21-tetrol-11-one Cortisone

35 11ketoEt 11-Ketoetiocholanolone 5b-Androstan-3a-ol-11,17-dione Cortisone
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The discovery of the molecular basis of POR deficiency
(PORD) in  (, ) solved the puzzle previously
posed by patients with a unique urine steroid profile
published  years earlier, indicating the concurrent
presence of CYPA and CYPA deficiencies ().
Most patients have normal baseline cortisol but re-
spond insufficiently to cosyntropin (), indicative of
partial glucocorticoid deficiency, which requires stress
dose cover with glucocorticoids in case of intercurrent
illness, major stress, or surgery. Mineralocorticoid
production is preserved or enhanced, with hyper-
tension typically manifesting in adulthood (). Preg
and Prog are characteristically increased, whereas
OHP is only mildly elevated. The impairment of
other enzymes involved in cholesterol biosynthesis
(CYPA, SQLE) (, ) and retinoic acid meta-
bolism (CYPA, CYPB, CYPC) (, )

results in skeletal and multiple other malformations
resembling the Antley-Bixler phenotype (). PORD
also results in decreased hepatic drug metabolism, due
to reduced capacity of CYPA, but also CYPA,
CYPD, CYPC, and CYPC ().

The urine steroid metabolome in PORD shows
characteristically increased Preg and Prog metabolites
(PD and PD; Fig. C, Table ), which together with
the increased metabolites attributed to partial CYPA
and CYPA deficiencies establishes the diagnosis (,
, , ) (Table ). PD, excreted as a bis-sulfate, is
particularly prominent in neonates and young infants
with PORD ().

In PORD, DSD has been reported in individuals of
both chromosomal sexes, and patients can present as
virilized females (,XX DSD) as well as under-
masculinized males (,XY DSD). This paradox has

Figure 2. (a–e) Schematic

visualization of urine

steroid metabolome

signatures in the five

variants of CAH. (a)

CYP21A2, (b) CYP17A1, (c)

POR, (d) CYP11B1, and (e)

HSD3B2 deficiencies. The

figure depicts the changes

in the major urine steroid

metabolites relative to the

reference range median of

each metabolite and does

not represent overall

quantitative excretion.

Steroid metabolites are

mapped onto the

steroidogenic pathways

leading to mineralocorticoid,

glucocorticoid, and

androgen biosynthesis as

shown in Fig. 1. Data derived

from (13–28).
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been explained by the alternative pathway to DHT (Fig.
), proposed to be mostly active during fetal life, with
very low or absent activity in the postnatal situation ().
In individuals with ,XX, androgen excess generated
via the alternative pathway may cause virilization;
equally, androgen biosynthesis may be insufficient to
masculinize external genitalia in individuals with ,XY,
depending on the effect of the underlying mutations (,
, ). POR mutations allowing for significant residual
alternative pathway activity present with ,XY DSD
and normal male genitalia in individuals with ,XY,
whereas major loss-of-function PORmutations result in
normal female phenotype and ,XY DSD. Maternal
virilization is also a characteristic feature in many but
not all pregnancies with affected babies ().

Prenatal diagnosis at midpregnancy is straight-
forward (, ). Attenuated activity of POR results
in multiple enzyme deficiencies en route to estriol.
As a result, unconjugated serum estriol is typically
very low. Decreased CYPA activity yields excess
excretion of a-pregnane-b,a-diol (ba-PD)
bis-sulfate, a fetal pregnenolone metabolite, in-
creasing the urinary ba-PD/estriol ratio ().
Upregulation of the alternative pathway upregulates
a-HP and An production, and consequently
increased urinary An/Et and a-HP/HP ratios
(). LC-MS/MS analysis of conjugated urine steroids
recently revealed ba-PD bis-sulfate and estriol
glucuronides to be useful in the prenatal diagnosis of
this disorder ().

Table 2. Substrate/Product Ratios of Urine Steroid Metabolites Used for the Biochemical Diagnosis of Inborn Errors of

Steroidogenesis

Enzymatic Activity Enzymes Involved Ratio

21-Hydroxylase CYP21A2 and POR 100*PTONE/(THE1THF15a-THF)

(17HP1PT)/(THE1THF15a-THF)

17a-Hydroxylase CYP17A1 and POR (THA15a-THA1THB15a-THB)/

(THE1THF15a-THF)

(THA15a-THA1THB15aTHB)/(An1Et)

17,20-Lyase CYP17A1 and CYB5A and POR 5PT/DHEA

(17HP1PT)/(An1Et)

P450 oxidoreductase POR PD/(THE1THF15a-THF)

5PD/(THE1THF15a-THF)

11b-Hydroxylase CYP11B1 100*THS/(THE1THF15a-THF)

3b-Hydroxysteroid dehydrogenase HSD3B2 DHEA/(THE1THF15a-THF)

5PT/(THE1THF15a-THF)

5PT/PTONE

11b-Hydroxysteroid dehydrogenase type 2 HSD11B2 F/E

(THF15a-THF)/THE

Cortols/cortolones

(F1E)/(THF15a-THF1THE)

11b-Hydroxysteroid dehydrogenase type 1 HSD11B1/H6PDH THE/(THF15a-THF)

Cortolones/cortols

5a-Reductase type 2 SRD5A2 Et/An

THB/5a-THB

THF/5a-THF

17b-Hydroxysteroid dehydrogenase type 3 HSD17B3 (An1Et)/(THE1THF15a-THF)

An/Et

The prefix 100* indicates that

steroid values are to be

multiplied by 100 before

calculating the respective

steroid ratio. Ratios derived

from (13, 26, 29, 30).

