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Abstract—This paper presents the first hierarchical Byzantine fault-tolerant replication architecture suitable to systems that span
multiple wide area sites. The architecture confines the effects of any malicious replica to its local site, reduces message complexity
of wide area communication, and allows read-only queries to be performed locally within a site for the price of additional standard
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1 INTRODUCTION

DURING the last few years, there has been consid-
erable progress in the design of Byzantine fault-

tolerant replication systems. Current state of the art
protocols perform very well on small-scale systems that
are usually confined to local area networks, which have
small latencies and do not experience frequent network
partitions. However, current solutions employ flat ar-
chitectures that have several limitations: Message com-
plexity limits their ability to scale, and strong connec-
tivity requirements limit their availability on wide area
networks, which usually have lower bandwidth, higher
latency, and exhibit more frequent network partitions.

This paper presents Steward [1], the first hierarchical
Byzantine fault-tolerant replication architecture suitable
for systems that span multiple wide area sites, each
consisting of several server replicas. Steward assumes
no trusted component in the entire system other than a
mechanism to pre-distribute private/public keys.
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Steward uses Byzantine fault-tolerant protocols within
each site and a lightweight, benign fault-tolerant pro-
tocol among wide area sites. Each site, consisting of
several potentially malicious replicas, is converted into a
single logical trusted participant in the wide area fault-
tolerant protocol. Servers within a site run a Byzantine
agreement protocol to agree upon the content of any
message leaving the site for the global protocol.

Guaranteeing a consistent agreement within a site is
not enough. The protocol needs to eliminate the ability
of malicious replicas to misrepresent decisions that took
place in their site. To that end, messages between servers
at different sites carry a threshold signature attesting
that enough servers at the originating site agreed with
the content of the message. This allows Steward to save
the space and computation associated with sending and
verifying multiple individual signatures. Moreover, it
allows for a practical key management scheme where
all servers need to know only a single public key for
each remote site and not the individual public keys of
all remote servers.

Steward’s hierarchical architecture reduces the mes-
sage complexity on wide area exchanges from O(N2) (N
being the total number of replicas in the system) to O(S2)
(S being the number of wide area sites), considerably
increasing the system’s ability to scale. It confines the
effects of any malicious replica to its local site, enabling
the use of a benign fault-tolerant algorithm over the
wide area network. This improves the availability of
the system over wide area networks that are prone to
partitions. Only a majority of connected sites is needed
to make progress, compared with at least 2f + 1 servers
(out of 3f +1) in flat Byzantine architectures, where f is
the upper bound on the number of malicious servers.

Steward allows read-only queries to be performed
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locally within a site, enabling the system to continue
serving read-only requests even in sites that are par-
titioned away. These local queries provide one-copy
serializability [2], the common semantics provided by
database products. Serializability is a weaker guarantee
than the linearizability semantics [3] provided by some
existing flat protocols (e.g., [4]). We believe serializability
is the desired semantics in partitionable environments,
because systems that provide linearizability can only
answer queries in sites connected to a quorum. In addi-
tion, Steward can guarantee linearizability by querying
a majority of the wide area sites, at the cost of higher
latency and lower availability.

Steward provides the benefits described above by
using an increased number of servers. More specifically,
if the requirement is to protect against any f Byzantine
servers in the system, Steward requires 3f + 1 servers
in each site. However, in return, it can overcome up
to f malicious servers in each site. We believe this
requirement is reasonable given the cost associated with
computers today.

Steward’s efficacy depends on using servers within a
site that are unlikely to suffer correlated vulnerabilities.
Multi-version programming [5], where independently
coded software implementations are run on each server,
can yield the desired diversity. Newer techniques [6], [7]
can automatically and inexpensively generate variation.
Steward remains vulnerable to attacks that compromise
an entire site (e.g., by a malicious administrator with
access to the site). This problem was addressed in [8].

The paper demonstrates that the performance of Stew-
ard with 3f + 1 servers in each site is much better
even compared with a flat Byzantine architecture with
a smaller system of 3f + 1 total servers spread over
the same wide area topology. The paper further demon-
strates that Steward exhibits performance comparable
(though somewhat lower) with common benign fault-
tolerant protocols on wide area networks.

We implemented the Steward system, and a DARPA
red-team experiment has confirmed its practical surviv-
ability in the face of white-box attacks (where the red-
team has complete knowledge of system design, access
to its source code, and control of f replicas in each site).
According to the rules of engagement, where a red-team
attack succeeded only if it stopped progress or caused
inconsistency, no attacks succeeded.

The main contributions of this paper are:
1) It presents the first hierarchical architecture and

algorithm that scales Byzantine fault-tolerant repli-
cation to large, wide area networks.

2) It provides a complete proof of correctness for this
algorithm, demonstrating its safety and liveness
properties.

3) It presents a software artifact that implements the
algorithm completely.

4) It shows the performance evaluation of the imple-
mentation software and compares it with the cur-
rent state of the art. The experiments demonstrate

that the hierarchical approach greatly outperforms
existing solutions when deployed on large, wide
area networks.

The remainder of the paper is organized as follows.
We discuss previous work in several related research
areas in Section 2. We provide background in Section
3. We present our system model in Section 4 and the
service properties met by our protocol in Section 5. We
describe our protocol, Steward, in Section 6. We present
experimental results demonstrating the improved scal-
ability of Steward on wide area networks in Section 7.
We include a proof of safety and a proof roadmap of
liveness in Section 8. We summarize our conclusions in
Section 9. Appendix A contains complete pseudocode
for our protocol, and complete correctness proofs can
be found in Appendix B. The appendices appear in the
electronic version of this paper, available from IEEE and
at http://dsn.jhu.edu.

