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Steroids in brain arise from the peripheral endocrine glands
and local synthesis. In traumatic brain injury (TBI), the en-
dogenous circulating hormones at the time of injury are im-
portant for neuroprotection. In particular, pseudopregnant
females recover better than males from TBI. We investigated
the effect of pseudopregnancy and TBI on steroid levels in
plasma and in three brain regions (within, adjacent, and distal
to the lesion site), 6 and 24 h after prefrontal cortex injury. The
following steroids were analyzed by gas chromatography/
mass spectrometry: pregnenolone, progesterone, 5�-dihydro-
progesterone, 3�,5�-tetrahydroprogesterone, 3�,5�-tetrahydro-
progesterone, dehydroepiandrosterone, �4-androstenedione,
testosterone, 5�-dihydrotestosterone, 3�,5�-tetrahydrotestos-
terone, 3�,5�-tetrahydrotestosterone, and 17�-estradiol. Corti-
costerone was assayed in plasma to account for stress in the rats.
We found different steroid profiles in brain and plasma of male
and pseudopregnant female rats and specific profile changes
after TBI. In sham-operated pseudopregnant females, much

higher levels of progesterone, 5�-dihydroprogesterone, 3�,5�-
tetrahydroprogesterone, and 3�,5�-tetrahydroprogesterone
were measured in both brain and plasma, compared with sham-
operated males. Plasma levels of corticosterone were high in all
groups, indicating that the surgeries induced acute stress. Six
hours after TBI, the levels of pregnenolone, progesterone, and
5�-dihydroprogesterone increased, and those of testosterone
decreased in male brain, whereas levels of 5�-dihydroprogest-
erone and 3�,5�-tetrahydroprogesterone increased in brain of
pseudopregnant female rats. Plasma levels of 5�-dihydropro-
gesterone did not change after TBI, suggesting a local activation
of the 5�-reduction pathway of progesterone in both male and
pseudopregnant female brain. The significant increase in neu-
rosteroid levels in the male brain after TBI is consistent with
their role in neuroprotection. In pseudopregnant females, high
levels of circulating progestagens may provide protection
against TBI. (Endocrinology 148: 2505–2517, 2007)

THE NERVOUS SYSTEM is an important target of steroid
hormones. The mechanisms by which these steroids

exert their effects were construed as a classical endocrine
mechanism involving production by endocrine glands, se-
cretion into the bloodstream, crossing of the blood-brain
barrier, and then regulation of central nervous system (CNS)
functions (1–3). A further advance was the finding that an-
drogens act in the CNS after their local conversion into es-
trogens by aromatization (4). Finally, the discovery of the

local de novo synthesis of neurosteroids from cholesterol in
the nervous system (5) has added paracrine and/or autocrine
mechanisms to the list of ways by which steroids can regulate
brain functions. The CNS can synthesize steroids as well as
take them up from the blood. Thus, steroid brain concen-
trations are in part related to their peripheral production in
endocrine organs. Figure 1 summarizes the main pathways
of steroidogenesis. All steroids are derived from cholesterol.
The cytochrome P450 side-chain cleavage enzyme is in-
volved in the conversion of cholesterol to pregnenolone
(PREG). PREG can be converted either to progesterone
(PROG) by the 3�-hydroxysteroid dehydrogenase/�5-�4

isomerase (3�-HSD), or to dehydroepiandrosterone (DHEA)
by the P450c17 enzyme. PROG is a key hormone that gives
rise to all the other steroid hormones. Indeed, PROG can be
converted to 11-deoxycorticosterone by the P450c21 enzyme
and then to corticosterone by P45011�. PROG can also be
metabolized to �4-androstenedione by the P450c17 enzyme
and then to testosterone by the 17�-hydroxysteroid dehydro-
genase enzyme. Testosterone can be converted to 17�-estradiol
by the aromatase. In addition, PROG and testosterone can be
converted respectively to 5�-dihydroprogesterone (5�-DH-
PROG) and to 5�-dihydrotestosterone (5�-DHT) by the steroid
5�-reductases (two distinct isozymes 1 and 2) and then to 3�,5�-
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FIG. 1. Pathways of steroidogenesis. The abbreviated name of the enzyme involved for each reaction is indicated. Steroids included: 3�,5�-
THPROG, 5�-DHPROG (5�-dihydroprogesterone). Enzymes included: 3�-HSD, 3�-HSD/�5-�4 isomerase, 3�-HSOR, 17�-HSD (17�-hydrox-
ysteroid dehydrogenase), P450c11� (11�-hydroxylase), P450c17 (17�-hydroxylase/C17–20-lyase),P450c21(21-hydroxylase),P450scc(cytochromeP450
side-chain cleavage).
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tetrahydroprogesterone (3�,5�-THPROG) and 3�,5�-tetrahy-
drotestosterone (3�,5�-THT) by the 3�-hydroxysteroid oxi-
doreductase (3�-HSD). In addition, 5�-DHPROG and 5�-DHT
can be reduced, respectively, to 3�,5�-tetrahydroprogesterone
(3�,5�-THPROG) and 3�,5�-tetrahydrotestosterone (3�,5�-THT)
by the 3�-hydroxysteroid oxidoreductase (3�-HSOR).

