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Abstract

We present a new Bayesian hierarchical model (BHM) named Steve for performing Type Ia supernova (SN Ia)
cosmology fits. This advances previous works by including an improved treatment of Malmquist bias, accounting
for additional sources of systematic uncertainty, and increasing numerical efficiency. Given light-curve fit
parameters, redshifts, and host-galaxy masses, we fit Steve simultaneously for parameters describing cosmology,
SNIa populations, and systematic uncertainties. Selection effects are characterized using Monte Carlo simulations.
We demonstrate its implementation by fitting realizations of SNIa data sets where the SNIa model closely follows
that used in Steve. Next, we validate on more realistic SNANA simulations of SNIa samples from the Dark
Energy Survey and low-redshift surveys (DES Collaboration et al. 2018). These simulated data sets contain more
than 60,000 SNeIa, which we use to evaluate biases in the recovery of cosmological parameters, specifically the
equation of state of dark energy, w. This is the most rigorous test of a BHM method applied to SNIa cosmology
fitting and reveals small w biases that depend on the simulated SNIa properties, in particular the intrinsic SNIa
scatter model. This w bias is less than 0.03 on average, less than half the statistical uncertainty on w. These
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simulation test results are a concern for BHM cosmology fitting applications on large upcoming surveys; therefore,
future development will focus on minimizing the sensitivity of Steve to the SNIa intrinsic scatter model.

Key words: dark energy – methods: data analysis

1. Introduction

Two decades have passed since the discovery of the
accelerating universe (Riess et al. 1998; Perlmutter et al.
1999). Since that time, the number of observed Type Ia
supernovae (SNe Ia) has increased by more than an order of
magnitude, with contributions from modern surveys at both
low redshift (Bailey et al. 2008; Freedman et al. 2009; Hicken
et al. 2009b; Contreras et al. 2010; Conley et al. 2011) and
higher redshift (Astier et al. 2006; Wood-Vasey et al. 2007;
Frieman et al. 2008; Balland et al. 2009; Amanullah et al. 2010;
Chambers et al. 2016; Sako et al. 2018). Cosmological analyses
of these supernova samples (Kowalski et al. 2008; Kessler et al.
2009b; Conley et al. 2011; Suzuki et al. 2012; Betoule
et al. 2014; Rest et al. 2014; Scolnic et al. 2018) have been
combined with complementary probes of large-scale structure
and the cosmic microwave background. For a recent review,
see Huterer & Shafer (2018). While these efforts have reduced
the uncertainty on the equation of state of dark energy (w) by
more than a factor of 2, it is still consistent with a cosmological
constant, and the nature of dark energy remains an unsolved
mystery.

In attempts to tease out the nature of dark energy, active and
planned surveys are continually growing in size and scale. The
Dark Energy Survey (DES; Bernstein et al. 2012; Abbott et al.
2016) has discovered thousands of SNe Ia, attaining both
spectroscopically and photometrically identified samples. The
Large Synoptic Survey Telescope (LSST; Ivezic et al. 2008;
LSST Science Collaboration et al. 2009) will discover tens of
thousands of photometrically classified supernovae. Such
increased statistical power demands greater fidelity and
flexibility in modeling supernovae for cosmological purposes,
as we will require reduced systematic uncertainties to fully
utilize these increased statistics (Betoule et al. 2014; Scolnic
et al. 2018).

As such, considerable resources are aimed at developing
more sophisticated supernova cosmology analyses. The role of
simulations mimicking survey observations has become
increasingly important in determining biases in cosmological
constraints and validating specific supernova models. First used
in SNLS (Astier et al. 2006) and ESSENCE analyses (Wood-
Vasey et al. 2007) and then refined and improved for the Sloan
Digital Sky Survey (SDSS; Kessler et al. 2009b), simulations
are a fundamental component of modern supernova cosmology.
Betoule et al. (2014) quantized and corrected observational bias
using simulations, and, more recently, Scolnic & Kessler
(2016) and Kessler & Scolnic (2017) explored simulations to
quantify observational bias in SNIa distances as a function of
multiple factors to improve bias correction. Approximate
Bayesian computation (ABC) methods also make use of
simulations, trading traditional likelihoods and analytic
approximations for more robust models with the cost of
increased computational time (Weyant et al. 2013; Jennings
et al. 2016). Bayesian hierarchical models (BHMs) abound
(Mandel et al. 2009; March et al. 2011, 2014; Rubin et al.
2015; Shariff et al. 2016; Roberts et al. 2017) and either use
simulation-determined distance corrections to correct for biases

or attempt to find analytic approximations for effects such as
Malmquist bias to model the biases inside the BHM itself.
In this paper, we lay out a new hierarchical model that builds

off the past work of Rubin et al. (2015). We include additional
sources of systematic uncertainty, including an analytic
formulation of selection efficiency that incorporates parametric
uncertainty. We also implement a different model of intrinsic
dispersion to both incorporate redshift-dependent scatter and
increase numerical efficiency, allowing our model to perform
rapid fits to supernova data sets.
Section 2 is dedicated to a quick review of supernova

cosmology analysis methods, and Section 3 outlines some of
the common challenges faced by analysis methods. In
Section 4, we outline our methodology. Model verification
on simulated data sets is given in Section 5, along with details
on potential areas of improvement. We summarize our
methodology in Section 6.

2. Review

While supernova observations take the form of photometric
time-series brightness measurements in many bands and a
redshift measurement of the supernova (or its assumed host),
most analyses do not work from these measurements directly.
Instead, most techniques fit an observed redshift and these
photometric observations to a supernova model, with the most
widely used being that of the empirical SALT2 model (Guy
et al. 2007, 2010). This model is trained separately before
fitting the supernova light curves for cosmology (Guy et al.
2010; Betoule et al. 2014). The resulting output from the model
is, for each supernova, an amplitude x0 (which can be
converted into apparent magnitude, = - ( )m x2.5 logB 0 ), a
stretch term x1, and a color term c, along with a covariance
matrix describing the uncertainty on these summary statistics
(h). As all supernovae are not identical, an ensemble of
supernovae form a redshift-dependent, observed population of
m̂B, x̂1, and ĉ, where the hat denotes an observed variable.

This ensemble of m̂B, x̂1, and ĉ represents an observed
population, which—due to the presence of various selection
effects—may not represent the true, underlying supernova
population. Accurately characterizing this underlying popula-
tion, its evolution over redshift, and effects from the host-
galaxy environment is one of the challenges of supernova
cosmology. Given some modeled underlying supernova
population that lives in the redshift-dependent space MB

(absolute magnitude of the supernova, traditionally in the
Bessell B band), x1, and c, the introduction of cosmology into
the model is simple: it translates the underlying population
from absolute magnitude space into the observed population in
apparent magnitude space. Specifically, for any given super-
nova, our map between absolute and apparent magnitude is
given by the distance modulus

m a b= + - - + D
+

·
( )

m x c M M m

other corrections, 1

B Bobs 1

where MB is the mean absolute magnitude for all SNeIa
given = =x c 01 , α is the stretch correction (Phillips 1993;
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Phillips et al. 1999), and β is the color correction (Tripp 1998)

that respectively encapsulate the empirical relation that broader

(longer-lasting) and bluer supernovae are brighter. Here

D ·M m refers to the host-galaxy mass correlation discussed in

Section 4.4.3. The distance modulus mobs is a product of our

observations; however, a distance modulus mC can be precisely

calculated given cosmological parameters and a redshift. The

“other corrections” term often includes bias corrections for

traditional c2 analyses. Bias corrections can take multiple

forms, such as a redshift-dependent function (Betoule et al.

2014) or a 5D function of c, x1, α, β, and z (Kessler &

Scolnic 2017; Scolnic et al. 2018).

2.1. Traditional Cosmology Analyses

Traditional c2 analyses, such as those found in Riess et al.
(1998), Perlmutter et al. (1999), Wood-Vasey et al. (2007),
Kowalski et al. (2008), Kessler et al. (2009b), Conley et al.
(2011), and Betoule et al. (2014), minimize the difference in
distance modulus between the observed distance modulus
attained from Equation (1) and the cosmologically predicted
distance modulus. The c2 function minimized is

c m m m m= - -m
-( ) ( ) ( )†C , 2C C

2
obs

1
obs

where m
-C 1 is an uncertainty matrix that combines statistical and

systematic uncertainties (see Brout et al. 2019 for a review of

these uncertainties for the DES supernova analysis). The

predicted mC is defined as

m =
⎡

⎣
⎢

⎤

⎦
⎥ ( )

d
5 log

10 pc
, 3C

L

ò= +
¢
¢

( )
( )

( )d z
c

H

dz

E z
1 , 4L

z

0 0

= W + ¢ + W + ¢ + W + ¢L
+( ) ( ) ( ) ( )

( )

( )E z z z z1 1 1 ,

5

m k
w3 2 3 1

where dL is the luminosity distance for redshift z given a

specific cosmology; H0 is the current value of Hubble’s

constant in - -km s Mpc1 1; and Wm, Wk, and WL represent the

energy density terms for matter, curvature, and dark energy,

respectively.
The benefit this analysis methodology provides is speed; for

samples of hundreds of supernovae or less, efficient matrix
inversion algorithms allow the likelihood to be evaluated
quickly. The speed comes with several limitations. First,
formulating a c2 likelihood results in a loss of model flexibility
by assuming Gaussian uncertainty. Second, the method of
creating a covariance matrix relies on computing partial
derivatives; thus, any uncertainty estimated from this method
loses information about correlation between sources of
uncertainty. For example, the underlying supernova color
population’s mean and skewness are highly correlated;
however, this correlation is ignored when determining popula-
tion uncertainty using numerical derivatives of population
permutations. While correlations can be incorporated into a
covariance matrix, it requires human awareness of the
correlations, and thus methods that can automatically capture
correlated uncertainties are preferable. Third, the computational
efficiency is dependent on both creating the global covariance
matrix and inverting a covariance matrix with dimensionality

linearly proportional to the number of supernovae. As this
number increases, the cost of inversion rises quickly and is not
viable for samples with thousands of supernovae. A recent
solution to this computational cost problem is to bin the
supernovae in redshift bins, which produces a matrix of
manageable size and can allow fitting without matrix inversion
at every step. While binning data results in some loss of
information, recent works tested against simulations show that
this loss does not result in significant cosmological biases
(Scolnic & Kessler 2016; Kessler & Scolnic 2017).
Selection efficiency, such as the well-known Malmquist

bias (Malmquist 1922), is accounted for by correcting the
determined mobs from the data or, equivalently, adding a
distance bias to the mC prediction. Specifically, Malmquist bias
is the result of losing the fainter tail of the supernova
population at high redshift. An example of Malmquist bias is
illustrated in Figure 1, which simulates supernovae according
to Equation (1). Simulations following survey observational
strategies and geometry are used to calculate the expected bias
in distance modulus, which is then subtracted from the
observational data. When using traditional fitting methods
such as that found in Betoule et al. (2014), these effects are not
built into the likelihood and instead are formed by correcting
data. This means that the bias uncertainty is not captured fully
in the c2 distribution, and subtle correlations between
cosmological or population parameters and the bias correction
is lost. Recent developments such as the BBC method (Kessler
& Scolnic 2017) incorporate corrections dependent on α and β,
improving their capture of uncertainty on bias corrections in the
c2 likelihood.