For all abbreviations, see Table 1.

1611doi: 10.1210/er.2018-00262 https://academic.oup.com/edrv

REVIEW
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
-a

b
s
tra

c
t/4

0
/6

/1
6
0
5
/5

5
3
0
2
2
6
 b

y
 Ia

n
 N

o
rth

o
v
e
r o

n
 1

2
 M

a
y
 2

0
2
0

http://dx.doi.org/10.1210/er.2018-00262
https://academic.oup.com/edrv


CAH due to CYP11B1 deficiency

CYPB catalyzes key reactions in the mineralocorticoid
and glucocorticoid pathways. CYPB deficiency results
in cortisol deficiency, mineralocorticoid excess, and an-
drogen excess. The marker steroid is -deoxycortisol,

accumulating prior to the enzymatic block. DOC also
accumulates due to continuous ACTH stimulation,
resulting in arterial hypertension (, ), with CYPB-
mediated conversion of DOC to corticosterone not suf-
ficient to compensate for loss of CYPB function.

Figure 3. Schematic overview of the three major pathways of human androgen biosynthesis. The classic, alternative, and 11-

oxygenated androgen pathways are each shown in different colors. Androgens that activate the androgen receptor are shown with

broad blue arrows leading from them. Other arrows are labeled with the catalyzing enzyme and isoform where appropriate. Essential

cofactor proteins are also indicated: b5, cytochrome b5; PAPSS2, PAPS synthase 2; POR, cytochrome P450 oxidoreductase.
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Serum A and testosterone (T) are increased in
untreated or poorly controlled individuals, whereas
-oxygenated androgens are characteristically absent,
with low excretion of the OHA metabolite b-
OHAn (, ). The urine steroid metabolome
is dominated by THS; diagnosis is facilitated by the
ratio of THS over glucocorticoid metabolites (Table ;
Fig. D). THDOC is also increased. In contrast to
CYPA deficiency, PTONE is low in CYPB
deficiency, as OHP cannot be b-hydroxylated.
In neonates, high a-hydroxylase activity increases
a-hydroxytetrahydrotetrahydro--deoxycortisol
(a-OHTHS) excretion, which adds diagnostic value
(, ).

CAH due to HSD3B2 deficiency

HSDB (D- isomerase) is crucial to the production
of all three major adrenal steroid classes as well as
gonadal androgens (Fig. ). Deficiency of HSDB,
therefore, leads to reduced mineralocorticoid, gluco-
corticoid, and sex steroid production. HPA axis ac-
tivation drives precursor accumulation, in particular
OHPreg (). Classically, patients manifest early in
the neonatal period with severe salt-wasting adrenal
insufficiency, but broad phenotypic variation is re-
ported (). The HSDB isoform, expressed in the
placenta several peripheral tissues, converts accumu-
lating ∆

5 steroids such as 17OHPreg or DHEA to
17OHP and active androgens, respectively. Therefore,
serum 17OHP can be elevated and individuals with
46,XX can present virilized. In urine, the 17OHPreg
metabolite 5PT and DHEA are raised, and down-
stream metabolites of all steroidogenic pathways are
reduced (21) (Fig. 2E). Surprisingly, excretion rates of
PT, 17HP, and PD are elevated, similar to CYP21A2
deficiency; however, in CYP21A2 deficiency, the 5PT/
PTONE ratio is typically low (,.), whereas it is high
(.) in HSDB deficiency (, ) (Table ). In
neonates, elevated PT is also an important marker
(), with added diagnostic value of -pregnene-
b,b,a-triol--one and its -reduced metabo-
lite (, ).

Inborn disorders of androgen biosynthesis

and metabolism

SRD5A2 deficiency

SRDA catalyzes the final activating step of the classic
androgen biosynthesis pathway, the a-reduction of
T to the more potent DHT (Fig. ). In chromosomally
male individuals, SRDA deficiency presents with
undermasculinization, that is, ambiguous genitalia
at birth (,XY DSD) (). SRDA deficiency has
elucidated the crucial role of DHT in male genital skin,
as in its absence, external genital masculinization does
not occur. If not diagnosed and appropriately treated,
affected individuals are inadvertently raised as females
and, owing to increased expression of SRDA in the

genital area at pubertal age, may then present with
significant virilization and phallus growth (, ).