2 RELATED WORK

Agreement and Consensus: At the core of many replication
protocols is a more general problem, known as the
agreement or consensus problem. A good overview of
significant results is presented in [9]. The strongest fault
model that researchers consider is the Byzantine model,
where some participants behave in an arbitrary manner.
If communication is not authenticated and nodes are di-
rectly connected, 3f +1 participants and f +1 communi-
cation rounds are required to tolerate f Byzantine faults.
If authentication is available, the number of participants
can be reduced to f + 2 [10].

Fail-Stop Processors: Schlichting and Schneider [11]
present the implementation and use of k-fail-stop pro-
cessors, which consist of several potentially Byzantine
processors. A k-fail-stop processor behaves like a fail-
stop processor as long as no more than k processors
are Byzantine faulty. Benign fault-tolerant protocols can
thus safely run on top of these logical processors. Unlike
Steward, in which a site is live unless f+1 of its comput-
ers fail, the k-fail-stop processor described in [11] halts
when even one of its constituent processors fails.

Byzantine Group Communication: Related with our work
are group communication systems resilient to Byzantine
failures. Two such systems are Rampart [12] and Se-
cureRing [13]. Both systems rely on failure detectors to
determine which replicas are faulty. An attacker can slow
correct replicas or the communication between them
until a view is installed with less than two-thirds correct
members, at which point safety may be violated. The
ITUA system [14], [15], developed by BBN and UIUC,
employs Byzantine fault-tolerant protocols to provide
intrusion-tolerant group services. The approach taken
considers all participants as equal and is able to tolerate
up to less than a third of malicious participants.

Replication with Benign Faults: The two-phase commit
(2PC) protocol [16] provides serializability in a dis-
tributed database system when transactions may span
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several sites. It is commonly used to synchronize trans-
actions in a replicated database. Three-phase commit [17]
overcomes some of the availability problems of 2PC,
paying the price of an additional communication round.
Paxos [18], [19] is a very robust algorithm for benign
fault-tolerant replication and is described in Section 3.

Replication with Byzantine Faults: The first practical
Byzantine fault-tolerant replication protocol was Castro
and Liskov’s BFT [4], which is described in Section 3. Yin
et al. [20] propose separating the agreement component
that orders requests from the execution component that
processes requests, which allows utilization of the same
agreement component for many different replication
tasks and reduces the number of execution replicas to
2f + 1. Martin and Alvisi [21] recently introduced a
two-round Byzantine consensus algorithm, which uses
5f + 1 servers in order to overcome f faults. This
approach trades lower availability (4f + 1 out of 5f + 1
connected servers are required, instead of 2f + 1 out
of 3f + 1 as in BFT), for increased performance. The
solution is appealing for local area networks with high
connectivity. While we considered using it within the
sites in our architecture, we feel the increased hardware
cost outweighs the benefit of using one less intra-site
round. The ShowByz system of Rodrigues et al. [22]
seeks to support a large-scale deployment consisting
of multiple replicated objects. ShowByz modifies BFT
quorums to tolerate a larger fraction of faulty replicas,
reducing the likelihood of any group being compromised
at the expense of protocol liveness. Zyzzyva [23] uses
speculative execution to reduce the cost of Byzantine
fault-tolerant replication when there are no faulty repli-
cas. Since Zyzzyva employs fewer wide area protocol
rounds and has lower message complexity than BFT, we
expect it to perform better than BFT when deployed on
a wide area network. However, since Zyzzyva is a flat
protocol, the leader sends more messages than the leader
site representative in Steward.

Quorum Systems with Byzantine Fault Tolerance: Quo-
rum systems obtain Byzantine fault tolerance by ap-
plying quorum replication methods. Examples of such
systems include Phalanx [24], [25] and Fleet [26], [27].
Fleet provides a distributed repository for Java objects. It
relies on an object replication mechanism that tolerates
Byzantine failures of servers, while supporting benign
clients. Although the approach is relatively scalable with
the number of servers, it suffers from the drawbacks of
flat Byzantine replication solutions. The Q/U protocol
of Abd-El-Malek et al. [28] uses quorum replication
techniques to achieve state machine replication, requir-
ing 5f + 1 servers to tolerate f faults. It can perform
well when write contention is low, but suffers decreased
throughput when concurrent updates are attempted on
the same object.

Alternate Architectures: An alternate hierarchical ap-
proach to scale Byzantine replication to wide area net-
works can be based on having a few trusted nodes that
are assumed to be working under a weaker adversary

model. For example, these trusted nodes may exhibit
crashes and recoveries but not penetrations. A Byzan-
tine replication algorithm in such an environment can
use this knowledge in order to optimize performance.
Correia et al. [29] and Verı́ssimo [30] propose such
a hybrid approach, where synchronous, trusted nodes
provide strong global timing guarantees. Both the hybrid
approach and the approach proposed in this paper can
scale Byzantine replication to wide area networks. The
hybrid approach makes stronger assumptions, while our
approach pays more hardware and computational costs.

3 BACKGROUND

Our work requires concepts from fault tolerance, Byzan-
tine fault tolerance, and threshold cryptography. To facil-
itate the presentation of our protocol, Steward, we first
provide an overview of three representative works in
these areas: Paxos, BFT, and RSA threshold signatures.