2.2. ABC

To avoid the limitations of the traditional approaches, several
recent methods have adopted ABC, where supernova samples
are forward-modeled in parameter space and compared to

Figure 1. Example of the effects of Malmquist bias. Here we show 1000
simulated supernova redshifts and distance modulus given fiducial cosmology.
The simulated survey is magnitude-limited; all supernovae brighter than
magnitude 24 are successfully observed (blue dots), and all supernovae dimmer
than 24th mag are not successfully observed (red dots). By binning the
supernovae along the redshift and taking the mean distance modulus of the
supernovae in each bin, we can see that at higher redshift, where Malmquist
bias kicks in, the population mean drops and becomes biased. This source of
bias must be corrected either by adjusting the data (such as subtracting the
found bias) or by incorporating Malmquist bias explicitly in the cosmological
model.
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observed distributions. Weyant et al. (2013) provided an
introduction to ABC methods for supernova cosmology in the
context of the SDSS-II results (Sako et al. 2018) and flat
ΛCDM cosmology, while Jennings et al. (2016) demonstrated
their superABC method on simulated first-season DES
samples. In both examples, the supernova simulation package
SNANA (Kessler et al. 2009a) is used to forward-model the
data at each point in parameter space.

Simulations provide great flexibility and freedom in how to
treat the systematic uncertainties and selection effects asso-
ciated with supernova surveys. By using forward modeling
directly from these simulations, the data do not need to be
corrected, analytic approximations do not need to be applied,
and we are free to incorporate algorithms that simply cannot be
expressed in a tractable likelihood, such as those found in
traditional analyses from Section 2.1. This freedom comes with
a cost: computation. The classical c2 method’s most compu-
tationally expensive step in a fit is matrix inversion. For ABC
methods, we must instead simulate an entire supernova
population, drawing from underlying supernova populations,
modeling light curves, applying selection effects, fitting light
curves, and applying data cuts. This is an intensive process.

One final benefit of ABC methods is that they can move past
the traditional treatment of supernovae with summary statistics
(mB, x1, and c). Jennings et al. (2016) presented two metrics,
which are used to measure the distance between the forward-
modeled and observed populations and are minimized in fitting.
The first metric compares forward-modeled summary statistic
populations (denoted the “Tripp” metric), and the second
utilizes the observed supernova light curves themselves,
moving past summary statistics. However, we note that
evaluation of systematic uncertainty was only performed using
the Tripp metric.

2.3. BHMs

Sitting between the traditional model’s simplicity and the
complexity of forward modeling lies BHM. Hierarchical
models utilize multiple layers of connected parameters, with
the layers linked via well-defined and physically motivated
conditional probabilities. For example, an observation of a
parameter from a population will be conditioned on the true
value of the parameter, which itself will be conditioned on the
population distribution of that parameter. We can thus
incorporate different population distributions and parameter
interdependence that cannot be found in traditional analyses,
where uncertainty must be encapsulated in a covariance matrix.
Unlike ABC methods, which can model arbitrary probability
distributions, BHM methods are generally constrained to
representing probabilities using analytic forms.

With the introduction of multiple layers in our model, we can
add more flexibility than a traditional analysis while still
maintaining most of the computational benefits that come from
having a tractable likelihood. Mandel et al. (2009, 2011, 2017)
constructed a hierarchical model that they applied to supernova
light-curve fitting. March et al. (2011) derived a hierarchical
model and simplified it by analytically marginalizing over
nuisance parameters to provide increased flexibility with
reduced uncertainty over the traditional method, but they did
not incorporate bias corrections. March et al. (2014) and
Karpenka (2015) improved upon this by incorporating redshift-
dependent magnitude corrections from Perrett et al. (2010) to
remove bias and validate on 100 realizations of SNLS-like

simulations. The recent BAHAMAS model (Shariff et al. 2016)
builds on this and reanalyzes the JLA data set (using redshift-
dependent bias corrections from Betoule et al. 2014) while
including extra freedom in the correction factors α and β,
finding evidence for redshift dependence on β. Ma et al. (2016)
performed a reanalysis of the JLA data set within a Bayesian
formulation, finding significant differences in α and β values
from the original analysis from Betoule et al. (2014). Notably,
these methods rely on data that is bias-corrected, or the
methods ignore biases; however, the UNITY framework given
by Rubin et al. (2015) incorporates selection efficiency
analytically in the model and is applied to the Union 2.1 data
set (Suzuki et al. 2012). The assumption made by the UNITY
analysis is that the bias in real data is perfectly described by an
analytic function. They validated their model to be free of
significant biases using fits to 30 realizations of supernova data
sets that are constructed to mimic the UNITY framework. The
well-known Bayesian estimation applied to multiple species
(BEAMS) methodology from Kunz et al. (2007) has been
extended and applied in several works (Hlozek et al. 2012),
most recently to include redshift uncertainty for photometric
redshift application as zBEAMS (Roberts et al. 2017) and
simulated bias corrections in Kessler & Scolnic (2017). For the
latter case, by inferring biases using Bayesian models,
sophisticated corrections can be calculated and then applied
to more traditional c2 models.
While there are a large number of hierarchical models

available, none of them have undergone comprehensive tests
using realistic simulations to verify each models’ respective
bias. Additionally, testing has generally been performed on
supernova simulations with either ΛCDM or flat ΛCDM
cosmology. However, quantifying the biases on wCDM
cosmology simulations with realistic simulations is becoming
critically important as precision supernova cosmology comes
into its own, and the focus shifts from determination of Wm to
both Wm and w.
The flexibility afforded by hierarchical models allows for

investigations into different treatments of underlying supernova
magnitude, color and stretch populations, host-galaxy correc-
tions, and redshift evolution, each of which will be discussed
further in the outline of our model below. Our model is
designed to increase the numerical efficiency of prior works
while incorporating the flexibility of hierarchical models. We
reduce our dependence on an assumed scatter model in
simulations by not utilizing bias corrections in an effort to
provide a valuable cross-check on analysis methodologies that
utilize scatter model–dependent bias corrections.

3. Challenges in Supernova Cosmology

The diverse approaches and implementations applied to
supernova cosmology are a response to the significant
challenges and complications faced by analyses. In this section,
we outline several of the most prominent challenges.
Foremost among these challenges is our ignorance of the

underlying Type Ia intrinsic dispersion. Ideally, analysis of the
underlying dispersion would make use of an ensemble of time-
series spectroscopy to characterize the diversity of SNe Ia.
However, these data are difficult to obtain, and recent efforts to
quantify the dispersion draw inference from photometric
measurements. The underlying dispersion model is not a
solved problem, and we therefore test against two dispersion
models in this work. The first is based on the Guy et al. (2010,
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hereafter G10) scatter model, and the second is sourced from
Chotard et al. (2011, hereafter C11). As the SALT2 model does
not include full treatment of intrinsic dispersion, each scatter
model results in different biases in mB, x1, and c when fitting
the SALT2 model to light-curve observations and results in
increased uncertainty on the summary statistics that is not
encapsulated in the reported covariance h. These two scatter
models are currently assumed to span the possible range of
scatter in the underlying supernova population. We have
insufficient information to prefer one model over the other;
thus, we have to account for both possible scatter models.

The underlying supernova population is further complicated
by the presence of outliers. Non-SNe Ia often trigger transient
follow-up in surveys and can easily be mistaken for SNe Ia and
represent outliers from the standardized SNIa sample. This
contamination is not just a result of non-SNeIa being observed
but can also arise from host-galaxy misidentification causing
incorrect redshifts to be assigned to supernovae. Different
optimizations to the host-galaxy algorithm can result in
misidentification of the host at the 3%–9% level (Gupta et al.
2016), resulting in a broad population of outliers. For
spectroscopic surveys, where both supernova type and redshift
can be confirmed through the supernova spectra, this outlier
population is negligible. However, for photometric surveys,
which do not have the spectroscopic confirmation, it is one of
the largest challenges: how to model, fit, and correct for
contaminants.

Finally, one of the other persistent challenges facing
supernova cosmology analyses are the high number of
systematics. Because of the rarity of SNIa events, data sets
are commonly formed from the SNIa discoveries of multiple
surveys in order to increase the number of supernovae in a data
set. However, each survey introduces additional sources of
systematic error, from sources within each survey, such as band
calibration, to systematics introduced by calibration across
surveys. Peculiar velocities, different host environments, and
dust extinction represent additional sources of systematic
uncertainty that must all be modeled and accounted for.

4. Our Method

We construct our hierarchical Bayesian model Steve with
several goals in mind: creation of a redshift-dependent
underlying supernova population, treatment of an increased
number of systematics, and analytic correction of selection
effects, including systematic uncertainty on those corrections.
We also desire Steve to be more computationally efficient than
prior works, such that cosmological results from thousands of
supernovae are obtainable on the order of hours, rather than
days. As this is closest to the UNITY method from Rubin et al.
(2015, hereafter R15), we follow a similar model scaffold and
construct the model in the programming language Stan
(Carpenter et al. 2017; Stan Development Team 2017). The
primary challenge of fitting hierarchical models is their large
number of fit parameters, and Stan, which uses automatic
differentiation and the no-U-turn Sampler (NUTS, a variant of
Hamiltonian Monte Carlo), allows us to efficiently sample
high-dimensional parameter space.

At the most fundamental level, a supernova cosmology
analysis is a mapping from an underlying population onto an
observed population, where cosmological parameters are
encoded directly in the mapping function. The difficulty arises
both in adequately describing the biases in the mapping

function and in adding sufficient, physically motivated
flexibility in both the observed and underlying populations
while not adding too much flexibility, such that model fitting
becomes pathological due to increasing parameter degeneracies
within the model. In the analysis of this article, the underlying
model universe maps to the observed universe as sketched in
the BHM of Figure 2. The dependencies between the model
and observations can be tracked following the arrows of the
BHM, and a summary of all of the conditional probabilities can
be found in Section 4.5.
In the following sections, we will describe the model

parameters, the mapping functions that connect them to the
data, the effect of sample selection (in Equation (12)), and the
pathologies that can occur when evaluating the model.
Summaries of observables and model parameters are shown in
Table 1 for easy reference.

4.1. Observed Populations

4.1.1. Observables

Like most of the BHM methods introduced previously, we
work from the summary statistics, where each observed
supernova has a brightness measurement m̂B (which is

Figure 2. Probabilistic graphical model for our likelihood without selection
effects. Double-lined nodes represent observed variables, diamond nodes
represent deterministic variables, and single-lined ellipse nodes represent fit
variables. The SN box represents observed and latent variables for each
individual supernova, while the survey box represents survey-specific
variables, which in general describe the supernova population for the survey
and the systematics associated with it. Variables that appear outside both boxes
represent top-level model parameters. We note that we have shown the model
to have latent variables { }M x c,B 1 , which uniquely determines mB, given μ and
other parameters. Thus, the two nodes MB and mB make up a single layer in our
hierarchy, not two layers. In the code implementation, mB is more efficiently
parameterized than MB; however, the mathematics remains constant regardless
of whether we parameterize MB or mB, as one can determine the other. We
write out mass instead of m to reduce possible confusion with magnitude in the
diagram. Finally, as we take the redshift measurement ẑ and mass probability

ˆmass as exact, they are not conditioned on underlying distributions and are top-
level parameters.
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analogous to apparent magnitude), stretch x̂1, and color ĉ, with
uncertainty on those values encoded in the covariance matrix
h. Additionally, each supernova has an observed redshift ẑ
and a host-galaxy stellar mass associated with it, m̂, where the
mass measurement is converted into a probability of being
above 1010 M☉. Our set of observables input into Steve is
therefore given as h{ ˆ ˆ ˆ ˆ ˆ }m x c z m, , , , ,B 1 , as shown in the
probabilistic graphical model in Figure 2.