Serum DHT is low/undetectable at baseline and
after human chorionic gonadotropin (hCG) stimula-
tion, with inappropriately high T. However, estab-
lishing the diagnosis from the hCG-stimulated serum
T/DHT ratio is highly challenging, due to the very low
circulating DHT concentrations, in particular in in-
fants and prepubertal children (–).

The diagnosis from urine steroid profiling is
straightforward [Fig.  (, , )], with most robust
information provided by diagnostic ratios of a-
reduced over b-reduced glucocorticoid and miner-
alocorticoid metabolites (Table ) (), owing to the
abundance of those metabolites compared with an-
drogen metabolites, in particular in prepubertal
children. Diagnosis can be difficult in neonates and
may not be reliably established from urine steroid
profiling until the age of  months, owing to high
activity of the SRDA isoform and lower excretion
rates of cortisol metabolites during this stage of de-
velopment (, , ).

HSD17B3 deficiency

Inactivating HSDB mutations results in failure to
convert A to T in the fetal testis, causing male
undermasculinization (,XY DSD) (). Owing to
increasing expression of other HSDB isoforms ca-
pable of using A as a substrate, affected individuals
tend to experience significant virilization at the time of
puberty.

Figure 4. Heat map visualization of urine steroid metabolome

signatures associated with inborn disorders of androgen

biosynthesis. The figure depicts the changes in the major urine

steroid metabolites associated with androgen biosynthesis

relative to the reference range median of each steroid

metabolite and does not represent overall quantitative

excretion. For explanation of the link between precursors, active

steroids, and their metabolites, please see Fig. 1. Data derived

from (15, 61, 62).
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Serum T is low and A increased, both at baseline
and after hCG stimulation. An hCG-stimulated T/A
ratio,. has been suggested as diagnostic in children
(). However, false-positive results have been re-
ported in other disorders of T biosynthesis or struc-
tural abnormalities of the testis, that is, Leydig cell
hypoplasia (, ).

There is a paucity of published data on urine
steroid profiling in HSDB deficiency. One might
expect that measuring a pair of -keto and -
hydroxy ratios would allow for diagnosis, but in our
experience this is not the case, possibly explained by
the activities of other HSDB isoforms. Affected
children excrete high levels of the major androgen
metabolites, particularly An, increasing the An/Et ratio
(Fig. ). Otherwise, the steroid metabolome is largely
normal (, , ). A notable feature, useful diag-
nostically, is an increased androgen-over-glucocorticoid
metabolite ratio (An1Et/THE1THF1aTHF)
(Table ). Age-appropriate controls are important
when utilizing this ratio.

CYB5A deficiency (true isolated

17,20-lyase deficiency)

Cytochrome b (CYBA) is a modulator crucially
required for CYPA ,-lyase activity (Fig. ) and
hence essential for sex steroid production. Individuals
with ,XY with inactivating CYBA mutations
present with ,XY DSD at birth, and girls with ,XX
present with lack of adrenarche, pubertal development, and
primary gonadal failure in adolescence. Mild but clinically
asymptomatic methemoglobinemia is also observed due to
the role of CYBA in Hb metabolism ().

Serum sex steroids DHEA(S), A, and T as well as
b-estradiol are undetectable at baseline and after
cosyntropin or hCG stimulation (, ). Urine steroid
profiling data are available in three siblings (): ex-
cretion rates of the OHPreg metabolite PT are
increased, with reduced androgen excretion but normal
glucocorticoids and mineralocorticoids (Fig. ). In con-
trast to ,-lyase deficiency in the context of CYPA
deficiency (see “CAH due to CYPA deficiency”
above), which always comes with a degree of impairment
of CYPA a-hydroxylase activity, CYBA deficiency
represents “true” isolated ,-lyase deficiency (, );
increased steroid ratios for ,-lyase activity with
normal ratios for a-hydroxylase activity are diagnostic
(Table ).

Inborn disorders of sulfation and desulfation

Steroid sulfatase deficiency

Steroid sulfatase (STS) cleaves the sulfate moiety off a
variety of sterol and steroid sulfates, including
DHEAS (). Patients with STS deficiency (STSD) are
mainly affected by X-linked ichthyosis characterized
by dark-brown scaling of the skin due to accumu-
lating cholesterol sulfate in the epidermis (, ).

STSD could theoretically contribute to a reduced
desulfation of DHEAS and, therefore, reduced
availability of DHEA for downstream activation to T
and DHT. However, several previous studies did not
find clinically significant androgen deficiency in af-
fected patients (–). A study exploring the serum
and urine steroid metabolome in prepubertal and
postpubertal children found decreased serum DHEA
and T compared with matched controls (). The
urinary excretion of active androgen metabolites An
and Et, however, was similar in STSD and controls,
possibly due to an upregulation of systemic a-re-
ductase activity, as indicated by an increased urinary
a-THF/THF ratio (). The serum DHEA/DHEAS
ratio reflective of global STS activity was high in
prepubertal controls and decreased during the course
of puberty; in contrast, STSD patients showed low
DHEA/DHEAS ratios both prepubertally and post-
pubertally (). This suggests a physiological role of
STS prior to puberty, possibly for fine tuning of
tissue-specific androgen activation, no longer needed
postpubertally in the presence of high gonadal an-
drogen production.