It is now clear that PROG and its reduced metabolites
(5�-DHPROG and 3�,5�-THPROG), and estrogens exert a
variety of neuroprotective effects and that they may be good
candidates for therapeutic tools after spinal cord and brain
injuries and in neurodegenerative diseases (6–12). A recent
phase II clinical trial with PROG in patients with moderate
to severe traumatic brain injury (TBI) revealed that 3 d of
treatment with PROG could reduce mortality by more than
50% in the severely injured group (13).

Initial evidence that PROG could be used as a pharmaco-
logical agent after brain injury came from studies on gender
differences in recovery, which also suggested that endoge-
nous levels of PROG could enhance recovery of function
from TBI (14). Indeed, high levels of endogenous PROG
promote behavioral recovery and decrease the cytotoxic se-
quel of trauma. For example, compared with males, postin-
jury edema is lower in normal-cycling females and practi-
cally eliminated in pseudopregnant females (a hormonal
state in which PROG levels remain high for about 10 d after
cervical stimulation) after medial frontal cortical contusions
(15). Not only does treatment with exogenous steroids de-
crease the response to various forms of insult, but also en-
dogenous levels at the time of injury are important for neu-
roprotection (7, 8). Furthermore, the nervous system itself
may adjust and adapt both steroid synthesis and steroid
receptor expression after injury, as we have demonstrated for
the brain and spinal cord (16, 17). One important question is
the impact of the steroids either produced by peripheral
steroidogenic organs or pharmacologically administered on
steroid synthesis by the CNS. Castration and adrenalectomy
had no effects on 3�-HSD expression in spinal cord (18)
whereas estrogen treatment increased 3�-HSD expression
and activity in the hypothalamus of female rats (19). Pro-
gesterone synthesis has been shown to be stimulated by
estradiol in the hypothalamus and enriched astrocyte cul-
tures (19–21). Variation in the production of PROG from
peripheral glands could influence levels of brain PROG and
its metabolites. Indeed, PROG originating in the periphery is
taken up by the brain in considerable amounts (22), and the
conversion of PROG to its neuroactive metabolites takes
place within the brain (12, 23–25). Apart from being a sub-
strate for this metabolism, PROG exerts its own hormonal
effects through specific receptors.

Because pseudopregnant females have better outcomes
than males and steroids have neuroprotective effects after
TBI, we examined the local modifications of steroid levels in
males and pseudopregnant females after TBI to gain insight
into the hormonal determination of neuroprotection. First,
we compared steroid levels between male and pseudopreg-
nant female rats to evaluate how variations in plasma con-
centrations of steroids are reflected in brain. Second, we
investigated the effect of TBI on steroid levels in plasma and
three brain regions (within, adjacent to, and distal to the lesion

site) to evaluate how hormonal state at the time of injury could
affect the response of the nervous tissue to injury.

Materials and Methods
Subjects

Adult male and female Sprague Dawley rats approximately 90 d of
age at the beginning of the experiment were housed individually and
kept on a reverse light-dark cycle (0800–2000 h). All procedures con-
cerning animal care and use were carried out in accordance with the
European Community Council Directive (86/609/EEC) and conformed
to guidelines set forth in the Guide for the Care and Use of Laboratory
Animals (National Academy of Sciences, 1996), and were approved by
the Emory University Institutional Animal Care and Use Committee,
protocol 098-2001.

Pseudopregnancy induction

Vaginal lavages were used to determine the time of pseudopregnancy
induction and confirm that rats were pseudopregnant at the time of
injury. Lavages were collected and analyzed daily beginning 1 d after
the rat’s arrival in the laboratory and continued through the day of
surgery. The epithelium of the vagina was flushed with saline solution
(0.9%) using a blunt-end plastic pipette and then dispersing the pipette’s
contents onto a clean microscope slide. The samples were analyzed
under a light microscope and the cell types present (leukocytes, nucle-
ated epithelial cells, and/or cornified epithelial cells) were recorded. The
stage in the estrous cycle (metestrus, diestrus, proestrus, or estrus) at the
time of the lavage was determined based on the presence or absence of
these cell types. Pseudopregnancy was induced 5 d before surgery by
stimulating the cervix mechanically using the soft, rubber-tipped
plunger of a plastic 1-cc syringe for 1 min when females were in estrus
and exhibiting cornified cells (15).

Animals and experimental injury model (Fig. 2A)

Eight groups of rats were prepared (n � 6 or 7/group): four condi-
tions (sham-operated males, males with TBI, sham-operated pseudo-
pregnant females, and pseudopregnant females with TBI) and two times
of analysis (6 and 24 h after surgery) were chosen to profile steroid levels
in brain and plasma. The controlled cortical impact injury for the females
was done on their fifth day of pseudopregnancy, when they were ex-
hibiting abundant leukocytes. Surgery for an equal number of males was
done when females were to be injured. Bilateral contusions of the medial
prefrontal cortex of male and pseudopregnant female rats were made
with a pneumatic impactor device (see Ref. 26 for details). Briefly,
animals were anesthetized with ketamine/xylazine (90 mg/kg per 10
mg/kg) and placed in a stereotaxic apparatus equipped with a homeo-
thermic blanket system to maintain body core temperature at 37 C. A
midline incision was made in the scalp, the fascia was retracted to expose
the cranium, and a craniectomy (6 mm diameter) was made over the
midline of the prefrontal cortex with its center 3.0 mm anteroposterior
to bregma. After removal of the bone, the tip of the impactor (5 mm
diameter) was moved to �3.0 mm anteroposterior, 0.0 mm (from
bregma), and checked for adequate clearance. Trauma was produced by
activating the piston with compressed air to impact �2.0 mm dorso-
ventral (from dura) at a velocity of 2.25 m/sec with a brain contact time
of 0.5 sec. After the contusion injury, the wound cavity was cleaned and
bleeding stopped before scalps were sutured. Sham-operated animals
sustained the anesthesia, incision, and suture of the scalp.