As we are focused on the spectroscopically confirmed
supernovae for this iteration of the method, we assume that
the observed redshift ẑ is the true redshift z such that

d= -( ˆ∣ ) ( ˆ )P z z z z . Potential sources of redshift error (such
as peculiar velocities) are taken into account, not via
uncertainty on redshift (which is technically challenging to
implement, as varying redshifts introduce computational
complexity in computing the distance modulus integral by
reducing the amount of precomputation that can be utilized) but
instead via uncertainty on distance modulus. Similarly, we take
the mass probability estimate m̂ as correct and do not model a
latent variable to represent uncertainty on the probability
estimate. One of the strengths of Steve (and the R15 analysis) is
that for future data sets, where supernovae have been classified
photometrically and we expect some misclassification and

misidentification of the host galaxies, these misclassifications
can naturally be modeled and taken into account by introducing
additional populations that supernovae have a nonzero
probability of belonging to.

4.1.2. Latent Variables for Observables

The first layer of hierarchy is the set of true (latent)
parameters that describe each supernova. In contrast to the
observed parameters, the latent parameters are denoted without
a hat. For example, c is the true color of the supernova, while ĉ
is the observed color, which, as it has a measurement error, is
different from c.
For the moment, let us consider a single supernova and its

classic summary statistics, mB, x1, and c. For convenience, let
us define h º { }m x c, ,B 1 . A full treatment of the summary
statistics would involve determining h( ˆ∣ )p y , where ŷ repre-
sents the observed light-curve fluxes and uncertainties.
However, this is computationally prohibitive, as it would
require incorporating SALT2 light-curve fitting inside our
model fitting. Due to this computational expense, we rely on
initially fitting the light-curve observations to produce a best-fit
ĥ along with a 3×3 covariance matrix h describing the
uncertainty on ĥ. Using this simplification, our latent variables
are given by

 h h h h~ h( ˆ∣ ) ( ˆ∣ ) ( )p , . 6

As discussed in Section 3, the SALT2 model does not include

full treatment of intrinsic dispersion; thus, this approximation

does not encapsulate the full uncertainty introduced from this

dispersion.

4.2. Underlying Population

4.2.1. Type Ia Population

Unlike many previous formalisms that utilize MB as a
singular number and model magnitude scatter on the apparent
magnitude mB, we incorporate this scatter into the underlying
rest-frame population by having a population in absolute
magnitude space. This is mathematically equivalent; however,
it allows us to model the underlying population and intrinsic
scatter distinctly. To denote this difference, we refer to the
mean of our absolute magnitude population with á ñMB .
In addition to absolute magnitude, the underlying supernova

population is also characterized by distributions in color and
stretch. We follow the prior work of R15 and model the color
population as an independent redshift-dependent skew-normal
distribution for each survey. For the stretch population, we
adopt a redshift-dependent normal distribution, and magnitude
dispersion is modeled as a normal distribution. We also tested a
skew-normal approach for these parameters, reverting to the
normal distributions, as they are computationally easier to
evaluate; we found no reduction in cosmological bias with
the skew-normal distributions for stretch and magnitude.
Following R15, we allow the mean color and stretch to vary
over redshift, anchoring four equally spaced redshift nodes
spanning the redshift range of each survey, linearly interpolat-
ing between the nodes to determine the mean stretch and color
for a given redshift. These nodes are represented as á ñx i1 and

á ñci . Both the color and stretch means are modeled with normal
priors. Initial versions of our model adopted a fully covariant
multivariate skew normal (with skewness set to zero only for

Table 1

Model Parameters

Parameter Description

Global Parameters

Wm Matter density

w Dark energy equation of state

α Stretch standardization

β Color standardization

d ( )0 Scale of the mass-magnitude correction

d d¥( ) ( )0 Redshift dependence of the mass-magnitude correction

d i Systematics scale

á ñMB Mean absolute magnitude

Survey Parameters

dS Selection effect deviation

á ñx i1 Mean stretch nodes

á ñci Mean color nodes

ac Skewness of color population

sMB Population magnitude scatter

sx1 Population stretch scatter

sc Population color scatter

k0 Extra color dispersion

k1 Redshift dependence of extra color dispersion

Supernova Parameters

mB True flux

x1 True stretch

c True color

z True redshift

MB Derived absolute magnitude

μ Derived distance modulus

Input Dataa

m̂B Measured flux

x̂1 Measured stretch

ĉ Measured color

C Covariance on flux, stretch, and color

ẑ Observed redshift

m̂ Observed mass probability

Note.
a
Not model parameters but shown for completeness.
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the magnitude component) to capture correlations between mB

and c; however, pathological fitting complications required us
to simplify our treatment. We parameterize the color skewness

ac by sampling d a a= +1c c c
2 , which itself is given a

uniform prior ( )0, 0.98 that allows ac to span positive values
in the realm of physical plausibility, as determined from
constraints in Scolnic & Kessler (2016). We sample dc in log
space for efficiency in sampling close to zero. The width of the
population, represented by the vector s s s{ }, ,M x cB 1

, is subject to
Cauchy priors with mean zero and width 1, following
recommendations from the Stan user guide.

The only constant between survey populations is the
absolute magnitude á ñMB . We model the color skewness and
redshift-dependent means and width of the color and skew
distributions individually for each survey. The probability for a
supernova to have the true values MB, x1, and c given the
underlying population is thus given as

 


q s s
s a

= á ñ á ñ

´ á ñ

( ∣ ) ( ∣ ) ( ∣ ( ) )

( ∣ ( ) ) ( )

P M x c z M M x x z

c c z

, , , , ,

, , , 7

B B B M x

c c

1 1 1

skew

B 1

where q s s s a= á ñ á ñ á ñ{ ( ) ( ) }M x z c z, , , , , ,B m x c c1 B 1
for legibility.

4.2.2. Outlier Populations

For the spectroscopic paper, we do not consider outlier
populations; however, we ensure that our model has flexibility
for such populations for future use with photometrically
classified surveys. We thus include a simplistic outlier
population model. We follow R15 (and therefore Kunz et al.
2007) by implementing a Gaussian mixture model, where an
additional observable of the SNIa probability would be needed
in order to inform the weights of the mixture model. For
surveys with low rates of contamination, it is not possible to fit
a contamination population, and the mean of the outlier
population has been fixed to the SNIa population in prior
works. However, with the increased number of contaminants
expected in the DES photometric sample, we seek a more
physically motivated outlier population. We find that an
acceptable parameterization is to model the outlier population
with a mean absolute magnitude of dá ñ = á ñ +M MB B M

outl outl
B
,

where dM
outl
B
is constrained to be positive or even greater than a

small positive number to reduce degeneracy between the two
populations. We note that this represents the mean brightness
of outliers, so outliers could be both brighter and dimmer than
the mean SNIa absolute magnitude. We set the population
width to s = 1outl in MB, x1, and c in our tests. The probability
of each supernova falling into either population is determined
by the observed Type Ia probability p̂. For the spectroscopic
survey, we set this to unity; thus, it is not included in Figure 2
or Table 1. For the photometric proof of concept, we provide
an accurate probability estimate. Further investigation of
the effect of inaccurate estimates will be left for future
improvements during the analysis of the DES photometric
sample.

4.3. Correcting Biased Summary Statistics

With the fitted summary statistics ĥ being biased and their
uncertainty underreported, we face a significant challenge
utilizing these statistics naively in supernova cosmology. We
must either correct the observables to remove the biases
introduced by the intrinsic dispersion of the underlying

population or incorporate this dispersion into our model. We
should also avoid assuming a specific dispersion model, either
the G10 or C11 model, or utilize the results of computing the
bias from both models.
We model the extra dispersion only in color, and we do so

by adding independent uncertainty on the color observation ĉ.
We note that extra dispersion in magnitude m̂B (from coherent
scatter) is absorbed completely by the width of the underlying
magnitude population (discussed in Section 4.2.1) without
introducing cosmological bias, which is not true of the color
term, hence the requirement for modeling additional color
dispersion. Tests of incorporating extra dispersion on stretch
also show that stretch is less biased than color and causes
negligible bias in cosmology.
As shown in Kessler et al. (2013), the extra color dispersion

shows heavy redshift dependence, increasing with redshift.
This is an artifact of different filters; however, as we may be
subject to similar effects in our observational data, we decide to
incorporate redshift dependence in our extra uncertainty. We
thus add k k+ z0 1 to our observed color uncertainty (in
quadrature). The κ parameters are highly degenerate with the
width of the intrinsic color population sc. We subject them to
Cauchy priors centered on zero and with width 0.05, where κ is
bounded between 0 and 0.05. We pick this maximum value to
allow extra dispersion without completely subsuming the
intrinsic population widths due to the severe degeneracy,
where this maximum value easily encapsulates the determined
dispersion according to the results of Kessler et al. (2013). As
such, our combined covariance on the observation ĥ is given

by   k k= + +h [ ( ) ]zDiagMatrix 0, 0,tot 0 1
2 .

Fully covariant extra dispersion on { }m x c, ,B 1 (rather than
just dispersion on c) was also tested by modeling the dispersion
as a multivariate Gaussian, but it showed negligible improve-
ment in recovering unbiased cosmology over just color
dispersion and was far more computationally inefficient. We
note here that we model dispersion in magnitude, but this is
done at the level of underlying populations, not observed
populations. This magnitude dispersion is modeled with
redshift independence.

4.4. Mapping Function

4.4.1. Cosmology

We formulate our model with three different cosmological
parameterizations: flat ΛCDM, flat wCDM, and standard ΛCDM
(without a flatness prior). Here Wm is given the prior
( )0.05, 0.99 , WL was treated with ( )0, 1.5 , and the equation
of state w was similarly set to a flat prior  - -( )0.4, 2.0 . For
calculating the distance modulus, we fix = - -H 70km s Mpc0

1 1.
If the Hubble constant has a different value, the absolute
magnitude is + - -( )M H5 log 70km s MpcB 0

1 1 , with the other
cosmological parameters unaffected.

4.4.2. Supernova Standardization Parameters

With increasingly large data sets and more nuanced analyses,
the choice of how to handle α and β becomes an important
consideration when constructing a model. A broken linear
relationship is employed by R15 for both color and stretch,
where different values of α and β are adopted depending on
whether x1 and c are positive or negative (although the cut
could be placed at a location other than zero). Shariff et al.
(2016) instead modeled β as redshift-dependent, testing two
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phenomenological models: b b b= +( )z z0 1 and a second
model that effects a rapid but smooth change in β at a turnover
redshift zt.

We tested two models with varying β against simulated
supernova sets: b b b= +( )c c0 1 and b b b= +( )z z0 1 . See
Section 5.2 for details on simulation generation. We found for
both models that nonzero values for b1 are preferred even with
constant β used in simulation, due to severe degeneracy with
selection effects. This degeneracy resulted in a significant bias
in recovered cosmology. Due to the recovery of nonzero b1, we
continue to adopt the constant α and β found in traditional
analyses. As such, our calculation of distance modulus μ
mirrors that found in Equation (3).