Serum cholesterol sulfate is highly elevated in STS
deficiency (), and diagnosis can readily be achieved
by UHPLC-MS/MS analysis of the intact conjugate
(, ).

There are antenatal indicators of STSD, and pre-
natal diagnosis of an affected fetus is straightforward.
It is the most common cause of low estriol produc-
tion during pregnancy, with free urine estriol values
typically very low. The placenta of an affected fetus
is unable to desulfate the fetal estriol precursors
(e.g., a-OHDHEAS), thus preventing unconjugated
a-OHDHEA formation and its conversion to a-
hydroxyandrostenedione. Concomitantly, increased
maternal excretion of all D steroid sulfates, particu-
larly the two precursors of estriol, a-OHDHEAS
and androstenetriol sulfate (-androstene-b,a,b-
triol sulfate), are characteristic of this disorder during
pregnancy (). The ratio of urinary a-OHDHEA/
estriol measured by GC-MS is used for diagnosis ().
Moreover, UHPLC-MS/MS of intact steroid conjugates
has recently been evaluated for prenatal STSD diagnosis
(). a-OHDHEA sulfate, -pregnene-b,a-diol
bis-sulfate, -hydroxypregnenolone bis-sulfate, and
estriol glucuronides were found to be effective di-
agnostic markers.

PAPSS2 deficiency (apparent DHEA

sulfotransferase deficiency)

PAPSS generates the universal sulfate donor PAPS
required by DHEA sulfotransferase (SULTA), which
catalyzes sulfation of DHEA to DHEAS (Fig. ) ().
PAPSS deficiency is a rare monogenic form of an-
drogen excess caused by impaired DHEA sulfation,
resulting in an increased downstream activation of
unconjugated DHEA to androgens ().
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The seminal case of PAPSS deficiency was a girl with
early-onset androgen excess who clinically presented with
premature adrenarche at the age of  years, thereafter
progressing to a polycystic ovary syndrome (PCOS)–like
phenotype in adolescence (). The key abnormality was
low/undetectable serum DHEAS, but high levels of A, T,
and DHT. Low serum DHEAS is a common finding in
patients with PAPSS deficiency (–).

Detailed investigations of steroid metabolism are
available from two brothers with compound hetero-
zygous PAPSS mutations and their heterozygous
parents (). After an oral DHEA challenge, the
brothers and their mother exhibited a subnormal rate
of DHEAS generation, whereas DHEA generation and
urinary androgen excretion increased, with evidence of
increased a-reductase activity (Table ) in the af-
fected brothers and their mother (). Of note, this
mother and the mother of the first reported case were
carriers of major loss-of-function PAPSS mutations
and presented clinically with PCOS.

Inborn disorders of cortisol activation

and inactivation

Cortisone reductase (HSD11B1) deficiency and

apparent cortisone reductase (H6PDH) deficiency

Cortisone reductase deficiency (CRD) and apparent
CRD (ACRD) are characterized by the inability to
generate active cortisol from cortisone (Fig. ), with
the consequently activated HPA axis driving ACTH-
mediated excess adrenal androgen secretion. CRD is
caused by HSDB deficiency () whereas ACRD
results form a deficiency in the activity of HPDH,
which is essential for maintaining the reductive activity
of HSDB in vivo by the reduced form of NAD
phosphate provision to the enzyme (, ).

Clinically, CRD and ACRD present with a similar
phenotype, with affected individuals developing an-
drogen excess in childhood, coming to clinical attention
with premature adrenarche in children of both sexes or
in adolescent and young adult women with a PCOS-like
phenotype (, –). Urine steroid profiling reveals
distinct alterations in glucocorticoid metabolism ac-
companied by an overall increase of androgen excretion
rates (, , ). Notably, the urinary excretion of
cortisone metabolites is increased whereas cortisol
metabolites are decreased () [Fig. A and B (, ,
–)], resulting in reduced ratios of cortisol over
cortisone metabolites (Table ).

Detailed analysis of CRD and ACRD cases suggest
that the (a-THF1THF)/THE ratio and the cortols/
cortolones ratio may be used to distinguish the two
conditions (#. for ACRD but . to . in CRD)
(). Total androgen metabolite excretion is increased;
however, a distinction between CRD and ACRD based
on androgen metabolites is not possible, although
there is a tendency toward higher androgen output in
CRD (). Global a-reductase activity based on

a-reduced over b-reduced THF is increased in most
ACRD cases, but normal in CRD ().