Paxos: Paxos [18], [19] is a well-known fault-tolerant
protocol that allows a set of distributed servers, ex-
changing messages via asynchronous communication, to
totally order client requests in the benign-fault, crash-
recovery model. Paxos uses an elected leader to co-
ordinate the agreement protocol. If the leader crashes
or becomes unreachable, the other servers elect a new
leader; a view change occurs, allowing progress to (safely)
resume in the new view under the reign of the new
leader. Paxos requires at least 2f + 1 servers to tolerate
f faulty servers. Since servers are not Byzantine, only a
single reply needs to be delivered to the client.

In the common case, in which a single leader exists
and can communicate with a majority of servers, Paxos
uses two asynchronous communication rounds to glob-
ally order client updates. In the first round, the leader
assigns a sequence number to a client update and sends
a Proposal message containing this assignment to the rest
of the servers. In the second round, any server receiving
the Proposal sends an Accept message, acknowledging
the Proposal, to the rest of the servers. When a server
receives a majority of matching Accept messages – in-
dicating that a majority of servers have accepted the
Proposal – it orders the corresponding update.

BFT: The BFT [4] protocol addresses the problem of
replication in the Byzantine model where a number of
servers can exhibit arbitrary behavior. Similar to Paxos,
BFT uses an elected leader to coordinate the protocol and
proceeds through a series of views. BFT extends Paxos
into the Byzantine environment by using an additional
communication round in the common case to ensure
consistency both in and across views and by construct-
ing strong majorities in each round of the protocol.
Specifically, BFT uses a flat architecture and requires
acknowledgments from 2f + 1 out of 3f + 1 servers to
mask the behavior of f Byzantine servers. A client must
wait for f + 1 identical responses to be guaranteed that
at least one correct server assented to the returned value.

In the common case, BFT uses three communication
rounds. In the first round, the leader assigns a sequence
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number to a client update and proposes this assignment
to the rest of the servers by broadcasting a Pre-prepare
message. In the second round, a server accepts the pro-
posed assignment by broadcasting an acknowledgment,
Prepare. When a server collects a Prepare Certificate (i.e., it
receives the Pre-Prepare and 2f Prepare messages with
the same view number and sequence number as the Pre-
prepare), it begins the third round by broadcasting a
Commit message. A server commits the corresponding up-
date when it receives 2f +1 matching commit messages.

Threshold digital signatures: Threshold cryptography
[31] distributes trust among a group of participants to
protect information (e.g., threshold secret sharing [32])
or computation (e.g., threshold digital signatures [33]).
A (k, n) threshold digital signature scheme allows a set
of servers to generate a digital signature as a single
logical entity despite k − 1 Byzantine faults. It divides a
private key into n shares, each owned by a server. Each
server uses its key share to generate a partial signature
on a message m and sends the partial signature to a
combiner server, which combines the partial signatures
into a threshold signature on m. The threshold signature,
which is verified using the public key corresponding to
the divided private key, is only valid if it is the result of
combining k valid partial signatures on m.

Shoup [33] proposed a practical threshold digital
signature scheme that allows participants to generate
threshold signatures based on the standard RSA [34]
digital signature. The scheme provides verifiable secret
sharing [35], which allows participants to verify that the
partial signatures contributed by other participants are
valid (i.e., they were generated with a share from the
initial key split).

4 SYSTEM MODEL

Servers are implemented as deterministic state machines
[36], [37]. All correct servers begin in the same initial
state and transition between states by applying updates
as they are ordered. The next state is completely deter-
mined by the current state and the next update to be
applied.

We assume a Byzantine fault model. Servers are either
correct or faulty. Correct servers do not crash. Faulty
servers may behave arbitrarily. Communication is asyn-
chronous. Messages can be delayed, lost, or duplicated.
Messages that do arrive are not corrupted.

Servers are organized into wide area sites, each having
a unique identifier. Each server belongs to one site and
has a unique identifier within that site. The network
may partition into multiple disjoint components, each
containing one or more sites. During a partition, servers
from sites in different components are unable to commu-
nicate with each other. Components may subsequently
re-merge. Each site Si has at least 3 ∗ (fi) + 1 servers,
where fi is the maximum number of servers that may
be faulty within Si. For simplicity, we assume in what
follows that in each site there are at most f faulty servers.
Clients are distinguished by unique identifiers.

We employ digital signatures, and we make use of
a cryptographic hash function to compute message di-
gests. Client updates are properly authenticated and
protected against modifications. We assume that all ad-
versaries, including faulty servers, are computationally
bounded such that they cannot subvert these crypto-
graphic mechanisms. We also use a (2f+1, 3f+1) thresh-
old digital signature scheme. Each site has a public key,
and each server receives a share with the corresponding
proof that can be used to demonstrate the validity of
the server’s partial signatures. We assume that threshold
signatures are unforgeable without knowing 2f + 1 or
more shares.

5 SERVICE PROPERTIES

Our protocol assigns global, monotonically increasing
sequence numbers to updates, to establish a global, total
order. Below we define the safety and liveness properties
of the Steward protocol. We say that:

• a client proposes an update when the client sends the
update to a server in the local site, and the server
receives it.

• a server executes an update with sequence number i
when it applies the update to its state machine. A
server executes update i only after having executed
all updates with a lower sequence number in the
global total order.

• two servers are connected or a client and server are con-
nected if any message that is sent between them will
arrive in a bounded time. The protocol participants
need not know this bound beforehand.

• two sites are connected if every correct server in one
site is connected to every correct server in the other
site.

• a client is connected to a site if it can communicate
with all servers in that site.

We define the following two safety conditions:

DEFINITION 5.1: S1 - SAFETY: If two correct servers
execute the ith update, then these updates are identical.