Samples for steroid determination

Rats were killed by decapitation 6 and 24 h after surgery. For each rat,
four samples were collected. A sample from cardiac blood was taken and
the brain dissected out of the skull on a bed of crushed ice. Three brain
regions were collected from each brain (Fig. 2B): contused tissue [lesion site
(L)], bilateral samples adjacent to the lesion [adjacent to the lesion (AL)], and
bilateral samples from posterior cortex [distal to the lesion (DL)]. Brain
samples were weighed, frozen on dry ice, and stored at �80 C until gas
chromatography coupled to mass spectrometry (GC/MS) analysis.

Meffre et al. • Steroids and Traumatic Brain Injury Endocrinology, May 2007, 148(5):2505–2517 2507

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article/148/5/2505/2502403 by guest on 21 August 2022



Measurement of steroid levels by GC/MS

PREG, PROG, 5�-DHPROG, 3�,5�-THPROG, 3�,5�-THPROG, �4-
androstenedione, testosterone, 5�-DHT, 3�,5�-THT, 3�,5�-THT, DHEA,
and 17�-estradiol levels were determined by GC/MS according to the
protocol described by Liere et al. (27) with minor modifications. Briefly,
steroids were extracted from individual brain regions (the weight range
was 93–450 mg of tissue) and plasmas (1 ml) by adding 10 volumes of
methanol. Corticosterone was measured only in plasmas 6 and 24 h after
injury to document the stress state of the animals. The internal standards
epietiocholanolone (for PREG, 3�,5�-THPROG, 3�,5�-THPROG, �4-an-
drostenedione, testosterone, 5�-DHT, 3�,5�-THT, 3�,5�-THT, DHEA,
and 17�-estradiol), 19-nor PROG (for PROG), 2H6-5�-DHPROG (for
5�-DHPROG), and 2H8-corticosterone (for corticosterone) were intro-
duced into the extract for steroid quantification. Samples were purified
and fractionated by solid-phase extraction with the recycling procedure
(28) and HPLC as previously described (16). Three fractions were col-
lected from the HPLC system: 5�-DHPROG and 2H6-5�-DHPROG were
eluted in the first HPLC fraction (3–10 min) and were silylated with
N-methyl-N-trimethylsilyltrifluoroacetamide/NH4I/dithioerythritol
(1000:2:5 vol/vol/vol) for 15 min at 70 C. The second fraction (10–31
min) contained PREG, PROG, 3�,5�-THPROG, 3�,5�-THPROG, �4-
androstenedione, testosterone, 5�-DHT, 3�,5�-THT, 3�,5�-THT,
DHEA, 17�-estradiol, epietiocholanolone, and 19-nor PROG. Cortico-
sterone and its internal standard 2H8-corticosterone were eluted in the
third HPLC fraction (31–45 min). These two latter fractions were deri-
vatized with heptafluorobutyric anhydride in anhydrous acetone for 30
min at 20 C. All the fractions were dried under a stream of N2 and
resuspended in hexane for GC/MS analysis.

Calibration and biological samples were analyzed by GC/MS with an
AS 2000 autosampler (Carlo Erba, Milan, Italy). The TraceGC gas chro-
matograph (Carlo Erba) is coupled with an Automass Solo mass spec-
trometer (Thermo Electron, Les Ulis, France). Injection was performed
in the splitless mode at 250 C (1 min of splitless time), and the temper-
ature of the gas chromatograph oven was initially maintained at 50 C for
1 min and then ramped between 50 and 340 C at 20 C/min. The helium
carrier gas flow was maintained constant at 1 ml/min during the anal-
ysis. The transfer line and ionization chamber temperatures were 300
and 180 C, respectively. Electron impact ionization was used for mass

spectrometry with an ionization energy of 70 eV. Identification of each
steroid was supported by its retention time and its two diagnostic ions
(see Table 1). Quantification was performed in single ion monitoring
(SIM) mode according to the major diagnostic ion, called quantification
ion, and to the retention time of each derivatized steroid.

The analytical protocol has been previously validated (16) for PREG,
PROG, and their reduced metabolites. The same experimental procedure
was applied to validate the quantification of DHEA, testosterone, 5�-
DHT, 3�,5�-THT, 3�,5�-THT, �4-androstenedione, 17�-estradiol, and
corticosterone. Only testosterone could be detected in all the aliquots of
extracts from an adult male brain (10, 20, 50, 100, 200, and 300 mg).
DHEA and 3�,5�-THT were detected only in 300 mg of brain extract. In
male rat plasma, testosterone and 3�,5�-THT were detected in all the
plasma extracts (50, 100, 200, 500, 1000 �l) and �4-androstenedione and
5�-DHT could be detected from 1 ml of plasma. The overall results of
validation are summarized in Table 2 in terms of basal values, coefficient
of variation, coefficient of correlation, and limit of detection in plasma
(1 ml) and brain (100 mg).