4.4.3. Host-galaxy Environment

There are numerous results showing statistically significant
correlations between host-galaxy environment and supernova
properties (Kelly et al. 2010; Lampeitl et al. 2010; Sullivan
et al. 2010; D’Andrea et al. 2011; Gupta et al. 2011; Johansson
et al. 2013; Rigault et al. 2013). The latest sample of over 1300
spectroscopically confirmed SNe Ia shows s>5 evidence for
correlation between host mass and luminosity (Uddin et al.
2017). The traditional correction, as employed in analyses such
as Suzuki et al. (2012) and Betoule et al. (2014), invokes a step
function such that gD = -( ( ) ))M Mlog 10 , where  is the
Heaviside step function, M is the galaxy mass in solar masses,
and γ represents the size of the magnitude step. The scale of
this step function varies from analysis to analysis and is treated
as a fit parameter. In this work, we adopt the model used
in R15, which follows the work from Rigault et al. (2013), such
that we introduce two parameters to incorporate a redshift-
dependent host-galaxy mass correction,

d
d
d

D =
-

+
+

¥

d
d ¥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )
( )

( )
( )

( )

( )
( )

M 0
1.9 1

0.9 10

0
, 8

z

0

0.95

where d ( )0 represents the correction at redshift zero, and d ¥( ) is
a parameter allowing the behavior to change with increasing

redshift. We take flat priors on d ( )0 and d d ¥( ) ( )0 . Finally, we

assume that the observed mass probability m̂ supplied to the

model is perfectly determined and thus set d= -( ˆ ∣ ) ( ˆ )P m m m m .

4.4.4. Uncertainty Propagation

The chief difficulty with including systematic uncertainties
in supernova analyses is that they have difficult-to-model
effects on the output observations. As such, the traditional
treatment for systematics is to compute their effect on the
supernova summary statistics—computing the numerical

derivatives

ˆdm

d

B

i

,

ˆdx

d i

1 , and

ˆdc

d i

for each supernova light-curve

fit, where i represents the ith systematic.
Assuming that the gradients can be linearly extrapolated—

which is a reasonable approximation for modern surveys with
high-quality control of systematics—we can incorporate into
our model a deviation from the observed values by constructing
a ´( )N3 sys matrix containing the numerical derivatives for the
Nsys systematics and multiplying it with the row vector
containing the offset for each systematic. By scaling the
gradient matrix to represent the shift over 1σ of systematic
uncertainty, we can simply enforce a unit normal prior on the
systematic row vector to increase computational efficiency.

This method of creating a secondary covariance matrix using
partial derivatives is used throughout the traditional and BHM
analyses. For each survey and band, we have two systematics:
the calibration uncertainty and the filter wavelength uncer-
tainty. We include these in our approach, in addition to
including the Hubble Space Telescope (HST) Calspec calibra-
tion uncertainty, 10 SALT2 model systematic uncertainties, a
dust systematic, a global redshift bias systematic, and the
systematic peculiar velocity uncertainty. A comprehensive
explanation of all systematics is given in Brout et al. (2019);
see Table 4 for details. This gives 13 global systematics shared
by all surveys that apply globally to all supernova summary
statistics plus two systematics per band in each survey.
Systematics with known correlations are shifted together to
produce covariant deviations, and we thus assume that the
numerical derivatives input into our model represent indepen-
dent systematics. Full details can be found in Brout et al.
(2019). With h º { }m x c, ,B 1 , our initial conditional likelihood
for our observed summary statistics shown in Equation (6)
becomes


  


h

h
h d h d

h
h

¶
¶

= +
¶
¶

h h
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ˆ

ˆ
∣ ˆ

ˆ
∣ ( )P C, , , , . 9

i

i i

i

4.4.5. Selection Effects

One large difference between traditional and BHM methods
is that we treat selection effects by incorporating selection
efficiency into our model, rather than relying on simulation-
driven data corrections. We describe the probability that the
possible events we observe are drawn from the distribution
predicted by the underlying theoretical model and that those
events, given that they happened, are observed and pass cuts.
To make this extra conditional explicit, we can write the
likelihood of the data given an underlying model, θ, and that
the data are included in our sample, denoted by S, as

 q q=( ) ( ∣ ) ( )P S; data data , . 10

As our model so far describes components of a basic likelihood

q( ∣ )P data , and we wish to formulate a function q( ∣ )P S data,

that describes the chance of an event being successfully

observed, we rearrange the likelihood in terms of those

functions and find


ò

q
q q
q q

=( )
( ∣ ) ( ∣ )

( ∣ ) ( ∣ )
( )

P S P

P S D P D dD
; data

data, data

,
, 11

where the denominator represents an integral over all potential

data D, and θ represents top-level parameters. In the case that

our selection effects are best characterized by latent variables

instead of data, we can add them to our formulation, and our

likelihood becomes

 òq
q q

q q
=

∬
( )

( ∣ ) ( ∣ ) ( ∣ )

( ∣ ) ( ∣ )
( )

P S L P L P L dL

P S L P L dL
; data

, data

,
, 12

where L represents our latent parameters. This is derived in

Appendix A.1. To evaluate the effect of our selection effects,

we need to evaluate both the selection effect terms in the

numerator and the integral in the denominator. The numerator

represents the probability that we caught the supernova and it

was selected into the cosmology sample. The integral
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represents our global selection efficiency at a location in

parameter space, rather than the probability of our data being

selected into our sample. As θ represents the vector of all top-

level model parameters, and L represents a vector of all latent

parameters, this is not a trivial integral. Techniques to

approximate this integral, such as Monte Carlo integration or

high-dimensional Gaussian processes, failed to give tractable

posterior surfaces that could be sampled efficiently by a

Hamiltonian Monte Carlo, and post-fitting importance sam-

pling failed due to high dimensionality (a brief dismissal of

many months of struggle). We therefore simplify the integral

and approximate the selection effects from their full expression

in all of θ-space to apparent magnitude and redshift space

independently (not dependent on x1 or c), such that the

denominator of Equation (12), now denoted d for simplicity, is

given as

ò ò q q= ⎡
⎣⎢

⎤
⎦⎥( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )d P S m P m z dm P S z P z dz, , 13B B B

where q( ∣ )P m z,B can be expressed by translating the under-

lying MB, x1, and c population to mB given the cosmological

parameters. A full derivation of this can be found in

Appendix A.2.
We now apply two further approximations similar to those

made in R15: that the redshift distribution of the observed
supernovae samples the q( ∣ ) ( ∣ )P S z P z distribution reasonably
well, and that the survey color and stretch populations can be
treated as Gaussian for the purposes of evaluating q( ∣ )P m z,B .
We found that discarding the color population skewness
entirely resulted in highly biased population recovery (see
Figure 12 to see the populations), so we instead characterize the
skew-normal color distribution with a Gaussian that follows the
mean and variance of a skew normal, with a mean given by

s dá ñ +
p

( )c z c c
2

and variance s d p-( )1 2c c
2 2 . This shifted

Gaussian approximation for color completely removes the
unintended bias when simply discarding skewness. This shift
was not required for the stretch population, so it was left out of
the stretch population for numerical reasons. The impact of this
approximation on the calculated efficiency is shown in
Figure 3, and more detail on this shift and the resulting
population recovery can be found in Appendix A.3.

The population q( ∣ )P m z,B becomes * * s( ∣ ( ) )m m z ,B B mB
,

where

* m a b= á ñ + - á ñ + á ñ( ) ( ) ( ) ( ) ( )m z M z x z c z , 14B B 1

*s s as bs= + +( ) ( ) ( ). 15m M x c
2 2 2 2
B B 1

What then remains is determining the functional form of

( ∣ )P S mB . For the treatment of most surveys, we find that the

error function, which smoothly transitions from some constant

efficiency down to zero, is sufficient. Formally, this gives

m s= F( ∣ ) ( ∣ ) ( )P S m m , , 16B
c

B CDF CDF

where Fc is the complementary cumulative distribution

function and mCDF and sCDF specify the selection function.

The appropriateness of an error function has been found by

many past surveys (Dilday et al. 2008; Barbary et al. 2010;

Perrett et al. 2012; Graur et al. 2013; Rodney et al. 2014).

However, for surveys that suffer from saturation and thus

rejection of low-redshift supernovae, or for groups of surveys

treated together (as is common with low-redshift surveys), we

find that a skew normal is a better analytic form, taking the

form

 m s a=( ∣ ) ( ∣ ) ( )P S m m , , . 17B B
Skew

Skew Skew Skew

The selection functions are fit to apparent magnitude
efficiency ratios calculated from SNANA simulations by taking
the ratio of supernovae that are observed and passed cuts over
the total number of supernovae generated in that apparent
magnitude bin. That is, we calculate the probability that we
would include a particular supernova in our sample, divided by
the number of such supernovae in our simulated fields. To take
into account the uncertainty introduced by the imperfection of
our analytic fit to the efficiency ratio, uncertainty was
uniformly added in quadrature to the efficiency ratio data from
our simulations until the reduced c2 of the analytic fit reached
1, allowing us to extract an uncertainty covariance matrix for
our analytic fits to either the error function or the skew normal.
This is mathematically identical to fitting the efficiency ratio
with a second “intrinsic dispersion” parameter, which adds
uncertainty to the efficiency ratio data points.
We thus include parameterized selection effects in our model

by including the covariance matrix of selection effect
uncertainty. Formally, we include deviations from the deter-
mined mean selection function parameters with parameter
vector dS and apply a normal prior on this parameter as per the
determined uncertainty covariance matrix. While this uncer-
tainty encapsulates the potential error from the simulations not
matching the analytic approximations, it does not cover

Figure 3. Testing the correctness of our normal approximation to the skewed
color distribution. The “correct” line (shown in black) represents the exact

integral ò= ( ∣ ) ( )w P S x P x dx, where ( ∣ )P S x is an error function (following our

high-redshift surveys) and =( ) ( )P x x, 0.1, 2Skew , calculated numerically.
The x-axis is analogous to mB in cosmological context. As expected, all
efficiencies drop toward zero as the shift increases (as objects get fainter). The
unshifted normal approximation shows a significant discrepancy in the
calculated efficiency as it transitions from 1 to zero, while the shifted normal
approximation shows a negligible error to the correct solution. From these
plots, further refinement of the normal approximation (such as including
kurtosis or higher powers) is unnecessary.
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potential variations of the selection function at the top level:
varying cosmology or spectroscopic efficiency. Tests with
changing the intrinsic scatter model used in the selection
efficiency simulations show that the uncertainty introduced is
negligible.

With the well-sampled redshift approximation, we can
remove the redshift integral in Equation (13) and replace it
with a correction for each observed supernova. For the error
function (denoted with the subscript “CDF”) and skew-normal
selection functions (denoted with a subscript “Skew”),
respectively, the correction per SNIa becomes
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m
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and is incorporated into our likelihood. Note that the above

efficiencies utilize the common form of the normal distribution

rather than the conditional probability notation found pre-

viously in this work. This is illustrated in Figure 4. Our

corrections for the DES spectroscopic data utilize the CDF

functional form, with the combined low-redshift surveys being

modeled with the skew-normal efficiency. Further details on

this choice are given in Section 5.2.

4.5. Model Summary

Having laid out each individual aspect of the model, the
relationships between variables, and our treatment of uncer-
tainty, here we summarize the relationships in our model
mathematically. In this summary of q( ∣ )P data , we leave out
sample selection for simplicity. Referring to Equation (12), the
relationships with q( ∣ )P data are as follows:
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The denominator of Equation (12) is then given by either
Equation (18) or (19), depending on the survey; similarly,

q( ∣ )P S data, is given by Equation (17) or (16), respectively.
Combining all of these gives us our full model likelihood with
selection effects accounted for.