HSD11B2 deficiency (apparent

mineralocorticoid excess)

The central role of HSDB is to protect mineral-
ocorticoid target tissues from cortisol-mediated acti-
vation of the mineralocorticoid receptor (MR) ().
Therefore, HSDB deficiency caused by inborn
mutations or excess consumption of HSDB in-
hibitors (carbenoxolone, licorice) (, ) leads to
unwanted excess MR activation by cortisol, resulting
in apparent mineralocorticoid excess (AME) ().
Clinically, HSDB deficiency manifests with hy-
pertension, hypokalemia, and low renin levels, but no
evidence of excess mineralocorticoid secretion, with
subnormal levels of aldosterone (). Most patients are
children presenting within the first year of life with
failure to thrive, short stature, and hypokalemia
leading to thirst, polydipsia, and polyuria ().

Circulating cortisol remains normal due to in-
creased negative HPA axis feedback. Circulating
cortisone is decreased, which increases the cortisol/
cortisone ratio (), the key marker of HSDB
function (). The urine steroid metabolome shows
increased excretion of b-hydroxysteroids over the
respective -ketosteroids (Fig. C).

The ratio of cortols/cortolones is increased (, ,
), whereas ketoEt excretion is undetectable ().
The excretion of metabolites of DOC and aldosterone
are subnormal () as, in fact, is the excretion of all
steroids. Quantitatively, even the diagnostic “hyper-
produced” b-hydroxy cortisol metabolites are at the
lower end of the normal range for age.

Features of impaired cortisol clearance other than
decreased cortisol -oxidation have also been observed
in AME. An increased urinary a-THF/THF ratio
indicates reduced AKRD activity or a shunt of
cortisol into the pathway of a-reduction of gluco-
corticoids (, ). There is also an impaired conversion
of tetrahydro cortisol metabolites to their corresponding
hexahydro metabolites, indicating defective reductive
metabolism of the cortisol side chain. There is an in-
creased excretion of urinary free cortisol and cortisol
metabolites with an unreduced or incompletely reduced
A-ring—for example, b-OHF and a-dihydrocortisol
(, ). The urinary free cortisol–to–urinary free
cortisone ratio has emerged as a more sensitive marker
for AME than the ratio of (THF1a-THF)/THE (),
as A-ring reduction to tetrahydro metabolites takes
place mainly in the liver and their ratio may not ac-
curately reflect renal HSDB activity.

Inborn mineralocorticoid deficiency and excess

CYP11B2 deficiency

CYPB catalyzes the three final steps of aldoste-
rone production, exerting sequential b-hydroxylase,

“…machine learning–driven

analysis of the urinary steroid

excretion data allowed for

rapid detection of a ‘malignant

steroid fingerprint’….”
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-hydroxylase, and -oxidase activities (Fig. ).CYPB
mutations invariably result in loss of -oxidase activity,
whereas the -hydroxylase activity can be either preserved
or lost. In both cases, patients present with identical clinical
features of mineralocorticoid deficiency: signs of hypo-
natremia, hyperkalemia, and hypovolemia, which can lead
to shock and death. Plasma renin activity is increased in
affected children, but it can be normal in adults (, ).
As the two-step conversion of corticosterone to aldoste-
rone was initially considered to be catalyzed by two dif-
ferent enzymes—corticosterone methyloxidase I (CMO I,
-hydroxylase) and corticosterone methyloxidase II
(CMO II, -oxidase)—a biochemical categorization
of CYPB deficiencies as CMO I and CMO II is still
widely accepted.

18-Hydroxylase deficiency (CMO I due to

CYP11B2 deficiency). -hydroxylase deficiency re-
sults in low serum -hydroxycorticosterone (OHB) and
low to undetectable aldosterone, with concomitant accu-
mulation of corticosterone. As a consequence, urinary
excretion of OHTHA and THAldo is low whereas
corticosterone metabolites are high [Fig.  (, –)].

THDOC may also be increased, whereas cortisol
metabolite excretion is normal (, ). In neonates,
a-THA is higher than a-THB, due to the domi-
nance of the -keto derivatives, and a-OHTHA is
also a quantitatively relevant metabolite, due to high
neonatal a-hydroxylase activity ().

18-Oxidase deficiency (CMO II due to

CYP11B2 deficiency). In -oxidase deficiency,
aldosterone levels are low whereas OHB levels are
increased, in contrast to low OHB in CMO I. Serum
corticosterone is normal to high, depending on the
severity of -oxidase deficiency. Consequently, the
urine metabolome shows low to undetectable THAldo,
whereas OHTHA is significantly increased (Fig. ).
Corticosterone metabolite excretion is normal or in-
creased, whereas cortisol metabolites are normal (,
, ). The urinary ratio of THAldo/OHTHA or
plasma aldosterone/OHB discriminate CMO I and
CMO II conditions (, , ). When aldosterone is
undetectably low and these ratios are incalculable, which
can occur in CMO I conditions (), the circulating
OHB/B ratio or urinary OHTHA/THBs ratio can
be used ().