Statistical analysis

All data were analyzed by a commercially available program (GraphPad
Prism 3.0; GraphPad Inc., San Diego, CA). For brain samples, data were pro-
cessed using two-way ANOVA (treatment � region), followed by Bonferroni
post hoc test. For plasma samples, Student’s t test was used. Statistical signif-
icance was noted when the probability of type I error was less than 0.05.

Results
Steroid profiles in brain regions and plasma of sham-
operated male and pseudopregnant female rats

The different steroids were found in a very wide range of
concentrations in brain and plasma of sham-operated male
and pseudopregnant female rats (Figs. 3–5, white bars). In
sham-operated males, the decreasing order of mean concen-
trations was: PREG � PROG � testosterone � 5�-DH-
PROG � 5�-DHT � 3�,5�-THT � �4-androstenedione in

A
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FIG. 2. Experimental groups and samples used for steroid
analysis by GC/MS. A, Summary of experimental groups and
time course of the pseudopregnancy induction and injury.
Eight groups were used: sham-operated males, males with
TBI, sham-operated pseudopregnant females, and pseudo-
pregnant females with TBI; with two times of analysis, 6 and
24 h after injury. CCI, Controlled cortical impact; n, number
of animals per group; psg, pseudopregnancy; SMP, sampling.
B, Location of the samples taken for steroid determination. In
addition to the plasma, three brain regions were collected
from each animal: contused tissue (L), bilateral samples ad-
jacent to the lesion (AL), and bilateral samples from posterior
cortex (DL).
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brain and PROG � PREG � testosterone � 5�-DHPROG �
�4-androstenedione � 3�,5�-THT � 5�-DHT in plasma
(Figs. 3 and 4, white bars). In sham-operated pseudopregnant
females, the decreasing order of concentrations was:
PROG � 5�-DHPROG � PREG � 3�,5�-THPROG � 3�,5�-
THPROG in brain and PROG � 5�-DHPROG � 3�,5�-
THPROG � PREG � 3�,5�-THPROG in plasma (Fig. 5, white
bars). In both plasma and brain, the concentrations of PROG

and its metabolites were much higher in pseudopregnant
females than males. The levels of 5�-DHPROG in the pseu-
dopregnant female rats were about 10 times higher in brain,
compared with plasma, suggesting that most of the reduction
of PROG takes place in the brain itself. Furthermore, we
calculated the ratio of reduced PROG metabolites (5�-DH-
PROG, 3�,5�-THPROG, and 3�,5�-THPROG) to PROG in
brain and plasma to provide an index of the conversion of the

TABLE 2. Validation of steroid measurements in male rat brain and plasma by GC/MS

Steroids Concentrations
(ng/g or ng/ml � SEM)

Coefficient of
variation (%)

Coefficient of
correlation

Limit of
detection

(ng/g or ng/ml)

Brain
PREG 4.91 � 0.27 13 0.9967 0.25
PROG 0.36 � 0.01 4 0.9961 0.10
5�-DHPROG 0.75 � 0.10 10 0.25
3�,5�-THPROG 0.41 � 0.05 21 1.00
3�,5�-THPROG ND 0.25
Corticosterone 50.1 � 2.2 10 0.9951 2.00
DHEA 0.19 � 0.01 18 0.50
Testosterone 1.42 � 0.09 9 0.9952 0.05
5�-DHT ND 0.10
3�,5�-THT 0.03 � 0.003 20 0.02
3�,5�-THT ND 0.02
�4-Androstenedione ND 0.01
17�-Estradiol ND 0.05

Plasma
PREG 0.58 � 0.03 10 0.9981 0.05
PROG 2.17 � 0.07 7 0.9996 0.01
5�-DHPROG ND 0.05
3�,5�-THPROG ND 0.10
3�,5�-THPROG ND 0.02
Corticosterone 54.4 � 1.35 5 0.9948 0.20
DHEA ND 0.05
Testosterone 1.24 � 0.05 10 0.9935 0.005
5�-DHT 0.03 � 0.01 19 0.02
3�,5�-THT 0.16 � 0.01 5 0.9998 0.002
3�,5�-THT ND 0.002
�4-Androstenedione 0.10 � 0.01 17 0.9942 0.001
17�-Estradiol ND 0.005

This table summarized the overall results of validation in terms of basal values, coefficient of variation, coefficient of correlation, and limit
of detection in plasma (1 ml) and brain (100 mg). The coefficients of correlation confirm the linear relationship between the rat brain weight
(from 10 to 300 mg) or plasma volume (from 50 to 1000 �l) and the endogenous amounts of steroids. ND, Not detected.