5. Model Verification

In order to verify our model, we run it through stringent
tests. First, we validate on toy models, verifying that we
recover accurate cosmology when generating toy supernova
data constructed to satisfy the assumptions of the BHM
construction. We then validate our model on SNANA
simulations based on a collection of low-redshift surveys and
the DES 3 yr spectroscopic sample, termed the DES-SN3YR
sample.

5.1. Applied to Toy Spectroscopic Data

We generate simple toy data to validate the basic premise of
the model. The data generation algorithm is described below.

1. Draw a redshift from a power-law distribution. For the
low-redshift survey, this is ( )0.0004, 0.01 0.5, and
for the DES-like survey, this is ( )0.008, 1.0 0.33. For
the low-redshift survey, this is equivalent to sampling

y=z from 0.02 to 0.1 , and for the high-redshift survey,
this is equivalent to sampling =y z2 from 0.2 to 1.0.
These distributions are arbitrary, and this test has been
performed with various flat and power-law distributions.

2. Draw a random mass probability from ( )0, 1 and
calculate the mass-brightness correction using d =( )0
0.08, d d ¥ =( ) ( )0 0.5, and Equation (8).

3. Draw an absolute magnitude, stretch, and color from
the respective distributions  -( )19.3, 0.1 , ( )0, 1 ,
and ( )0, 0.1 .

4. Calculate m ( )z given the drawn redshift and cosmological
parameters W = 0.3m , = -w 1 under flat ΛCDM cosmol-
ogy. Use this to determine the true apparent magnitude of
the object mB using m a b= + - +m M x cB B 1 .

5. Determine if the SNIa is detected using the detection
probability =( ∣ ) ( )P S m 13.72, 1.35, 5.87B

skew for the
low-redshift survey (numeric values obtained by fitting
to existing low-redshift data). For the DES-like survey,

Figure 4. Efficiency of supernova discovery at an arbitrary redshift. Shown in
both panels with a blue dashed line is the SNIa population distribution, which
takes the form of a normal distribution. The top panel shows a CDF-based
survey efficiency (green dotted line), while the bottom panel shows a skew
normal–based survey efficiency (red dotted line), as functions of apparent
magnitude. The survey efficiency, given the SNIa population, is shown as a
solid line in both panels, and the probability of observing a SNIa is found by
integrating over the population detection efficiency as described in
Equation (13) and is shown by shading the area integrated. This area is what
is analytically given by Equations (18) and (19).
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accept with probability = F( ∣ ) ( )P S m 23.14, 0.5B
C .

Repeat from step 1 until we have a supernova that
passes. We use realistic values for the selection
probability to ensure that our model is numerically stable
with highly skewed selection functions.

6. Add independent, Gaussian observational error onto the
true mB, x1, and c using Gaussian widths of 0.04, 0.2, and
0.03, respectively (following the mean uncertainty for
DES-like SNANA simulations). Add extra color uncer-
tainty in quadrature of k k+ z0 1 , where k k= = 0.030 1 .

The selection function parameters (a skew normal for low-
redshift and a complementary error function for high-redshift)
are all given an independent uncertainty of 0.01 (mean and
width for the CDF selection function and mean, width, and
skewness for the skew-normal selection function). Draw from
each survey simulation until we have 1000 low-z and 1000
DES-like supernovae, representing a statistical sample of
greater power than the estimated 350 supernovae for the
DES-SN3YR sample. Sample data for 1000 high- and low-
redshift supernovae are shown in Figure 5, confirming the
presence of strong selection effects in both toy surveys, as
designed.

We test four models: flat ΛCDM, flat wCDM, ΛCDM, and
flat wCDM with a prior W ~ ( )0.3, 0.01m , with the latter
included to allow sensitive tests on bias for w. To achieve
statistical precision, we fit 100 realizations of supernova data
sets. Cosmological parameters are recovered without signifi-
cant bias. Combined posterior surfaces of all 100 realization fits
for ΛCDM are shown in Figure 6, and fits for flat wCDM are
shown in Figure 7. By utilizing the Stan framework and several

Figure 5. Population distributions shown in redshift and uncorrected absolute
magnitude m-mB for 1000 supernovae in both high- and low-redshift
surveys. Selection effects are visible in both samples, where red supernovae are
often cut as redshift increases, creating a skewed color population. The color of
the data points is representative of the supernova color itself, with a negative
color value showing bluer supernovae and positive color values representing
redder supernovae.

Figure 6. Maximal posterior points for 100 realizations of supernova
data with the flat ΛCDM model, with a representative contour from a
single data realization shown for context. Even a large supernova
sample, when treated robustly, is insufficient to provide tight constraints
on either Wm or WL separately due to the severe degeneracy between the
parameters.

Figure 7. Maximal posterior points for 100 realizations of supernova
data with the flat wCDM model, with a representative contour from a single
data realization shown for context. The well-known banana-shaped contour
is recovered, with the marginalized distributions in Wm and w shown to
recover input cosmology. For contours that are non-Gaussian due to the
curved degeneracy between Wm and w, the marginalized distributions can
provide misleading statistics where maximum marginalized distribution
can disagree with the maximum likelihood in multiple dimensions.
For our contours, the non-Gaussianity is small, and the marginalized
distributions still provide a valuable metric. The recovered posterior maxima
show the same degeneracy direction as the representative surface and scatter
around the truth values input into the simulation, which are shown with
dashed lines.
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efficient parameterizations (discussed further in Appendix B),
fits to these simulations of 2000 supernovae take only on order
of a single CPU hour to run.

To investigate biases in the model in fine detail, we look for
systematic bias in Wm in the flat ΛCDM cosmology test and
bias in w for the flat wCDM test with strong prior

W ~ ( )0.3, 0.01m . This allows us to investigate biases
without the investigative hindrances of non-Gaussian or
truncated posterior surfaces. The strong prior on Wm cuts a
slice through the traditional “banana” posterior surface in the
w–Wm plane of Figure 7. Without making such a slice, the
variation in w is larger due to a shift along the degeneracy
direction of the “banana.” By focusing the slice at an almost
fixed Wm, we can see the variation in the mean value of w
approximately perpendicular to the lines of degeneracy, instead
of along them. The results of the analysis are detailed in
Table 2 and demonstrate the performance of our model in
recovering the true cosmological parameters. As we are using
100 independent realizations, the precision of our determina-
tion of the mean simulation result is approximately a tenth of
the quoted scatter (as a degree of non-Gaussianity of our fits
will make this relationship inexact). The deviation from truth
values is below this threshold, and no significant bias is
detected in either the flat ΛCDM or flat wCDM models. With
these simple data, we also correctly recover underlying
supernova populations, which can be seen in Figure 12.

5.2. DES Supernova Data Validation

Many BHM methods have previously been validated on data
constructed explicitly to validate the assumptions of the model.
This is a useful consistency check that the model implementa-
tion is correct, efficient, and free of obvious pathologies.
However, the real test of a model is its application to realistic
data sets that mimic expected observational data in as many
ways as possible. To this end, we test using simulations (using
the SNANA package) that follow the observational schedule
and observing conditions for the DES and low-z surveys, where
the low-z sample is based on observations from CfA3 (Hicken
et al. 2009a, 2009b), CfA4 (Hicken et al. 2012), and CSP
(Contreras et al. 2010; Folatelli et al. 2010; Stritzinger et al.
2011). Simulation specifics can be found in Kessler et al.
(2019). The primary differences from the toy data of the
previous section are the different underlying color and stretch,
inclusion of spectroscopic data and light-curve cuts, and
inclusion of intrinsic dispersion models.

Prior analyses often treated intrinsic dispersion simply as
scatter in the underlying absolute magnitude of the underlying
population (Conley et al. 2011; Betoule et al. 2014), but recent
analyses require a more sophisticated approach. In our
development of this model and tests of intrinsic dispersion,
we analyze the effects of two different scatter models via
simulations: the G10 and C11 models described in Section 3.
The G10 model dispersion has 70% contribution from coherent
variation and 30% from chromatic variation, while the C11
model has 25% coherent scatter and 75% from chromatic
variation. These two broadband scatter models are converted to
spectral energy distribution models for use in simulations in
Kessler et al. (2013).
In addition to the improvements in testing multiple scatter

models, we also include peculiar velocities for the low-z sample
and our full treatment of systematics as detailed in Brout et al.
(2019). Our simulated populations are sourced from Scolnic &
Kessler (2016, hereafter SK16) and shown in Table 3. Initial
tests were also done with a second, Gaussian population with
color and stretch populations centered on zero and respective
widths of 0.1 and 1; however, the cosmological parameters
were not impacted by the choice of the underlying population,
and we continue using only the SK16 population for
computational efficiency. The selection effects were quantified
by comparing all of the generated supernovae to those that pass
our cuts, as shown in Figure 8. It is from this simulation that
our analytic determination of the selection functions for the
low-z and DES survey are based. We run two simulations to
determine the efficiency using the G10 and C11 scatter models
and find no difference in the functional form of the Malmquist
bias between the two models. Uncertainty on the analytic
selection function is incorporated into our fits, mitigating the
imperfection of our analytic form by allowing it to vary in
our fits.
Each realization of simulated SNIa light curves contains the

SALT2 light-curve fits and redshifts to 128 low-z and 204
DES-like supernovae, such that the uncertainties found when
combining chains is representative of the uncertainty in the
DES-SN3YR sample. As our primary focus is dark energy, we
now focus specifically on the flat wCDM model with matter
prior.
Points of maximum posterior for 100 data realizations are

shown in Figure 9. The parameter bounds and biases for w are
listed in Table 5, and secondary parameters are shown in
Table 4.
Table 5 shows that the G10 model is consistent with
= -w 1, while the C11 model shows evidence of bias on w,

scattering high. However, their deviation from the truth value
represents a shift of approximately s0.5 when taking into
account the uncertainty on fits to w. The bias is subdominant to
both the size of the uncertainty for each fit and the scatter

Table 2

Cosmological Parameters for Toy Supernova Data

Model m sW á ñ á ñ,m (scatter) m sá ñ á ñw , (scatter)

Flat ΛCDM ( )0.301, 0.015 0.012 L

Flat wCDM L - ( )1.00, 0.042 0.030

Note.Cosmological parameters determined from the surfaces of 100 fits to

independent realizations of toy supernova data. As described in the main text,

each data set comprised 1000 low-redshift and 1000 high-redshift supernovae.

For each chain, we record the mean and standard deviation and then show the

average mean and average standard deviation in the table. The scatter

introduced by simulation variance (the standard deviation of the 100 mean

parameter values) is shown in parentheses. Model bias would appear as shifts

away from the simulation values of W = 0.3m , = -w 1.

Table 3

Supernova Population Distributions

Model á ñx1 sx1 á ñc sc
SK16 low-z 0.55 and −1.5 -

+
1.0
0.45 and -

+
0.5
0.5

−0.055 -
+
0.023
0.15

SK16 DES 0.973 +
1.472
0.222

−0.054 +
0.043
0.101

Note.The SK16 low-z stretch distribution is formed as the sum of two

bifurcated Gaussians, with the mean and spread of each component given,

respectively.
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induced by statistical variance in the simulations. We also note
that the simulations do not vary cosmological parameters or
population. As our model does include uncertainty on those
values, the simulation scatter is expected to be less than the
model uncertainty and represents a minimum bound on
permissible uncertainty values.