DEFINITION 5.2: S2 - VALIDITY: Only an update that
was proposed by a client may be executed.

Read-only queries can be handled within a client’s
local site and provide one-copy serializability semantics
[2]. Alternatively, a client can specify that its query
should be linearizable [3], in which case replies are
collected from a majority of wide area sites.

Since no asynchronous Byzantine replication protocol
can always be both safe and live [38], we provide
liveness under certain synchrony conditions. We intro-
duce the following terminology to encapsulate these
synchrony conditions and our progress metric:

1) A site is stable with respect to time T if there exists
a set, S, of 2f +1 servers within the site, where, for
all times T ′ > T , the members of S are (i) correct
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and (ii) connected. We call the members of S stable
servers.

2) The system is stable with respect to time T if there
exists a set, S, of a majority of sites, where, for
all times T ′ > T , the sites in S are (i) stable with
respect to T and (ii) connected. We call the sites in
S the stable sites.

3) Global progress occurs when some stable server
executes an update.

We now define our liveness property:

DEFINITION 5.3: L1 - GLOBAL LIVENESS: If the sys-
tem is stable with respect to time T , then if, after time
T , a stable server receives an update which it has not
executed, then global progress eventually occurs.

6 PROTOCOL DESCRIPTION

Steward leverages a hierarchical architecture to scale
Byzantine replication to the high-latency, low-bandwidth
links characteristic of wide area networks. Instead
of running a single, relatively costly Byzantine fault-
tolerant protocol among all servers in the system, Steward
runs a more lightweight benign fault-tolerant protocol
among all sites in the system, which reduces the number
of messages and communication rounds on the wide
area network compared to a flat Byzantine solution.

Steward’s hierarchical architecture results in two levels
of protocols: global and local. The global, Paxos-like
protocol is run among wide area sites. Since each site
consists of a set of potentially malicious servers (instead
of a single trusted participant, as Paxos assumes), Stew-
ard employs several intra-site Byzantine fault-tolerant
protocols to mask the effects of malicious behavior at
the local level. Servers within a site agree upon the
contents of messages to be used by the global protocol
and generate a threshold signature for each message,
preventing a malicious server from misrepresenting the
site’s decision and confining malicious behavior to the
local site. In this way, each site emulates the behavior of
a correct Paxos participant in the global protocol.

Similar to the elected coordinator scheme used in BFT,
the local protocols in Steward are run in the context of a
local view, with one server, the site representative, serving
as the coordinator of a given view. Besides coordinating
the local agreement and threshold-signing protocols, the
representative (1) disseminates messages in the global
protocol originating from the local site to the other site
representatives and (2) receives global messages and
distributes them to the local servers. If the representative
is suspected to be faulty, the other servers in the site run
a local view change protocol to replace the representative
and install a new view.

While Paxos uses an elected leader server to coordi-
nate the protocol, Steward uses an elected leader site to
coordinate the global protocol; the global protocol runs
in the context of a global view, with one leader site in
charge of each view. If the leader site is partitioned

away, the non-leader sites run a global view change
protocol to elect a new one and install a new global
view. The representative of the leader site drives the
global protocol by invoking the local protocols needed to
construct the messages sent over the wide area network.

In the remainder of this section, we present the local
and global protocols that Steward uses to totally order
client updates. We first describe the data structures used
by our protocols. We then present the common case
operation of Steward, followed by the view change
protocols, which are run when failures occur. We then
present the timeout mechanisms that Steward uses to
ensure liveness. Due to space limitations, we include
pseudocode associated with normal-case operation only.
Complete pseudocode can be found in Appendix A.

6.1 Data Structures

Each server maintains separate variables for the global,
Paxos-like protocol and the local, intra-site, Byzantine
fault-tolerant protocols. Within the global context, a
server maintains the state of its current global view and
a Global History, reflecting the status of those updates it
has globally ordered or is attempting to globally order.
Within the local context, a server maintains the state
of its current local view. In addition, each server at
the leader site maintains a Local History, reflecting the
status of those updates for which it has constructed, or
is attempting to construct, a Proposal. Upon receiving
a message, a server first runs a validity check on the
message to ensure that it contains a valid RSA signature
and does not originate from a server known to be faulty.
If a message is valid, it can be applied to the server’s
data structures provided it does not conflict with any
data contained therein.

6.2 The Common Case

In this section, we trace the flow of an update through
the system as it is globally ordered during common case
operation (i.e., when no leader site or site representative
election occurs). The common case makes use of two
local, intra-site protocols: THRESHOLD-SIGN (Fig. 1) and
ASSIGN-SEQUENCE (Fig. 2), which we describe below.
Pseudocode for the global ordering protocol (ASSIGN-
GLOBAL-ORDER) is listed in Fig. 3.

The common case works as follows:
1) A client sends an update to a server in its local

site. The update is uniquely identified by a pair
consisting of the client’s identifier and a client-
generated logical timestamp. A correct client pro-
poses an update with timestamp i + 1 only after
it receives a reply for an update with timestamp
i. The client’s local server forwards the update to
the local representative, which forwards the update
to the representative of the leader site. If the client
does not receive a reply within its timeout period,
it broadcasts the update to all servers in its site.
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THRESHOLD-SIGN(Data_s data, int server_id):
A1. Partial_Sig ← GENERATE_PARTIAL_SIG(data, server_id)
A2. Local Broadcast: Partial_Sig

B1. Upon receiving a set, PSig_Set, of 2f+1 Partial_Sigs:
B2. signature ← COMBINE(PSig_Set)
B3. if VERIFY(signature)
B4. return signature
B5. else
B6. for each S in PSig_Set
B7. if NOT VERIFY(S)
B8. REMOVE(S, PSig_Set)
B9. ADD(S.server_id, Corrupted_Servers_List)
B9. Corrupted_Server ← CORRUPTED(S)
B10. Local Broadcast: Corrupted_Server
B11. Wait for more Partial_Sig messages

Fig. 1: THRESHOLD-SIGN Protocol, used to generate a thresh-
old signature on a message. The message can then be used in
a global protocol.