TABLE 1. GC/MS parameters used for steroid identifications in SIM detection

Steroids (molecular weight) Derivatized steroids (molecular weight) Retention time (min) Diagnostic ions (m/z)

Screened steroids
PREG (316) PREG-3-HFB (512) 15.85 283 and 298
PROG (314) PROG-3-HFB (510) 15.80 495 and 510
5�-DHPROG (316) 5�-DHPROG-3,20-TMS2 (460) 16.30 445 and 460
3�,5�-THPROG (318) 3�,5�-THPROG-3-HFB (514) 15.26 496 and 514
3�,5�-THPROG (318) 3�,5�-THPROG-3-HFB (514) 16.00 496 and 514
Corticosterone (346) �9–11 Corticosterone-3,21-HFB2 (720) 15.94 705 and 720
DHEA (288) DHEA-3-HFB (484) 14.76 255 and 270
Testosterone (288) Testosterone-3,17-HFB2 (680) 12.93 665 and 680
5�-DHT (290) 5�-DHT-17-HFB (486) 15.28 414 and 486
3�,5�-THT (292) 3�,5�-THT-3,17-HFB2 (684) 12.38 455 and 470
3�,5�-THT (292) 3�,5�-THT-3,17-HFB2 (684) 13.09 455 and 470
�4-Androstenedione (286) �4-Androstenedione-3-HFB (482) 14.78 467 and 482
17�-Estradiol (272) 17�-Estradiol-3,17-HFB2 (664) 13.24 451 and 664

Internal standards
Epietiocholanolone (290) Epietiocholanolone-3-HFB (486) 14.21 442 and 486
19 Nor-PROG (300) 19 Nor-PROG-3-HFB (496) 15.74 481 and 496
2H6-5�-DHPROG (322) 2H6-5�-DHPROG-3,20-TMS2 (466) 16.28 451 and 466
2H8-corticosterone (354) �9–11- 2H8-corticosterone-3,21-HFB2 (728) 15.90 709–713 and 724–728

The diagnostic ions were used together with the retention time for identification in the SIM mode of the derivatized steroids. The diagnostic
ions in bold were used for quantification. HFB, Heptafluorobutyrate; TMS, trimethylsilyl.
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parent hormone PROG to its reduced metabolites. This ratio
was 5–8 times higher in brain than plasma, further support-
ing the hypothesis that the reduced metabolites of PROG
detected in pseudopregnant female rat brain are very likely
locally synthesized and that only a minor part is derived
from the circulation. Whereas testosterone, its precursor, and
its 5�-reduced metabolites were detectable in male brain and
plasma, no trace of these androgens was detected in pseu-
dopregnant female samples. 17�-estradiol levels were below

the limit of detection in brain and plasma of male and pseu-
dopregnant female rats.

Effects of TBI on steroid levels in plasma and brain of male
and pseudopregnant female rats: analysis by GC/MS 6 and
24 h after injury

Males (Figs. 3 and 4). Two-way ANOVA (treatment � re-
gion) revealed a significant effect of the lesion on levels of
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PREG (F1,29 � 10.36; P 	 0.01), PROG (F1,28 � 10.47; P 	
0.01), 5�-DHPROG (F1,30 � 31.86; P 	 0.0001), and testos-
terone (F1,29 � 43.49; P 	 0.0001) in brain 6 h after TBI. The
subsequent Bonferroni post hoc test showed that the levels
of PREG increased in L (�75%, P 	 0.05). The levels of

PROG tended to increase in the different brain regions, but
the differences were not statistically significant. The levels
of 5�-DHPROG increased in L (�189%, P 	 0.001) and the
posterior cortex DL (�145%, P 	 0.05). Changes in plasma
levels of PREG, PROG, and 5�-DHPROG were not statis-
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FIG. 5. Steroid levels in brain and plasma of
pseudopregnant (Psg) female rats 6 and 24 h
after sham operation or TBI. Concentrations of
PREG, PROG, 5�-DHPROG, 3�,5�-THPROG,
and 3�,5�-THPROG in three brain regions (L,
AL, DL) and plasma. White bars, Levels for
sham-operated rats; black bars, effect of TBI.
Data represent mean � SEM of six to seven rats.
Statistical analysis: two-way ANOVA and Stu-
dent’s t test for brain samples; Student’s t test
for plasma samples. *, P 	 0.05; **, P 	 0.01;
****, P 	 0.0001.
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tically significant. The levels of 3�,5�-THPROG and 3�,5�-
THPROG were still below the threshold of detection in
both brain (	1.0 and 0.25 ng/g, respectively) and plasma
(	1.0 and 0.02 ng/ml, respectively). Testosterone levels
decreased dramatically in the lesion site (�82%, P 	 0.01),
in the tissue AL (�85%, P 	 0.01), posterior cortex DL
(�86%, P 	 0.001), and plasma (�84%, P 	 0.01). No
change in brain levels of �4-androstenedione, 5�-DHT, or
3�,5�-THT was observed in brain samples. However, �4-
androstenedione and 3�,5�-THT levels decreased significantly
in plasma (�85%, P 	 0.05 and �68%, P 	 0.01, respectively).
Twenty-four hours after TBI, the differences in steroid levels
between sham-operated and injured rats were not significant,
except for PREG levels, which are increased in the brain (F1,30 �
8,51; P 	 0.01).