Table 4 shows a clear difference in both β and smB
across

the G10 and C11 simulations. As expected, the C11 simula-
tions recover a far smaller intrinsic magnitude scatter, giving a
result of approximately 0.025 when compared to the result of
0.070 for the G10 simulations. The extra smearing of the C11
model does not result in a significantly biased β value
compared to the average uncertainty on β, with recovery of
b » 3.76 close to the input truth value of 3.8; however, the β
recovery for the G10 simulations is biased high, finding
b » 3.44 with an input of 3.1. Interestingly, w bias is only
found for the C11 simulations. A measure of the significance of
the parameter bias can be calculated by comparing the bias to a
tenth of the scatter (as our Monte Carlo estimate uncertainty is

100 of the scatter). From this, we can see that most biases are
detected with high statistical significance due to the large
number of simulations tested against.

We investigate the cosmological bias and find its source to
be a bias in the observed summary statistics (i.e., the m̂B, x̂1, and
ĉ output from SALT2 light-curve fitting), in addition to an
incorrect reported uncertainty on the summary statistics. To
confirm this, we run two tests. In the first, we replace the
SALT2-fitted m̂B, x̂1, and ĉ with random numbers drawn from a
Gaussian centered on the true SALT2 mB, x1, and c values with
a covariance as reported by initial light-curve fits. With this
test, both the G10 and C11 fits recover = -w 1.00 exactly.
Our second test aims to test our model while allowing biases in
the summary statistics not caused by intrinsic scatter through.

Figure 8. Fitting the selection function for both the DES-SN3YR spectro-
scopically confirmed supernova sample and the low-z sample. Blue error bars
represent the efficiency calculated by determining the ratio of discovered to
generated supernovae in apparent magnitude bins for SNANA simulations. The
black line represents the best-fit analytic function for each sample, and the light
gray lines surrounding the best-fit value represent random realizations of
analytic function taking into account uncertainty on the best-fit value.

Figure 9. Maximum posterior points for 100 realizations of supernova data for
two intrinsic dispersion models: the G10 model for the top panel and the C11
model for the bottom panel. Points are shown for parameters Wm, w, α, and β,
with the other fit parameters being marginalized over. As we are unable to fully
correct observed summary statistics, a step required by the lack of intrinsic
scatter in the SALT2 model, we expect to see an offset in α and β. This, in turn,
affects cosmology, resulting in small biases in w.
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That is, the first test ascertained that biases in the summary

statistics are the cause of cosmological bias. It is thus important

to determine the source of those biases, whether they are from

the intrinsic scatter model or another aspect of the simulation.

To this end, we test a set of 100 simulations generated using an

intrinsic dispersion model of only coherent magnitude scatter.

We find = -w 1.00, showing that the source of the biases in

the summary statistics is the underlying intrinsic scatter model.

From this, the main challenge of improving our methodology is

to handle the fact that the observational uncertainty reported

from fitting the SALT2 model to light curves is incorrect, non-

Gaussian, and biased. Our current model and techniques can

quantify the effect of different scatter models on biasing the

observed summary statistics, but being unable to constrain the

“correct” (simulated) scatter model in our model fit means we

cannot fully correct for the bias introduced by an unknown

scatter model.
Unfortunately, adding extra fit parameters to allow for

shifting observables washes out our ability to constrain

cosmology, and applying a specific bias correction requires

running a fiducial simulation (assuming cosmology, popula-

tion, and scatter model), which presents difficulties when trying

to account for correlations with population and scatter model.

This is compounded by the fact that bias corrections do not, in

general, improve fits (increase the log posterior) and so are

difficult to fit parametrically. Works such as Kessler & Scolnic

(2017) show that bias corrections can be applied to supernova

data sets that can robustly handle multiple intrinsic scatter

models, and future work will center on uniting these

methodologies, incorporating better bias corrections that

separate intrinsic scatter bias and non-Gaussian summary

statistic bias from Malmquist bias without having to pre-
compute standardization parameters and populations.
Difficulty in providing an adequate parameterization for

realistic intrinsic dispersion and the simplification of Malm-
quist bias to only apparent magnitude also lead to biases in the
population parameters. To determine if the underlying popula-
tion mischaracterization was a cause of cosmological bias, we
ran fits wherein the underlying population was fixed to the
known distributions used for the simulation. These fits did not
change the bias in the C11 simulation. We conclude that the
biased population recovery is not the cause of cosmological
bias. As the population parameters recovered using the
simplistic toy supernova data in the previous section do not
exhibit significant bias, future work will focus on intrinsic
dispersion and Malmquist bias rather than alternate parameter-
izations of the underlying supernova population.
Table 6 lists the fit correlations between our model fit

parameters (excluding the low-z band systematics and
Malmquist bias uncertainty parameters that had negligible
correlation), showing (in order) cosmological parameters,
standardization parameters, population width and skewness
parameters, intrinsic dispersion parameters, mass-step para-
meters, population mean parameters, SALT2 model systema-
tics, dust systematics, global HST calibration systematics,
peculiar velocity systematics, global redshift systematics, and
DES band magnitude and wavelength systematics. Figure 10
shows the full correlations between all nonsystematic model
parameters. Other interesting correlations are shown and
discussed in Figure 10. The band systematics for DES
filters g, r, and i also show a significant correlation with
w, highlighting the importance of minimizing instrumental
uncertainty.
For the sample size of the DES + low-z supernova samples

(332 supernovae), the bias from intrinsic scatter models is
subdominant to the statistical uncertainty, as shown in Figure 9.
For our full systematics model, the bias represents a deviation
between 0σ and s0.5 , depending on scatter model, and given
that they remain subdominant, we will leave more complicated
treatment of them for future work.

5.3. Uncertainty Analysis

With the increased flexibility of BHMs over traditional
models, we expect to find an increased uncertainty on
parameter inference. This increased uncertainty is one of
the strengths of hierarchical models, as it represents a more
thorough accounting of model uncertainty. To characterize the
influence of the extra degrees of freedom in our model,
we analyze the uncertainty on w averaged across 10 nominal
simulations of the DES-SN3YR sample with various model

Table 4

Realistic Simulation Standardization Parameters

Model a a- True b b- True á ñ - á ñM MB B True sm
DES
B

s -
m

zlow
B

G10 Stat + Syst 0.022 [0.009 (0.008)] 0.34 [0.19 (0.18)] −0.002 [0.028 (0.015)] 0.070 [0.022 (0.018)] 0.073 [0.025 (0.022)]

G10 Stat 0.000 [0.008 (0.008)] 0.33 [0.20 (0.17)] 0.001 [0.016 (0.013)] 0.069 [0.023 (0.019)] 0.072 [0.026 (0.023)]

C11 Stat + Syst 0.002 [0.009 (0.007)] −0.04 [0.15 (0.13)] 0.014 [0.030 (0.018)] 0.024 [0.016 (0.011)] 0.029 [0.020 (0.014)]

C11 Stat 0.000 [0.008 (0.007)] −0.05 [0.16 (0.13)] 0.006 [0.016 (0.015)] 0.025 [0.016 (0.012)] 0.027 [0.020 (0.015)]

Note.Standardization parameters and base intrinsic scatter parameter results for the 100 fits to G10 and C11 simulations. We show the average parameter mean and

average standard deviation, respectively, with the simulation scatter shown in brackets, such that each cell shows m sá ñ á ñ[ ( )]scatter . The width of the intrinsic scatter

(smB) does not have an input truth value, as it is determined from the scatter model.

Table 5

Realistic Simulation Determination of w

Model m sá ñ á ñ[w w (scatter)] w Bias

G10 Stat + Syst −0.998 [0.097 (0.073)] (0.02±0.07)σ

G10 Stat −1.008 [0.080 (0.068)] (−0.10±0.08)σ
C11 Stat + Syst −0.945 [0.098 (0.077)] (0.55±0.08)σ

C11 Stat −0.948 [0.079 (0.066)] (0.65±0.08)σ

Note.Investigating the combined 100 fits to the G10 and C11 simulations,

fitting with both statistics only and when including systematics. The quoted

value for w represents the average mean of the fits, with the average uncertainty

being shown in brackets and the simulation scatter (the standard deviation of

the mean of 100 fits) shown in parentheses. The bias significance represents our

confidence that the deviation in the mean w away from −1 is not due to

statistical fluctuation.
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parameters allowed to either vary or stay locked to a fixed

value. By taking the difference in uncertainty in quadrature, we

can infer the relative contribution for each model feature to the

uncertainty error budget.

The error budget detailed in Table 7 shows that our
uncertainty is dominated by statistical error, as the total
statistical uncertainty on w is ±0.08. With the low number
of supernovae in the DES-SN3YR sample, this is expected.
We note that the label “Systematics” in Table 7 represents
all numerically computed systematics (as discussed in
Section 4.4.4) and systematic uncertainty on the selection
function.

5.4. Methodology Comparison

We compare the results of our model against those of the
BBC+CosmoMC method (Kessler & Scolnic 2017). This
method has been used in prior analyses, such as the Pantheon
sample analysis of Scolnic et al. (2018), and is being used in
the primary analysis of the DES-SN3YR sample (DES
Collaboration et al. 2018). The BBC method is a two-part
process: BBC computes bias corrections for observables, and
then the corrected distances are fit using CosmoMC (Lewis &
Bridle 2002). For shorthand, we refer to this combined process
as the BBC method hereafter in this paper, as we are concerned
with the results of cosmological parameter inference. As a
leading supernova cosmology method, it provides a good
consistency check as to the current levels of accuracy in
recovering cosmological parameters.
To this end, we take the results of the BBC method that were

also run on the same set of 200 validation simulations and
compare the recovered w values to those of our method. The
results are detailed in Table 8, and a scatter plot of the
simulation results is presented in Figure 11.
As shown in Brout et al. (2019), the BBC method recovers

cosmological parameters without bias so long as the intrinsic
scatter model is known. As we do not know the correct intrinsic
scatter model, the BBC method averages the results when using
bias corrections from G10 and C11. As such, we expect the
BBC method to have a w bias in one direction for G10
simulations and the other direction for C11 simulations. These
results are consistent with those displayed in Table 8. Both the
BBC method and Steve are sensitive to the intrinsic scatter
model, finding differences of ∼0.066 and 0.053, respectively,
in w when varying the scatter model. The BBC method finds w
biased low for G10 and high for C11 (by about ±0.03), so
taking the average result only results in a small bias of −0.01 in
w. Our method shows a small improvement in the insensitivity
to the intrinsic scatter model (having a decrease in difference in
w between the G10 and C11 models), finding no bias for G10
but a w biased high for C11. This decrease in error is not
statistically significant, as we have statistical uncertainty of
∼0.01 for 100 simulation realizations. The average bias over
the two scatter models is +0.028, representing a larger bias
than the BBC method.
When comparing both the G10 and C11 sets of simulations

independently, our model differs from BBC in its average
prediction of w by +0.044 and +0.033, respectively. For
the G10 model, this difference is a result of bias in the BBC
results; however, for the C11 simulations, this is a result of both
bias from BBC and a larger bias from our method. These results
also allow us to state the expected values for w when run on the
DES-SN3YR sample. When using Planck priors, our uncertainty
on w is reduced compared to using our simulation Gaussian prior
on Wm, shrinking the average w difference from 0.06 to 0.04.
After factoring this into our uncertainty, we expect our BHM
method to, on average, recover = + w w 0.04 0.04BHM BBC .