ASSIGN-SEQUENCE(Update u):
A1. Upon invoking:
A2. Local Broadcast: Pre-Prepare(gv, lv, Global_seq, u)
A3. Global_seq++

B1. Upon receiving Pre-Prepare(gv, lv, seq, u):
B2. Apply Pre-Prepare to Local_History
B3. Local Broadcast: Prepare(gv, lv, seq, Digest(u))

C1. Upon receiving Prepare(gv, lv, seq, digest):
C2. Apply Prepare to Local_History
C3. if Prepare_Certificate_Ready(seq)
C4. pc ← Local_History[seq].Prepare_Certificate
C5. pre-prepare ← pc.Pre-Prepare
C6. unsigned_prop ← ConstructProposal(pre-prepare)
C7. invoke THRESHOLD-SIGN(unsigned_prop, Server_id)

D1. Upon THRESHOLD-SIGN returning signed_proposal:
D2. Apply signed_proposal to Global_History
D3. Apply signed_proposal to Local_History
D4. return signed_proposal

Fig. 2: ASSIGN-SEQUENCE Protocol, used to bind an update
to a sequence number and create a threshold-signed Proposal.

2) When the representative of the leader site receives
an update, it invokes the ASSIGN-SEQUENCE pro-
tocol to assign a global sequence number to the
update; this assignment is encapsulated in a Pro-
posal message. The site then generates a thresh-
old signature on the constructed Proposal using
THRESHOLD-SIGN, and the representative sends the
signed Proposal to the representatives of all other
sites for global ordering.

3) When a representative receives a signed Proposal,
it forwards this Proposal to the servers in its site.
Upon receiving a Proposal, a server constructs a
site acknowledgment (i.e., an Accept message) and
invokes THRESHOLD-SIGN on this message. The
representative combines the partial signatures and
then sends the resulting threshold-signed Accept
message to the representatives of the other sites.

4) The representative of a site forwards the incoming
Accept messages to the local servers. A server
globally orders the update when it receives �S/2�
Accept messages from distinct sites (where S is the
number of sites) and the corresponding Proposal.
The server at the client’s local site that originally
received the update sends a reply back to the client.

We now highlight the details of the THRESHOLD-SIGN
and ASSIGN-SEQUENCE protocols.

Threshold-Sign: The THRESHOLD-SIGN intra-site pro-

ASSIGN-GLOBAL-ORDER():
A1. Upon receiving or executing an update, or becoming

globally or locally constrained:
A2. if representative of leader site
A3. if (globally_constrained and locally_constrained

and In_Window(Global_seq))
A4. u ← Get_Next_To_Propose()
A5. if (u �= NULL)
A6. invoke ASSIGN-SEQUENCE(u)

B1. Upon ASSIGN-SEQUENCE returning Proposal:
B2. SEND to all sites: Proposal

C1. Upon receiving Proposal(site_id, gv, lv, seq, u):
C2. Apply Proposal to Global_History
C3. if representative
C4. Local Broadcast: Proposal
C5. unsigned_accept ← ConstructAccept(Proposal)
C6. invoke THRESHOLD-SIGN(unsigned_accept, Server_id)

D1. Upon THRESHOLD-SIGN returning signed_accept:
D2. Apply signed_accept to Global_History
D3. if representative
D4. SEND to all sites: signed_accept

E1. Upon receiving Accept(site_id, gv, lv, seq, Digest(u)):
E2. Apply Accept to Global_History
E3. if representative
E4. Local Broadcast: Accept
E5. if Globally_Ordered_Ready(seq)
E6. global_ord_update ← ConstructOrderedUpdate(seq)
E7. Apply global_ord_update to Global_History

Fig. 3: ASSIGN-GLOBAL-ORDER Protocol. The protocol runs
among all sites and is similar to Paxos.

tocol (Fig. 1) generates a (2f +1, 3f +1) threshold signa-
ture on a given message.1 Upon invoking the protocol,
a server generates a Partial Sig message, containing a
partial signature on the message to be signed and a
verification proof that other servers can use to confirm
that the partial signature was created using a valid share.
The Partial Sig message is broadcast within the site.
Upon receiving 2f+1 partial signatures on a message, a
server combines the partial signatures into a threshold
signature on that message, which is then verified using
the site’s public key. If the signature verification fails, one
or more partial signatures used in the combination were
invalid, in which case the verification proofs provided
with the partial signatures are used to identify incorrect
shares, and the servers that sent these incorrect shares
are classified as malicious. Further messages from the
corrupted servers are ignored, and the proof of corrup-
tion (the invalid Partial Sig message) is broadcast to the
other servers in the site.

Assign-Sequence: The ASSIGN-SEQUENCE local pro-
tocol (Fig. 2) is used in the leader site to construct
a Proposal message. The protocol takes as input an
update that was returned by the Get Next To Propose
procedure, which is invoked by the representative of the
leader site during ASSIGN-GLOBAL-ORDER (Fig. 3, line
A4). Get Next To Propose considers the next sequence
number for which an update should be ordered and
returns either (1) an update that has already been bound
to that sequence number, or (2) an update that is not
bound to any sequence number. This ensures that the
constructed Proposal cannot be used to violate safety
and, if globally ordered, will result in global progress.