Pseudohypoaldosteronism

Pseudohypoaldosteronism (PHA) is a rare syndrome of
systemic or renal mineralocorticoid resistance charac-
terized by excessive aldosterone secretion, but clinical
signs of hypoaldosteronism, which may result from
genetic disorders, transient, or secondary salt-losing
states (, ). PHA is characterized by increased
plasma renin and aldosterone as well as increased
urinary excretion of aldosterone metabolites (, ,
). Unlike CYPB deficiency CMO II, both

Figure 5. Heat map

visualization of urine

steroid metabolome

signatures associated with

HSD11B and H6PDH

deficiencies. (a) H6PDH

deficiency, (b) HSD11B1

deficiency, and (c)

HSD11B2 deficiency. The

figure depicts the changes

in the major urine steroid

metabolites relative to the

reference range median of

each metabolite and does

not represent overall

quantitative excretion.

Steroid metabolites

are mapped onto

the steroidogenic

pathways leading to

mineralocorticoid,

glucocorticoid, and

androgen biosynthesis as

shown in Fig. 1. Data

derived from (90, 92,

95–100).
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OHTHA and THAldo are increased in neonates, and
thus their ratio is unaffected in PHA, allowing the two
conditions to be distinguished (Fig. ) ().

Glucocorticoid-remediable aldosteronism

Rare unequal crossover events between the CYPB
and CYPB genes yield a hybrid CYPB gene
composed of the ACTH-responsive promoter and first
exons of CYPB fused in-frame to the major part of
CYPB, resulting in ACTH-driven mineralocorti-
coid production (, ). Mineralocorticoid excess is
controlled by exogenous glucocorticoid administra-
tion, which suppresses endogenous ACTH, reflected in
the name of the condition, glucocorticoid-remediable
aldosteronism (GRA), sometimes also called familial
hyperaldosteronism (FHA) type .

GRA is characterized by aldosterone excess with
suppressed renin and increased production of -
oxygenated cortisol “hybrid”metabolites, -hydroxycortisol
(OHF) and -oxocortisol (oxoF) (Fig. ) (–).
Urinary excretion of aldosterone metabolites is increased
(Fig. ) (, ), with the urinary (OHF1oxoF)/
THAldo ratio further supporting diagnosis (); the
urinary metabolite oxoTHF (Fig. ) is characteristically
increased.

The Steroid Metabolome in Autonomous
Adrenal Steroid Excess

Autonomous adrenal cortisol excess

Clinically overt Cushing syndrome presents with
characteristic signs and symptoms (facial plethora,
broad and purplish stretch marks, easy bruising,
proximal muscle weakness) but also less specific ones
(centripetal obesity, acne, hirsutism, oligomenorrhea,
edema, hypertension, type  diabetes, osteoporosis)
(, ). Most cases of Cushing syndrome are due
to excess stimulation of the adrenals by ACTH, either
due to a pituitary tumor (5 Cushing disease; % to
%) or ectopic ACTH secretion (% to %).
However, in the remaining % to %, primary
adrenal cortisol excess is the cause of disease, mostly
due to a glucocorticoid-secreting adrenocortical
adenoma (ACA) or, less frequently, an adrenocortical
carcinoma (ACC) (). More rarely, autonomous
adrenal cortisol hypersecretion is caused by primary
bilateral macronodular adrenal hyperplasia, due to
AMRC mutations (), or primary pigmented
nodular adrenocortical disease due to inactivating
PRKARA mutations, affecting the regulatory sub-
unit of the cAMP-dependent protein kinase A ().
Mutations in the PRKACA gene, encoding the cat-
alytic subunit of protein kinase A, have been iden-
tified as a frequent cause of cortisol excess in
unilateral adrenal adenomas due to somatic driver
mutations, but also as a rare germline mutation
underlying bilateral macronodular adrenal hyper-
plasia ().

Adrenal masses are found incidentally in a large
number of individuals, and it is estimated that % of
the general population harbor an adrenal mass. Only
% of those are cortisol-producing adenomas that
manifest as adrenal Cushing syndrome. However,
much larger numbers of ACAs are associated with
mild autonomous cortisol excess (MACE), also pre-
viously termed subclinical Cushing syndrome (–).
MACE presents with nonspecific signs and symptoms
potentially related to cortisol excess, lacking the char-
acteristic clinical Cushing features. The exact prevalence
and clinical implications of this condition remain in-
completely determined, but an association withmetabolic
comorbidities (obesity, type  diabetes, hypertension, os-
teoporosis) has been reported by retrospective studies
(–) and a recent systematic review and meta-
analysis ().

The urine steroid metabolome of patients with
overt Cushing syndrome is characterized by excessive
excretion of glucocorticoid and mineralocorticoid
precursor metabolites, although androgen metabolites
tend to be suppressed (, ) in adrenal Cushing
but increased in ACTH-dependent Cushing syndrome
(, ) [Fig. A and B (, –)]. Similar, albeit
less pronounced changes are observed in patients with
MACE () (Fig. C).