Table 6

Reduced Parameter Correlations with w

Parameter G10 Stat+Syst C11 Stat+Syst

Wm −0.19 −0.21

α −0.17 −0.20

β −0.29 −0.23

á ñMB 0.68 0.66

d ( )0 0.00 0.00

d d¥( ) ( )0 0.00 0.00

s
Bm

0 0.04 0.07

s
Bm

1 0.23 0.18

sx1
0 0.04 0.03

sx1
1 0.05 0.01

sc
0 0.01 0.11

sc
1 0.08 0.04

ac
0

−0.04 0.04

ac
1 0.03 0.01

kc0
0

−0.10 −0.05

kc0
1

−0.20 −0.17

kc1
0

−0.05 −0.01

kc1
1

−0.01 0.01

á ñx1
0

−0.01 −0.05

á ñx1
1

−0.02 0.02

á ñx1
2

−0.04 −0.04

á ñx1
3

−0.03 −0.06

á ñx1
4

−0.06 −0.06

á ñx1
5 0.04 0.02

á ñx1
6 0.04 0.04

á ñx1
7 0.08 0.03

á ñc0 −0.05 −0.12

á ñc1 0.11 0.03

á ñc2 0.11 0.06

á ñc3 0.14 0.04

á ñc4 −0.11 −0.11

á ñc5 −0.15 −0.08

á ñc6 −0.12 −0.13

á ñc7 −0.12 −0.06

d [ ]SALT0 0.05 0.05

d [ ]SALT1 −0.01 0.02

d [ ]SALT2 −0.10 −0.09

d [ ]SALT3 −0.03 −0.03

d [ ]SALT4 0.08 0.09

d [ ]SALT5 0.01 0.02

d [ ]SALT6 0.05 0.07

d [ ]SALT7 −0.11 −0.10

d [ ]SALT8 0.01 0.02

d [ ]SALT9 0.02 0.02

d -[ ]MWEB V 0.03 0.02

d [ ]HST Calib −0.07 −0.07

d [ ]vpec 0.00 −0.01

d d[ ]z 0.01 0.00

d D[ ]g 0.05 0.11

d D[ ]r 0.16 0.10

d D[ ]i −0.16 −0.18

d D[ ]z −0.26 −0.26

d lD[ ]g 0.16 0.20

d lD[ ]r 0.05 0.06

d lD[ ]i 0.00 −0.01

d lD[ ]z 0.09 0.07

Note.Correlations determined from the combined 100 simulation fits. Correla-

tions for the low-z band systematics and the latent parameters representing

selection function uncertainty are not shown but have negligible correlation. Zero

superscripts indicate the DES, and a superscript 1 represents the low-z survey.
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Having established that our method exhibits similar shifts in
the recovery of w compared to BBC, future work will focus on
improving the parameterization of the intrinsic scatter model
into our framework, with the goal of minimizing the effect of
the underlying scatter model on the recovery of cosmology.

6. Conclusions

In this paper, we have outlined the creation of a hierarchical
Bayesian model for supernova cosmology. The model takes
into account selection effects and their uncertainty, fits
underlying populations and standardization parameters, incor-
porates unexplained dispersion from intrinsic scatter color
smearing, and incorporates uncertainty from peculiar velocities,
survey calibration, HST calibration, dust, a potential global
redshift offset, and SALT2 model uncertainty. Furthermore,
our uncertainties in standardization, population, mass step, and
more, being explicitly parameterized in our model, are captured
with covariance intact, an improvement on many previous

methods. The model has been optimized to allow for hundreds

of supernovae to be modeled fully with latent parameters. It

runs in under 1 hr of CPU time and scales linearly with the

number of supernovae, as opposed to the polynomial complex-

ity of matrix inversion of other methods.
The importance of validating models using high-precision

statistics gained by performing fits to hundreds of data

realizations cannot be overstated; however, this validation is

lacking in many earlier BHM models for supernova cosmol-

ogy. We have validated this model against many realizations of

simplistic simulations with well-known and well-defined

statistics and found no cosmological bias. When validating

using SNANA simulations, we find evidence of cosmological

bias that is traced back to light-curve fits reporting biased

observables and incorrect covariance. Allowing fully para-

meterized corrections on observed supernova summary statis-

tics introduces too many degrees of freedom and is found to

make cosmology fits too weak. Allowing simulation-based

Figure 10. Parameter correlations for the combined fits to the 100 G10 scatter model simulations. We see that the primary correlations with w enter through α, β, and
á ñMB , as shown in Table 6. While á ñMB is generally thought to be a nuisance parameter, we find a cosmological correlation. We note that, by fixing H0 in our distance
modulus calculation, á ñMB absorbs any cosmological uncertainty on this term. Additionally, á ñMB also affects the selection efficiency, which was computed from
simulations with a fixed MB value, introducing a second plausible source of correlation. Also visible in this figure are several other interesting relationships. Here β is

strongly anticorrelated with intrinsic dispersion smB for both surveys (DES-like and low-z), with smB showing strong anticorrelation with kc
0. This relationship is indeed

expected; as kc
0 grows larger (more unexplained dispersion on the color observation), the width of the supernova population in apparent magnitude space increases. As

the fit prefers it to conform to the observed width of the distribution, the extra width in color causes the inherent magnitude smearing amount to decrease. And, with

extra freedom on the observed color from kc
0, β shifts in response. The other striking feature in the plot is the strong correlation blocks in the bottom right and the

anticorrelation stripes on the edges. These too are expected, for they show the relationship between the color distribution’s mean value, width, and skewness. As
skewness or population width increases, the effective mean of the population shifts (see Appendix A.3 for details), creating an anticorrelation between skewness and

the (Gaussian) mean color population. Strong anticorrelation between kc0
0 and kc0

1 with smB reveals the strong population degeneracy, and—for the C11 simulation
results—a constrained positive value shows that a finite nonzero extra color dispersion is indeed preferred by our model.

16

The Astrophysical Journal, 876:15 (21pp), 2019 May 1 Hinton et al.



corrections to vary in strength is found to give minor reductions
in w bias; however, the uncertainty on the intrinsic scatter
model itself limits the efficacy of the bias corrections. For the
data size represented in the DES 3 yr spectroscopic survey, the
determined biases should be subdominant to other sources of
uncertainty; however, this cannot be expected for future
analyses with larger data sets. Stricter bias corrections
calculated from simulations are required to reduce bias. Ideally,
this would include further work on the calculation of the
intrinsic dispersion of the SN Ia population such that we can
better characterize this bias.

With our model being validated against hundreds of
simulation realizations representing a combined data set of
more than 60,000 simulated supernovae, we have been able to
accurately determine the biases in our model and trace their
origin. With the current biases being subdominant to the total
uncertainty, we now prepare to analyze the DES 3 yr data set.

Plots of posterior surfaces and parameter summaries were
created with ChainConsumer (Hinton 2016).
Funding for the DES Projects has been provided by the U.S.

Department of Energy, the U.S. National Science Foundation,
the Ministry of Science and Education of Spain, the Science
and Technology Facilities Council of the United Kingdom, the

Higher Education Funding Council for England, the National
Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign, the Kavli Institute of Cosmo-

logical Physics at the University of Chicago, the Center for
Cosmology and Astro-Particle Physics at the Ohio State
University, the Mitchell Institute for Fundamental Physics

and Astronomy at Texas A&M University, Financiadora de
Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo
à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de

Desenvolvimento Científico e Tecnológico and the Ministério
da Ciência, Tecnologia e Inovação, the Deutsche Forschungs-

gemeinschaft, and the Collaborating Institutions in the Dark
Energy Survey.
The Collaborating Institutions are Argonne National Labora-

tory, the University of California at Santa Cruz, the University
of Cambridge, Centro de Investigaciones Energéticas, Med-
ioambientales y Tecnológicas-Madrid, the University of

Chicago, University College London, the DES-Brazil Con-
sortium, the University of Edinburgh, the Eidgenössische
Technische Hochschule (ETH) Zürich, Fermi National Accel-

erator Laboratory, the University of Illinois at Urbana-
Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC),
the Institut de Física d’Altes Energies, Lawrence Berkeley

National Laboratory, the Ludwig-Maximilians Universität
München and the associated Excellence Cluster Universe, the
University of Michigan, the National Optical Astronomy
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University, the University of Pennsylvania, the University of
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Table 7

w Error Budget

Feature Parameters sw Cumulative

Cosmology Wm, w 0.051 0.051

Standardization α, β, á ñMB ,

d ( )0 , d d¥( ) ( )0
0.046 0.068

Intrinsic scatter k0, k1 0.020 0.071

Redshift-independent

populations

sMB, sc, sx1, ac 0.022 0.074

Redshift-dependent

populations

á ñci , á ñx i1, 0.030 0.080

Systematics d i, dS 0.054 0.096

Note.Error budget determined from analyzing uncertainty on simulation data

while progressively enabling model features. We start from the top of the table,

only varying cosmological parameters Wm and w, and then progressively

unlock parameters and let them fit as we progress down the table. The

cumulative uncertainty shows the total uncertainty on w on the fit for all, where

the sw term is derived by taking the quadrature difference in cumulative

uncertainty as we progress.

Table 8

w Bias Comparison

Model G10 C11 (G10 + C11)

Steve á ñw −0.998±0.007 −0.945±0.007 −0.972±0.006

BBC á ñw −1.044±0.006 −0.978±0.007 −1.010±0.005a

Δ á ñw +0.044±0.006 +0.033±0.006 +0.038±0.004

Δ sw 0.057±0.004 0.062±0.004 0.060±0.003

Note.We characterize the bias on w using the 100 simulations for the G10

scatter model and 100 simulations for the C11 scatter model. We also show the

results when combining the G10 and C11 models into a combined set of 200

simulations. The mean w value for our method and BBC are presented, along

with the mean when averaging the difference between our method and BBC for

each individual simulation. Averages are computed giving each simulation

sample the same weight. In the model, Δ represents Steve – BBC. The final

row shows the scatter between Steve and BBC for the different simulations.
a
This value is computed with each simulation having the same weight. It

disagrees with the value provided in Brout et al. (2019, Table 10, row 3), which

uses inverse variance–weighted averages. We do not utilize this weight because

the variance is correlated with the value of w due to the Wm prior applied in the

fitting process. We note that if inverse variance weighting is applied to both

data sets, they both shift by D »w 0.005, and thus the predicted difference

between the BBC method and Steve remains the same.

Figure 11. Recovered w for the 200 validation simulations with full treatment
of statistical and systematic errors. Uncertainty on the recovered w value is
shown for every second data point for visual clarity.
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Appendix A
Selection Effect Derivation

A.1. General Selection Effects

When formulating and fitting a model using a constraining
data set, we wish to resolve the posterior surface defined by

q q qµ( ∣ ) ( ∣ ) ( ) ( )P P Pdata data , 21

which gives the probability of the model parameter values (θ)

given the data. Prior knowledge of the allowed values of the

model parameters is encapsulated in the prior probability q( )P .