Pseudopregnant females (Fig. 5). Two-way ANOVA (treat-
ment � region) revealed a significant effect of the lesion on
the levels of 5�-DHPROG (F1,30 � 9.73; P 	 0.01) and 3�,5�-
THPROG (F1,29 � 22.72; P 	 0.0001) in brain 6 h after TBI. The
subsequent Bonferroni post hoc test for brain samples showed
that the levels of 5�-DHPROG increased in the L (�59%, P 	
0.01). The levels of 3�,5�-THPROG increased in the L (�67%,
P 	 0.05) and posterior cortex DL (�77%, P 	 0.01). The
levels of screened androgens and 17�-estradiol were below
the threshold of detection. Plasma levels of all the measured
steroids did not change, except for the levels of PROG, which
decreased (�41.5%, P 	 0.05). Twenty-four hours after TBI,
the differences in steroid levels between sham-operated and
injured rats were not significant, except for PREG levels,
which are increased in the brain (F1,36 � 9,52; P 	 0.01) and
plasma (�105%, P 	 0.05).

Corticosterone levels (Fig. 6). The levels of corticosterone were
measured in plasma of sham-operated and injured male and
pseudopregnant female rats 6 and 24 h after TBI to evaluate
the extent of stress induced by the surgery. High levels of
corticosterone were detected in plasma of all groups. These
levels were higher in pseudopregnant females than males. In
addition, these levels were higher after TBI, particularly in
male rats 6 h after TBI (�105%, P 	 0.05).

Discussion

Our results showed different steroid profiles in brain
and plasma of male and pseudopregnant female rats and
transitory-specific changes after TBI. Steroids in brain
have profound physiological effects that depend on their
concentrations in the target tissues, their metabolism, and
the distribution of receptors they activate or modulate.
Because the different steroids are metabolically linked,
changes in the endogenous levels of specific steroids may
reflect in vivo regulation of their biosynthesis and metab-
olism, which in turn may provide insights into their phys-
iological roles.

Sham-operated rats: comparison between males and
pseudopregnant females

In this study, very high levels of PROG were measured in
the brain of pseudopregnant females, compared with males,
reflecting their respective levels in plasma. Indeed, the brain

levels of PROG in pseudopregnant females were 47–100
times higher than those measured in males. Thus the con-
centration of PROG in rat brain is related to endocrine status
in males and females, indicating that plasma levels deter-
mine the uptake of PROG into the brain. The concentration
of PROG and its reduced metabolites in rat and human brain
have been reported to be related to endocrinological status.
In female rat brain, the levels of PROG, 5�-DHPROG, and
3�,5�-THPROG increased during pregnancy (29). In human
female brain, the concentrations of the three steroids were
significantly higher in the luteal phase, compared with post-
menopausal controls. The correlation between serum and
brain tissue concentrations indicates that the serum levels are
directly related to the uptake of PROG in the brain (30).
Because circulating PROG levels are high in pseudopregnant
females, the final brain levels represent a high amount of
substrate for the 5�-reductases, leading to increased levels of
5�-DHPROG, which in turn is a substrate of 3�-HSD and
3�-HSOR. Thus, detectable levels of 3�,5�-THPROG and
3�,5�-THPROG were found in brain regions of pseudopreg-
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FIG. 6. Corticosterone levels in plasma of male and pseudopregnant
(Psg) female rats 6 and 24 h after sham operation or TBI. White bars,
Levels for sham-operated rats; black bars, effect of TBI. Data repre-
sent mean � SEM of six to seven rats. Statistical analysis: Student’s
t test. *, P 	 0.05.
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nant females, whereas the two PROG metabolites were be-
low detection limit in brain regions of the sham-operated
males. Cheney et al. (31) reported low levels of 3�,5�-
THPROG in male rat brain (0.9 ng/g), and more recently
Ebner et al. (32) reported very low levels of 3�,5�-THPROG
(0.35 ng/g) and 3�,5�-THPROG (0.13 ng/g) in male rat brain.

The difference between our results and these reports could
be due to a difference in the sensitivity of the techniques, the
size of the samples used for measurements, or regional het-
erogeneity in the brain content of these PROG metabolites.
Indeed, in the above cited studies, measurements were done
in whole brain, whereas we measured steroids in three dis-
crete, specific regions as indicated in Fig. 2. Furthermore, we
performed measurements in sham-operated male rats,
whereas they performed them in control rats. In any case, the
levels of 3�,5�-THPROG and 3�,5�-THPROG in sham-op-
erated pseudopregnant females brain were higher than those
in sham-operated male rats (the present study) and control
male rat brain (31, 32). The 3�,5�-THPROG measured in
plasma and brain of pseudopregnant female rats could have
arisen directly from 5�-DHPROG or through epimerization
of 3�,5�-THPROG (33).

Comparison of PROG and 5�-DHPROG levels in sham-
operated pseudopregnant females at 6 and 24 h after surgery
corresponding to the fifth and sixth day of pseudopregnancy
suggests that the 5�-reduction is an active metabolic path-
way in the pseudopregnant female brain. Indeed, on the fifth
day of pseudopregnancy (6 h after TBI), PROG levels in the
brain were at least two times higher than those of 5�-DH-
PROG, whereas they were lower on the sixth day of pseu-
dopregnancy (24 h after TBI).