Figure 6. Heat map visualization of urine steroid

metabolome signatures associated with inborn

mineralocorticoid excess. The figure depicts the changes in the

major urine steroid metabolites associated with

mineralocorticoid biosynthesis relative to the reference range

median of each metabolite and does not represent overall

quantitative excretion. For explanation of the link between

precursors, active steroids, and their metabolites, please see

Fig. 1. Data derived from (50, 112–124).
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In Cushing syndrome, excess cortisol overwhelms
the capacity of HSDB (, ), the enzyme that
inactivates cortisol to cortisone, resulting in a high ratio
of urinary (THF1a-THF)/THE (). a-Reductase
activity is mostly decreased in Cushing syndrome, as
reflected by an increased THF/a-THF ratio (). The
possibility that steroid profiling may be used diagnos-
tically for the differential diagnosis of patients with
Cushing syndrome has only been tentatively explored
(), and it is not known yet whether different genetic
causes of autonomous adrenal cortisol excess manifest
with distinct steroid metabolomes.

Autonomous adrenal mineralocorticoid excess

Autonomous aldosterone secretion [primary aldoste-
ronism (PA)] is the most common disorder of adrenal
steroidogenesis and represents the predominant cause of
secondary hypertension, affecting at least % of the hy-
pertensive population (). The vast majority of PA cases
correspond to two types: bilateral hyperaldosteronism
(% to %) and unilateral aldosterone-producing ad-
enoma (APA; % to %) (). Rare familial forms of
PA have been shown to be associated with germline
mutations in KCNJ (), CACNAD (), CACNAH
(), and CLCN (). Similarly, somatic driver mu-
tations in KCNJ, ATPA, ATPB, CACNAD, and
CTNNB have been discovered in APA tissue, altogether
accounting for most cases (, , –). Most of
these ion channel mutations lead to enhanced calcium
influx into zona glomerulosa cells, thereby stimulating
aldosterone synthase (CYPB) expression (). Un-
treated PA exposes patients to a higher cardiovascular risk
than for non-PA patients with similar degrees of hy-
pertension (–). Differentiation between the dif-
ferent subtypes of PA is clinically important: unilateral
disease is an indication for surgery whereas bilateral
disease is bestmanagedmedically withMR blockers ().

Biochemically, the hallmark of PA is the combination of
high plasma aldosterone and suppressed renin (). Some
PA patients have high circulating levels of the two “hybrid”
cortisol metabolites, -hydroxycortisol and -oxocortisol
(Fig. ) (, , ). Serum and urinary -hydrox-
ycortisol, -oxocortisol, and -oxo-THF excretion are
highest in FHA type  (5 GRA, see “Glucocorticoid-
remediable aldosteronism” above) (, ) and FHA type
 (germline KCNJ mutations) (); they also tend to be

higher in APA than in bilateral hyperaldosteronism, albeit
with considerable overlap (). No distinct steroid
metabolome signature has been identified for other PA-
causing mutations yet, mostly due to the rarity of cases.

Until recently, PA had been regarded as a disorder
of mineralocorticoid biosynthesis only; however, it
has now been shown that a large proportion of PA
patients also demonstrate excessive urinary excretion
of glucocorticoid metabolites, as well as of the -
oxygenated androgen metabolite b-OHAn () (Fig.
D). Both the conversions of -deoxycortisol to cortisol
and A to OHA are catalyzed by the adrenal enzyme
CYPB, and a recent study showed that the immu-
nohistochemical expression of CYPB in APA tissue
correlated with the corresponding excretion of gluco-
corticoid and -oxygenated androgen metabolites
(). This prevalent cosecretion of both cortisol and
aldosterone in PA, termed “Connshing syndrome” (,
), is likely to explain the reported increased risk
of type  diabetes, osteoporosis, and depression in PA
(, –), which have no intuitive link to min-
eralocorticoid activity, but represent commonly noted
consequences of cortisol excess.

Autonomous adrenal androgen excess

Adrenal androgen excess is a common feature of
steroid excess in patients with ACC, although rarely
isolated and more commonly cosecreted with other
steroids. Isolated autonomous androgen excess from
the adrenal gland can very rarely occur in the context
of benign ACAs (). Isolated macronodular hyper-
plasia of the zona reticularis is very rare, with only one
case reported thus far (), with the serum steroid
profile revealing isolated overproduction of DHEA,
DHEAS, and A, unresponsive to dexamethasone-
induced ACTH suppression.

Mixed steroid excess: ACC

ACC is a rare but aggressive malignancy, which ac-
counts for % to % of adrenal tumors (). Prompt
and accurate differentiation of ACC from benign ACA
is the foremost clinical challenge posed by a new adrenal
mass. The most useful radiological indicators of ma-
lignancy are size and lipid content: the likelihood of
malignancy increases with size (), and lipid-rich
lesions are invariably benign (). A considerable

Figure 7. Schematic overview of the biosynthesis and downstream metabolism of the “hybrid steroids” 18-hydroxycortisol (18OHF)

and 18-oxocortisol (18oxoF). Whereas 18OHF is excreted unmodified in urine, 18oxoF is primarily detected as its tetrahydro metabolite

(18oxoTHF).
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proportion of adrenal tumors, however, are difficult to
classify by any imaging modality ().