Of primary interest to us is the likelihood of observing the data

given our parameterized model,  qº ( ∣ )P data . When dealing

with experiments that have imperfect selection efficiency, our

likelihood must take that efficiency into account. We need to

describe the probability that the events we observe are both

drawn from the distribution predicted by the underlying

theoretical model and that those events, given that they

happened, are subsequently successfully observed. To make

this extra conditional explicit, we write the likelihood of the

data given an underlying model, θ, and that the data are

included in our sample, denoted by S, as

 q q=( ) ( ∣ ) ( )P S; data data , . 22

A variety of selection criteria are possible, and in our method,

we use our data in combination with the proposed model to

determine the probability of particular selection criteria. That

is, we characterize a function q( ∣ )P S data, , which colloquially

can be stated as the probability of a potential observation

passing selection cuts, given our observations and the under-

lying model. We can introduce this expression in a few lines

due to symmetry of joint probabilities and utilizing that

= =( ) ( ∣ ) ( ) ( ∣ ) ( )P x y z P x y z P y z P y x z P x z, , , , , , :

q q q q=( ∣ ) ( ) ( ∣ ) ( ) ( )P S P S P S Pdata , , data, data, 23

q
q q
q

=( ∣ )
( ∣ ) ( )

( )
( )P S

P S P

P S
data ,

data, data,

,
24

q q q
q q

=
( ∣ ) ( ∣ ) ( )

( ∣ ) ( )
( )

P S P P

P S P

data, data
25

q q
q

=
( ∣ ) ( ∣ )

( ∣ )
( )

P S P

P S

data, data
, 26

which is equal to the likelihood . At this point, our derivation
depends on whether our selection effects are best modeled as a

function of observables or latent parameters. In most cases,

selection effects will be best modeled directly as a function of

observables, and we would introduce an integral over all

possible events D, so we can evaluate q( ∣ )P S ,


ò

q
q q
q

=( )
( ∣ ) ( ∣ )

( ∣ )
( )

P S P

P S D dD
; data

data, data

,
, 27


ò

q
q q
q q

=( )
( ∣ ) ( ∣ )

( ∣ ) ( ∣ )
( )

P S P

P S D P D dD
; data

data, data

,
. 28

The second option, wherein selection effects can be more

computationally efficiently modeled with the inclusion of latent

parameters (for example, in the case where we do not have

direct access to the observables upon which our data selection

is determined), we can introduce our latent parameters in

addition to an integral over all possible data,

 òq
q q

q q q
=

∬
( )

( ∣ ) ( ∣ ) ( ∣ )

( ∣ ) ( ∣ ) ( ∣ )
( )

P S L P L P L dL

P S D L P D L P L dD dL
; data

data, , data

, , ,
, 29

where L represents our latent parameters that model the true

underlying values of our observables, such that our data are

conditioned directly on them. In this formulation, the selection

effects can depend on both data and latent variables.

A.2. Supernova Selection Effects

To turn the generalized equations from the previous sections
into selection effects relevant for this model, we need to
highlight that θ represents only our top-level parameters (Wm,
w, α, β, etc.), and that our parameterization of the true
underlying values (for example, mB) takes the form of latent
parameters. We thus continue from Equation (29) and write out
the denominator d:

q q q= ∬ ( ∣ ) ( ∣ ) ( ∣ ) ( )d P S D L P D L P L dD dL, , , . 30

In our formulation, we assume that our selection effects can be

sufficiently encapsulated by latent parameters. That is, we

simplify q ( ∣ ) ( ∣ )P S D L P S L, , . This allows us to isolate our

integral ò q( ∣ )P D L, in the above equation, integrate it to unity,
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and come to

ò q= ( ∣ ) ( ∣ ) ( )d P S L P L dL. 31

Here we can now move from the generic label L to something

specific to our model. Specifically, we assume that our

selection effects can be quantified using the true apparent

magnitude mB and redshift z, so  { }L m z,B , or, formally,

q =( ∣ ) ( ∣ ) ( ∣ )P S D L P S z P S m, , B . We do not write out other

latent parameters found in the model, as they do not impact

selection effects—we would simply find them integrated to

unity. Note that this assumption does not capture biases

engendered by Poisson noise fluctuations. We advocate that

future analyses with higher statistical precision use a precisely

determined ( ∣ )P S D . Writing out the latent variables, our

denominator becomes

ò q= ( ∣ ) ( ∣ ) ( ∣ ) ( )d P S z P S m P z m dz dm, . 32B B B

We can express q( ∣ )P z m, B as q q( ∣ ) ( ∣ )P m z P z,B , where the first

term requires us to calculate the magnitude distribution of our

underlying population at a given redshift, and the second term

is dependent on survey geometry and supernova rates. We can

thus state

ò ò q q= ⎡
⎣⎢

⎤
⎦⎥( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )d P S m P m z dm P S z P z dz, . 33B B B

By assuming that the distribution q( ∣ ) ( ∣ )P S z P z is well sampled

by the observed supernova redshifts, we can approximate the

integral over redshift by evaluating

ò q( ∣ ) ( ∣ ) ( )P S m P m z dm, 34B B B

for each supernova in the data set, i.e., Monte Carlo integration

with assumed perfect importance sampling.
As stated in Section 4.4.5, the underlying population in

apparent magnitude, when we discard skewness, can be
represented as * * s( ∣ ( ) )m m z ,B B mB

, where

* m a b
p
s d= á ñ + - á ñ + á ñ +

⎛

⎝
⎜

⎞

⎠
⎟( ) ( ) ( ) ( )

( )

m z M z x z c z
2

,

35

B B c c1

*s s as bs
d
p

= + + -
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟( ) ( )1

2
. 36m M x c

c2 2
2

2

B B 1

Then, modeling ( ∣ )P S mB as either a normal or a skew normal,

we can analytically perform the integral in Equation (34) and

reach Equations (18) and (19).

A.3. Approximate Selection Effects

In this section, we investigate the effect of approximating the
skew normal underlying color distribution as a normal.
Specifically, Equations (35) and (36) make the assumption
that, for our color distribution,  m s a( ), ,Skew is well
approximated by  m s( ), . We sought to improve on this
approximation by adjusting the mean and standard deviation of
the approximated normal to more accurately describe the actual
mean and standard deviation of a skew normal. With

d a aº +1 2 , the correct mean and standard deviation are

m m
p
ds= + ( )

2
, 371 0 0

s s
d
p

= - ( )1
2

, 381 0

2

where we highlight that μ here represents the mean of the

distribution, not distance modulus. We can then test the

approximation  m s a m s( ) ( ), , ,Skew
0 0 1 1 . Unfortunately,

this shift to the mean and standard deviation of the normal

approximation, where we treat mB, x1, and c as a multivariate

skew normal, did not produce stable posterior surfaces. Due to

this, we treat the underlying mB, x1, and c populations as

independent.
We tested a fixed sc in the shift correction such that

m m pd= + k21 0 , where we set k=0.1 to mirror the width
of the input simulation population. This resulted in stable
posterior surfaces; however, this introduced recovery bias in
several population parameters, so we do not fix sc. Comparing
whether we shift our normal in the approximation or simply
discard skewness, Figure 3 shows that the calculated efficiency
is significantly discrepant to the actual efficiency if the normal
approximation is not shifted. The biases when using shifted or
unshifted normal approximations when we fit our model on
Gaussian and skewed underlying populations are shown in
Figure 12, and only the shifted normal approximation correctly
recovers the underlying population parameters.

Appendix B
Numerical Optimizations

Not many fitting methodologies and algorithms can handle
the thousands of fit parameters our model requires. By using
Stan, we are able to take advantage of automatic differentiation
and the NUTS sampler, which is a class of Hamiltonian Monte
Carlo samplers. Even with these advantages, early implementa-
tions of our model still had excessive fit times, with our desired
sub-hour running time being far exceeded.
The simplest and most commonly found optimization we

employed was to precompute as much as possible. This is in a
bid to reduce the complexity of the mathematical graph our
model is translated into by Stan to simplify the computation of
surface derivatives. For example, when computing the
distance modulus, redshift is encountered to various powers.
Instead of computing those powers in Stan, we simply pass in
several arrays of redshift values already raised to the correct
power. Small changes like this, however, only give small
improvements.
The primary numerical improvement we made on existing

frameworks was to remove costly probability evaluations of
multivariate normals. To increase efficiency, the optimum way
to sample a multivariate normal is to parameterize it such that
instead of sampling  m S( ∣ )x , , we sample  d( ∣ )0, 1 , where
m d= +x L and L is the Cholesky decomposition of Σ. In this

way, we can efficiently sample the unit normal probability
distribution instead of sampling a multivariate normal prob-
ability distribution. Switching to this parameterization resulted
in a computational increase of an order of magnitude, taking
fits for a sample of approximately 500 supernovae from
roughly 4 hr down to 30 minutes.
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This parameterization does come with one significant

downside: inflexibility. For each step the algorithm takes, we

do not recompute the Cholesky decomposition of the

covariance of the summary statistics—that happens once at

the beginning of the model setup. If we had kept the full

covariance matrix parameterization, we could modify the

matrix easily; for example, when incorporating intrinsic

dispersion, we could simply add on a secondary matrix to

create an updated covariance. However, as the Cholesky

decomposition of a sum of matrices is not equal to the sum of

the Cholesky decomposition of each individual matrix, we

would need to recompute the decomposition for each step,

which discards most of the computational benefit just gained.
Considering a 3×3 matrix with Cholesky decomposition

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )L

a

b c

d e f

0 0

0 , 39

the original covariance matrix Σ is given by

S = + +
+ + +

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

( )
a ab ad

ab b c bd ce

ad bd ce d e f

. 40

2

2 2

2 2 2

Now the primary source of extra uncertainty in the intrinsic

dispersion models comes from chromatic smearing, which

primarily influences the recovered color parameter, which is

placed as the last element in the observables vector

{ }m x c, ,B 1 . We can now see that it is possible to add extra

uncertainty to the color observation on the diagonal without

having to recompute the Cholesky decomposition—notice

that f is unique in that it is the only element of L that appears

in only one position in the covariance matrix. To take

our covariance and add on the diagonal uncertainty for

Figure 12.Marginalized probability distributions for 100 realizations of cosmology, fit to a flat wCDM with prior W ~ ( )0.3, 0.01m , each containing 1000 simulated
high-z and 1000 simulated low-z supernovae. The dashed green distribution represents a fit to an underlying Gaussian color population with the unshifted model. The
blue solid surface represents fits to a skewed color population with the unshifted model, and the purple dotted surface represents a fit to a skewed color population with

the shifted model. The superscripts 0 and 1 denote the two different surveys (high- and low-z, respectively); similarly, the first four á ñci parameters represent the four
redshift nodes in the high-z survey, and the last four represent the nodes for the low-z survey. We can see that the shifted model is far better able to recover skewed
input populations than the unshifted, performing better in terms of recovering skewness ac, mean color á ñc , and width of the color distribution sc. The unshifted model

recovers the correct color mean and width if you approximate a skew normal as a normal, m ps dD = »2 0.071c c , which is approximately the deviation found in
the fits to the color population mean. Importantly, the unshifted model, when run on skewed data (solid blue), shows extreme bias in ac, where it fits strongly around
zero regardless, showing it to be a poor approximation. Based on these results and the good performance in correctly recovering underlying populations of the shifted
normal approximation, we adopt the shifted normal approximation in our model.
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color an extra se term, we get

s r s s r s s

r s s s r s s

r s s r s s s s

=

+

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )C . 41

m m x m c

m x x x c

m c x c c e

2
0,1 0,2

0,1
2

1,2

0,2 1,2
2 2

B B B

B

B

1

1 1 1

1

The Cholesky decomposition of this, in terms of the original

Cholesky decomposition, is

=
+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )L

a

b c

d e f g

0 0

0 , 42

where s= + -g f fe
2 2 . This allows an easy update to the

Cholesky decomposition to add extra uncertainty to the

independent color uncertainty. For both the G10 and C11

models, we ran fits without the Cholesky parameterization to

allow for extra correlated dispersion (instead of just dispersion on

c), but we found no decrease in bias or improved fit statistics,

allowing us to use the more efficient Cholesky parameterization.
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