We noticed that the measured values of PROG in males
were relatively high in rat plasma (8–10 ng/ml for sham-
operated animals), compared with normal levels, which are
generally around 1–2 ng/ml (16, 27, 34). This increase in
PROG levels could be due to a stress-protective reaction in
response to the sham operation. The most likely hypothesis
is that surgery activates the hypothalamo-pituitary-adrenal
axis and stimulates the secretion of corticosterone, the final
metabolite of PREG, PROG, and 11-deoxycorticosterone. In-
deed, the measured levels of corticosterone in sham-operated
male rats (76.8 and 52.8 ng/ml 6 and 24 h after the sham
operation) indicated that the animals were stressed. Mass
spectrometric studies have shown that the corticosterone
levels of unstressed rats ranged from 4 to 12 ng/ml (35) and
17.1 ng/ml (36) and from 70 to 300 ng/ml for acute or chronic
stress. The decrease in corticosterone levels and also in
PREG, PROG, and 5�-DHPROG in plasma of sham-operated
male rats 24 h after the surgery, compared with 6 h, is con-
sistent with the acute stress hypothesis. The same tendency
is found in pseudopregnant female rats for corticosterone,
PREG, and PROG levels in plasma. Previous studies have
shown that various types of stress lead to an increase in the
brain levels of 3�,5�-THPROG and/or its precursors, PREG,
PROG, and 5�-DHPROG (37–40).

Levels of �4-androstenedione and testosterone in brain of
sham-operated male rats were slightly higher at 24 than at 6 h
after surgery. The relatively low levels at 6 h may be due to
the stress in response to the sham operation, which is also

attested by the increased levels of PROG and corticosterone
at this time point.

Predictably, 17�-estradiol levels in brain and plasma of
male and pseudopregnant female rats were below detectable
limits of the technique. Indeed, using liquid chromatogra-
phy/tandem mass spectrometry, 17�-estradiol could not be
detected in serum and brain of male and female mice (41). In
the pseudopregnant female rats, the expected concentration
of 17�-estradiol in plasma are very low. The levels, measured
by RIA, were within the range of those of metestrus (about
5–7 pg/ml plasma, which is the limit of detection of our
technique) (42–44).

At the time of injury, there are differences between males
and pseudopregnant females in the brain steroid profiles,
which may account for the better outcome of pseudopreg-
nant females, compared with males after TBI. Pseudopreg-
nant females have high levels of PROG and its 5�-reduced
metabolites, which have been demonstrated to be neuropro-
tective. Males have low levels of PROG, its precursor, and its
reduced metabolites and significant levels of testosterone, its
precursor, and its metabolites.

Effect of TBI on steroid levels in male and pseudopregnant
females

In addition to differences in the steroid profiles in the brain
at the time of injury, the subsequent effects of TBI on plasma
and brain steroid levels in males and pseudopregnant fe-
males are different. Six hours after TBI, the injury induced an
increase of 5�-DHPROG and 3�,5�-THPROG in brain of
pseudopregnant females and PREG, PROG, and 5�-DH-
PROG in brain of male rats. The increases of PREG and PROG
levels in plasma of males were not statistically significant. In
males, injury led to an increase in both the synthesis and
metabolism of PROG. It is possible that an activation of the
hypothalamo-pituitary-adrenal axis by the stress caused by
TBI led to the stimulation of PREG, PROG, and corticosterone
secretion in the blood and to a subsequent accumulation in
the brain. The increase of PREG and PROG in male brain may
also be due to a local brain increase in steroidogenic enzyme
activities and/or an up-regulation of the proteins involved
in the intramitochondrial transport of cholesterol, the rate-
limiting step in steroidogenesis, such as steroidogenic acute
regulatory protein and peripheral benzodiazepine receptor.
Indeed, peripheral benzodiazepine receptor and steroido-
genic acute regulatory protein have been shown to be up-
regulated in different models of nervous system injuries
including TBI (45–49).

The rate of increase of 5�-DHPROG in the injured brain
was more substantial in males (�189% in the lesion site,
�145% distal to the lesion site) than pseudopregnant females
(�59% in the lesion site). Because 5�-DHPROG and its me-
tabolite could have neuroprotective effects after TBI (7, 8), the
stimulation of 5�-DHPROG production may be more nec-
essary in males than pseudopregnant females because the
absolute values of brain 5�-DHPROG levels are 100 times
higher in pseudopregnant females than males. The observed
increase of 5�-DHPROG levels in the brain of both males and
pseudopregnant females after TBI is very likely due to an
increase in its local synthesis because the increase in brain
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levels is not correlated with an increase in plasma levels, and
the observed increase was not homogeneous for all brain
regions. Twenty-four hours after TBI, most steroid levels in
brain and plasma were similar to those in sham-operated
animals, suggesting a transitory effect of TBI on steroid lev-
els. A previous report showed an increase in PROG, 5�-
DHPROG, and 3�,5�-THPROG in male rat cerebral cortex
after lateral fluid percussion (50). The increase was observed
in the perifocal but not focal site. However, in this study there
was no information concerning plasma steroid levels, and the
measurements were done after infusion of large PREG-sul-
fate amounts, thus providing no information concerning
changes in endogenous steroids.