1. We could use an (f + 1, 3f + 1) threshold signature at the cost of
an additional round in ASSIGN-SEQUENCE.
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ASSIGN-SEQUENCE consists of three rounds. The first
two are similar to the corresponding rounds of BFT, and
the third round consists of an invocation of THRESHOLD-
SIGN. During the first round, the representative binds
an update, u, to a sequence number, seq, by creating
and sending a Pre-Prepare(gv, lv, seq, u) message, where
gv and lv are the current global and local views, re-
spectively. A Pre-Prepare causes a conflict if either a
binding (seq, u′) or (seq′, u) exists in a server’s data
structures. When a non-representative receives a Pre-
Prepare that does not cause a conflict, it broadcasts
a matching Prepare(gv, lv, seq, Digest(u)) message. At
the end of the second round, when a server receives a
Pre-Prepare and 2f matching Prepare messages for the
same views, sequence number, and update (i.e., when
it collects a Prepare Certificate), it invokes THRESHOLD-
SIGN on a Proposal(site id, gv, lv, seq, u). If there are
2f +1 correct, connected servers in the site, THRESHOLD-
SIGN returns a threshold-signed Proposal to all servers.

6.3 View Changes

Several types of failure may occur during system execu-
tion, such as the corruption of a site representative or the
partitioning away of the leader site. Such failures require
delicate handling to preserve safety and liveness.

To ensure that the system can make progress de-
spite server or network failures, Steward uses timeout-
triggered leader election protocols at both the local and
global levels of the hierarchy to select new protocol
coordinators. Each server maintains two timers, Local T
and Global T, which expire if the server does not execute
a new update (i.e., make global progress) within the local
or global timeout period. When the Local T timers of
2f + 1 servers within a site expire, the servers replace
the current representative. Similarly, when, in a majority
of sites, the Global T timers of 2f+1 local servers expire,
the sites replace the current leader site.

While the leader election protocols guarantee progress
if sufficient synchrony and connectivity exist, Steward
uses view change protocols at both levels of the hierar-
chy to ensure safe progress. The presence of benign or
malicious failures introduces a window of uncertainty
with respect to pending decisions that may (or may not)
have been made in previous views. For example, the new
coordinator may not be able to definitively determine
if some server globally ordered an update for a given
sequence number. However, our view change protocols
guarantee that if any server globally ordered an update
for that sequence number in a previous view, the new
coordinator will collect sufficient information to ensure
that it respects the established binding in the new view.

Steward uses a constraining mechanism to enforce
this behavior. Before participating in the global order-
ing protocol, a correct server must become both lo-
cally constrained and globally constrained by completing
the LOCAL-VIEW-CHANGE and GLOBAL-VIEW-CHANGE
protocols. The local constraints ensure continuity across

local views (when the site representative changes), and
the global constraints ensure continuity across global
views (when the leader site changes). Since a faulty
leader site representative may ignore the constraints
imposed by previous views, all servers in the leader
site become constrained, preventing a faulty server from
causing them to act in an inconsistent way.

We now provide relevant details of our leader election
and view change protocols. We focus primarily on the
function of each protocol in ensuring safety and liveness,
rather than on the inner-workings of each protocol.

Leader Election: Steward uses two Byzantine fault-
tolerant leader election protocols, one in each level of the
hierarchy. Each site runs the LOCAL-VIEW-CHANGE pro-
tocol to elect its representative, and the system runs the
GLOBAL-LEADER-ELECTION protocol to elect the leader
site. Both protocols provide two important properties
necessary for liveness: If the system is stable and does
not make global progress, (1) views are incremented
consecutively, and (2) stable servers remain in each view
for approximately one timeout period. These properties
allow stable protocol coordinators to remain in power
long enough for global progress to be made.

Local View Changes: Since the sequencing of Pro-
posals occurs at the leader site (using the ASSIGN-
SEQUENCE local protocol), replacing the representative
of the leader site requires a Byzantine fault-tolerant
reconciliation protocol to preserve the consistency of
the sequencing. Steward uses the CONSTRUCT-LOCAL-
CONSTRAINT local protocol for this purpose. As a result
of the protocol, servers have enough information about
pending Proposals to preserve safety in the new local
view. Specifically, it prevents two conflicting Proposals,
P1(gv, lv, seq, u) and P2(gv, lv, seq, u′), with u �= u′, from
being constructed in the same global view.

Global View Changes: The GLOBAL-VIEW-CHANGE
protocol is triggered after a leader site election. It
makes use of two local protocols, CONSTRUCT-ARU and
CONSTRUCT-GLOBAL-CONSTRAINT, used at the leader
site and non-leader sites, respectively. The leader site
representative invokes CONSTRUCT-ARU, which gener-
ates an Aru Message, containing the sequence num-
ber up to which at least f + 1 correct servers in
the leader site have globally ordered all previous
updates. The representative sends the Aru Message
to all other site representatives. Upon receiving this
message, a non-leader site representative invokes
CONSTRUCT-GLOBAL-CONSTRAINT, which generates a
Global Constraint Message reflecting the state of the site’s
knowledge above the sequence number contained in
the Aru Message. Servers in the leader site use the
Global Constraint messages from a majority of sites to
become globally constrained, which restricts the Proposals
they will generate in the new view to preserve safety.