Routine serum biochemistry detects steroid hor-
mone excess in % to % of ACC patients, with
glucocorticoid and androgen excess dominating (,
); however, urine GC-MS profiling demonstrated
steroid excess in .% (). Additionally, recent ret-
rospective studies employing GC-MS–based urine
steroid profiling revealed that ACCs present a unique
steroidogenic “signature” characterized by accumula-
tion of steroid hormone precursors (, , ) (Fig.
E). The steroid biomarkers that are most helpful at
distinguishing ACCs from ACAs include the gluco-
corticoid precursor metabolite THS, and the androgen
precursor metabolites of Preg and OHPreg, PD,
and PT (). Multiple other D

 steroids are also

excreted in excess. Recent preliminary retrospective
studies also looked at the value of serum multisteroid
profiling in detecting ACC (, ).

The combination of mass spectrometry–based
steroid profiling with machine learning–driven anal-
ysis of the urinary steroid excretion data allowed for
rapid detection of a “malignant steroid fingerprint”
(Fig. E) () that can differentiate ACC from ACA
with high sensitivity and specificity. A large-scale
prospective test validation study has recently been
completed and results are awaited; if positive, this
could represent the first steroid metabolomics ap-
proach implemented as a routine diagnostic test.

Urine steroidmetabolomics was also used to show that
the detection of this malignant steroid fingerprint is not
affected by concomitantmitotane treatment in ACC (),

Figure 8. Schematic

visualization of urinary

steroid metabolome

signatures associated

with disorders causing

autonomous adrenal steroid

excess. (a) Adrenal Cushing

syndrome, (b) ACTH-

dependent Cushing

syndrome, (c) MACE, (d)

primary aldosteronism, and

(e) ACC. The figure depicts

the changes in the major

urinary metabolites relative

to the normal median of

each steroid metabolite and

does not represent overall

quantitative excretion.

Steroid metabolites

are mapped onto

the steroidogenic

pathways leading to

mineralocorticoid,

glucocorticoid, and

androgen biosynthesis as

shown in Fig. 1. Data derived

from (1, 148–155).
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suggesting a potential for noninvasive ACC follow-up
monitoring. Additionally, urine steroid metabolome
analysis revealed that mitotane strongly inhibits a-re-
ductase activity in ACC patients, explaining treatment-
relatedmale hypogonadism, and acts as a strong inducer
of CYPA, resulting in significantly accelerated
cortisol inactivation. The latter explains the need for
increased doses of glucocorticoid replacement ther-
apy in patients with ACC receiving mitotane treat-
ment ().

Outlook

The diagnostic potential of steroid metabolome
analysis has been recognized since many decades

ago and its application has now been extended from
inborn steroidogenic disorders to autonomous
adrenal steroid excess, yielding fascinating insights.
In particular, comprehensive -hour urine steroid
metabolome analysis has discovered novel steroid
pathways and steroidogenic disorders. Recent progress
in mass spectrometry technology and methodologies,
combined with the development of customized
computational approaches to facilitate urine steroid
metabolomics analysis, is paving the way for more
widespread use of mass spectrometry–based multi-
steroid profiling and steroid metabolomics approaches
in clinical practice. The future is promising for steroid
metabolomics, with likely widespread diagnostic and
prognostic applications of this fascinating discovery
tool.
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BA, Schneider P, Smith DJ, Stiekema H, Krone N,

Porfiri E, Opocher G, Bertherat J, Mantero F, Allolio

B, Terzolo M, Nightingale P, Shackleton CH,

Bertagna X, Fassnacht M, Stewart PM. Urine steroid

metabolomics as a biomarker tool for detecting

malignancy in adrenal tumors. J Clin Endocrinol

Metab. 2011;96(12):3775–3784.

2. Biehl M, Schneider P, Smith DJ, Stiekema H, Taylor

AE, Hughes BA, Shackleton CHL, Stewart PM, Arlt

W. Matrix relevance LVQ in steroid metabolomics

based classification of adrenal tumors. Available at:

www.i6doc.com/en/livre/?GCOI528001100967420.

Accessed 30 April 2019.

3. Bunte K, Smith DJ, Chappell MJ, Hassan-Smith ZK,

Tomlinson JW, Arlt W, Tiňo P. Learning pharma-
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Dekkers T, Tops B, Küsters B, Ceral J, Yeo GSH, Neogi

SG, McFarlane I, Rosenfeld N, Marass F, Hadfield J,

Margas W, Chaggar K, Solar M, Deinum J, Dolphin

AC, Farooqi IS, Striessnig J, Nissen P, Brown MJ.

Somatic mutations in ATP1A1 and CACNA1D

underlie a common subtype of adrenal hyperten-

sion. Nat Genet. 2013;45(9):1055–1060.

165. Aristizabal Prada ET, Castellano I, Sušnik E, Yang Y,
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