Recently we have shown in male rats an increase in PROG,
5�-DHPROG, and 3�,5�-THPROG levels after spinal cord
injury (16). Thus, the increase of PROG and its reduced
metabolites in the male rat nervous system may be a general
mechanism that could play a pivotal role in the capacity of
the nervous system to respond to the consequences of injury.
The 5�-reduction of PROG yielding to 5�-DHPROG then to
3�,5�-THPROG seems to be a major metabolic pathway of
PROG in the nervous system. The 5�-reduction is the highest
rate-limiting step in this pathway (51, 52). This pathway is
activated after TBI (our present study) and spinal cord injury
(16). These observations suggest that the local reduction of
PROG in brain and spinal cord may be of particular relevance
after injury and raise the question of the role of the metabolite
reduction of PROG in the injured nervous system. Like our
previous results for the spinal cord (16), the present results
showed a high correlation between the levels of the product
5�-DHPROG and its precursor PROG. Indeed, in male rats,
when levels of PROG were low, the levels of 5�-DHPROG
measured in spinal cord and brain were low. When PROG
levels were high, after treatment of males with PROG or after
induction of pseudopregnancy, there was a high production
of 5�-DHPROG and a subsequent 3�,5�-THPROG forma-
tion. The type 1 isoenzyme of 5�-reductase has apparent
Michaelis constant (Km) values for steroid substrate in the
micromolar range, whereas the Km of type 2 is in the nano-
molar range. If we take into account the levels of PROG
present in brain and spinal cord and the Km of these isoen-
zymes (53), it can be speculated that, in male rats, the 5�-
reductase type 2 is the most reactive enzyme, whereas both
isoenzymes 1 and 2 of 5�-reductase may contribute to the
5�-DHPROG synthesis after treatment with PROG and in
pseudopregnant females.

The effects of PROG and its reduced metabolites can be
mediated by the intracellular receptors, progesterone recep-
tor (PR; PROG and 5�-DHPROG) or membrane receptors
[25-Dx (54); PR (55, 56)], or interaction with �-aminobutyric
acidA receptors via 3�,5�-THPROG (57). 3�,5�-THPROG
may antagonize the effects of 3�,5�-THPROG (58–60). The
overall effects in the nervous system may be dependent on
the available amounts of the steroids on the expression pat-
tern of the different receptors and the binding affinity of each
receptor system. After injury, 5�-DHPROG levels increased
in spinal cord and brain of both males and females. This
increase may be of high physiological importance because
5�-DHPROG can activate the PR (61) and it is the precursor
of 3�,5�-THPROG and its isomer 3�,5�-THPROG. 3�,5�-

THPROG has been shown to be neuroprotective after TBI
(62), promote neuronal survival (63, 64), and regulate the
proliferation of neural progenitors (65, 66). 5�-pregnane ste-
roids interact with �-aminobutyric acidA receptors (67, 68)
but can also interact with the PR (61, 69). The increase in the
rate of conversion of PROG to its reduced metabolites in the
injured nervous system may increase the cross-talk mecha-
nism between membrane and genomic PROG effects.

In male rats, in addition to stimulating PROG synthesis
and metabolism, the injury induced an important transient
decrease of testosterone in brain and plasma 6 h after TBI.
This decrease could be due to a disruption of the hypo-
thalamo-pituitary-gonadal axis. Indeed, in men, endocrine
deficits are rather common after TBI, and isolated hypotes-
tosteronemia is frequent. Analysis of posttraumatic endo-
crine deficits in a series of severe TBIs showed an incidence
of 28% of hypotestosteronemia. All were of central origin
(low testosterone and low or normal LH) due to hypotha-
lamic or pituitary origin (70). Hypothalamic hypogonadism
after head injury has been reported by other authors (71–73).
A decrease in serum levels of testosterone was also reported
in spinal cord-injured men (74). In addition to the disruption
of the hypothalamo-pituitary-gonadal axis, the observed de-
crease of testosterone in brain and plasma could also be due
in part to the increased levels of 5�-DHPROG. Indeed, 5�-
DHPROG, which is not involved in the biosynthesis pathway
of testosterone, may be a substrate for P450c17 enzyme (75,
76) as well as PREG and PROG, which are precursors of
testosterone (Fig. 1). Thus, the increased levels of 5�-DH-
PROG after TBI may lead to an inhibitory competition for
P450c17 binding, causing a decrease in testosterone synthe-
sis. This hypothesis is supported by the decreased plasma
levels of �4-androstenedione, the direct precursor of testos-
terone. Finally, the observed decrease in testosterone may be
a consequence of the stress caused by TBI. Indeed, several
studies have shown that stress impaired steroidogenesis and
induced a reduction of testicular and circulating testosterone
by affecting the activity of P450c17 (77–79).

In conclusion, we have shown a substantial difference in
levels of PROG and its reduced metabolites in brain and
plasma of male and pseudopregnant female rats, which
could account for the better outcome from TBI in pseudo-
pregnant females, compared with males. Six hours after TBI,
the brain levels of 5�-DHPROG increased in both males and
pseudopregnant females, suggesting that the local reduction
of PROG in brain may be of particular relevance after TBI and
raising the question of its role in the injured nervous system.
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