6.4 Timeouts

Steward uses timeouts to detect failures. Our protocols
do not assume synchronized clocks; however, we do
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assume that the drift of the clocks at different servers
is small. This assumption is valid considering today’s
technology. If a server does not execute updates, a local
and, eventually, a global timeout will occur. These time-
outs cause the server to “assume” that the current local
and/or global coordinator has failed. Accordingly, the
server attempts to elect a new local/global coordinator
by suggesting new views. Intuitively, coordinators are
elected for a reign, during which each server expects to
make progress. If a server does not make progress, its
Local T timer expires, and it attempts to elect a new
representative. Similarly, if a server’s Global T timer
expires, it attempts to elect a new leader site. To pro-
vide liveness, Steward changes coordinators using three
timeout values, which cause the coordinators of the
global and local protocols to be elected at different rates.
This guarantees that, during each global view, correct
representatives at the leader site can communicate with
correct representatives at all stable non-leader sites. We
now describe the three timeouts.

Non-Leader Site Local Timeout (T1): Local T is set to
this timeout at servers in non-leader sites. When Local T
expires at all stable servers in a site, they preinstall a
new local view. T1 must be long enough for servers in
the non-leader site to construct Global Constraint mes-
sages, which requires at least enough time to complete
THRESHOLD-SIGN.

Leader Site Local Timeout (T2): Local T is set to
this timeout at servers in the leader site. T2 must be
long enough to allow the representative to communicate
with all stable sites. Observe that all non-leader sites
do not need to have correct representatives at the same
time; Steward makes progress as long as each leader site
representative can communicate with at least one correct
server at each stable non-leader site. We accomplish this
by choosing T1 and T2 so that, during the reign of
a representative at the leader site, f + 1 servers reign
for complete terms at each non-leader site. The reader
can think of the relationship between the timeouts as
follows: The time during which a server is representative
at the leader site overlaps with the time that f +1 servers
are representatives at the non-leader sites. Therefore, we
require that T 2 ≥ (f+2)∗T 1. The factor f+2 accounts for
the possibility that Local T is already running at some
of the non-leader-site servers when the leader site elects
a new representative.

Global Timeout (T3): Global T is set to this timeout at
all servers, regardless of whether they are in the leader
site. At least two correct representatives in the leader
site must serve complete terms during each global view.
Thus, we require that T 3 ≥ (f+3)∗T 2. From the relation-
ship between T1 and T2, each of these representatives
will be able to communicate with a correct representative
at each stable site. If the timeouts are sufficiently long
and the system is stable, the first correct server to serve
a full reign as leader site representative will complete
GLOBAL-VIEW-CHANGE. The second correct server will
be able to globally order and execute a new update.

We compute our timeout values based on the global
view. If the system is stable, all stable servers will move
to the same global view. Timeouts T1, T2, and T3 are
deterministic functions of the global view, guaranteeing
that the relationships described above are met at every
stable server. Timeouts double every S global views,
where S is the number of sites. Thus, if there is a
time after which message delays do not increase, then
our timeouts eventually grow long enough for global
progress to be made. We note that, when failures occur,
Steward may require more time than flat Byzantine fault-
tolerant replication protocols to reach a configuration
where progress will occur. The global timeout must be
large enough so that a correct leader site representa-
tive will complete GLOBAL-VIEW-CHANGE, which may
require waiting for several local view changes to com-
plete. In contrast, flat protocols do not incur this delay.
However, Steward’s hierarchical architecture yields an
O(S) wide area message complexity for view change
messages, compared to O(N) for flat architectures.

7 PERFORMANCE EVALUATION

To evaluate the performance of our hierarchical architec-
ture, we implemented a complete prototype of our pro-
tocol including all necessary communication and crypto-
graphic functionality. We focus only on the networking
and cryptographic aspects of our protocols and do not
consider disk writes.

Testbed and Network Setup: We selected a network
topology consisting of 5 wide area sites and assumed at
most 5 Byzantine faults in each site, in order to quantify
the performance of our system in a realistic scenario.
This requires 16 replicated servers in each site.

Our experimental testbed consists of a cluster with
twenty 3.2 GHz, 64-bit Intel Xeon computers. Each
computer can compute a 1024-bit RSA signature in 1.3
ms and verify it in 0.07 ms. For n=16, k=11, 1024-bit
threshold cryptography which we use for these experi-
ments, a computer can compute a partial signature and
verification proof in 3.9 ms and combine the partial
signatures in 5.6 ms. The leader site was deployed on
16 machines, and the other 4 sites were emulated by
one computer each. An emulating computer performed
the role of a representative of a complete 16 server site.
Thus, our testbed was equivalent to an 80 node system
distributed across 5 sites. Upon receiving a message, the
emulating computers busy-waited for the time it took a
16 server site to handle that packet and reply to it, in-
cluding intra-site communication and computation. We
determined busy-wait times for each type of packet by
benchmarking individual protocols on a fully deployed,
16 server site. We used the Spines [39], [40] messaging
system to emulate latency and throughput constraints
on the wide area links.

We compared the performance results of the above
system with those of the Castro-Liskov implementation
of BFT [4] on the same network setup with five sites,
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run on the same cluster. Instead of using 16 servers in
each site, for BFT we used a total of 16 servers across
the entire network. This allows for up to 5 Byzantine
failures in the entire network for BFT, instead of up to
5 Byzantine failures in each site for Steward. Since BFT
is a flat solution where there is no correlation between
faults and the sites in which they can occur, we believe
this comparison is fair. We distributed the BFT servers
such that four sites contain 3 servers each, and one site
contains 4 servers. All the write updates and read-only
queries in our experiments carried a payload of 200
bytes, representing a common SQL statement.

Our protocols use RSA signatures for authentication.
Although our ASSIGN-SEQUENCE protocol can use vec-
tors of MACs for authentication (as BFT can), the benefit
of using MACs compared to signatures is limited be-
cause the latency for global ordering is dominated by the

wide area network latency. In addition, digital signatures
provide non-repudiation, which can be used to detect
malicious servers.

In order to support our claim that our results reflect
fundamental differences between the Steward and BFT
protocols, and not differences in their implementations,
we confirmed that BFT’s performance matched our sim-
ilar intra-site agreement protocol, ASSIGN-SEQUENCE.
Since BFT performed slightly better than ASSIGN-
SEQUENCE, we attribute Steward’s performance advan-
tage over BFT to its hierarchical architecture and re-
sultant wide area message savings. Note that in our
five-site test configuration, BFT sends over twenty times
more wide area messages per update than Steward.
This message savings is consistent with the difference
in performance between Steward and BFT shown in the
experiments that follow.
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Bandwidth Limitation: We first investigate the ben-
efits of the hierarchical architecture in a symmetric con-
figuration with 5 sites, where all sites are connected to
each other with 50 ms latency links (emulating crossing
the continental US).

In the first experiment, clients inject write updates.
Fig. 4 shows how limiting the capacity of wide area links
affects update throughput. As we increase the number
of clients, BFT’s throughput increases at a lower slope
than Steward’s, mainly due to the additional wide area
crossing for each update. Steward can process up to 84
updates/sec in all bandwidth cases, at which point it is
limited by CPU used to compute threshold signatures.
At 10, 5, and 2.5 Mbps, BFT achieves about 58, 26,
and 6 updates/sec, respectively. In each of these cases,
BFT’s throughput is bandwidth limited. We also notice
a reduction in the throughput of BFT as the number of
clients increases. We attribute this to a cascading increase
in message loss, caused by the lack of flow control in
BFT. For the same reason, we were not able to run BFT
with more than 24 clients at 5 Mbps, and 15 clients
at 2.5 Mbps. We believe that adding a client queuing
mechanism would stabilize the performance of BFT to
its maximum achieved throughput.

Fig. 5 shows that Steward’s average update latency
slightly increases with the addition of clients, reaching
190 ms at 15 clients in all bandwidth cases. As client up-
dates start to be queued, latency increases linearly. BFT
exhibits a similar trend at 10 Mbps, where the average
update latency is 336 ms at 15 clients. As the bandwidth
decreases, the update latency increases heavily, reaching
600 ms at 5 Mbps and 5 seconds at 2.5 Mbps, at 15 clients.

Increasing the update size would increase the percent-
age of wide area bandwidth used to carry data in both
Steward and BFT. Since BFT has higher protocol over-
head per update, this would benefit BFT to a larger ex-
tent. However, Steward’s hierarchical architecture would
still result in a higher data throughput, because the
update must only be sent on the wide area O(S) times,
whereas BFT would need to send it O(N) times. A simi-
lar benefit can be achieved by using batching techniques,
which reduces the protocol overhead per update. We
demonstrate the impact of batching in [8].

Adding Read-only Queries: Our hierarchical archi-
tecture enables read-only queries to be answered locally.
To demonstrate this benefit, we conducted an experiment
where 10 clients send random mixes of read-only queries
and write updates. We compared the performance of
Steward (which provides one-copy serializability) and
BFT (which provides linearizability) with 50 ms, 10 Mbps
links, where neither was bandwidth limited. Fig. 6 and
Fig. 7 show the average throughput and latency, re-
spectively, of different mixes of queries and updates.
When clients send only queries, Steward achieves about
2.9 ms per query, with a throughput of over 3,400
queries/sec. Since queries are answered locally, their
latency is dominated by two RSA signatures, one at the
originating client and one at the servers answering the

query. Depending on the mix ratio, Steward performs 2
to 30 times better than BFT.

BFT’s read-only query latency is about 105 ms, and
its throughput is 95 queries/sec. This is expected, as
read-only queries in BFT need to be answered by at
least f + 1 servers, some of which are located across
wide area links. BFT requires at least 2f + 1 servers
in each site to guarantee that it can answer queries
locally. Such a deployment, for 5 faults and 5 sites, would
require at least 55 servers, which would dramatically
increase communication for updates and reduce BFT’s
performance.

Wide Area Scalability: To demonstrate Steward’s
scalability on real networks, we conducted experiments
measuring its performance on two emulated networks
based on real wide area topologies. The first experiment
was run on an emulated Planetlab [41] topology con-
sisting of five sites spanning several continents, and the
second experiment emulated a WAN setup across the
US, called CAIRN [42]. Fig. 8 and Fig. 9 show the average
write update throughput and latency measured in both
experiments, which we now describe.

We first selected five sites on the Planetlab network,
measured the latency and available bandwidth between
all sites, and emulated the network topology on our
cluster. We ran the experiment on our cluster because
Planetlab machines lack sufficient computational power.
The five sites were located in the US (University of Wash-
ington), Brazil (Rio Grande do Sul), Sweden (Swedish
Institute of Computer Science), Korea (KAIST) and Aus-
tralia (Monash University). The network latency varied
between 59 ms (US - Korea) and 289 ms (Brazil - Korea).
Available bandwidth varied between 405 Kbps(Brazil -
Korea) and 1.3 Mbps (US - Australia).

As seen in Fig. 8, Steward is able to achieve its
maximum throughput of 84 updates/sec with 27 clients.
Fig. 9 shows that the latency increases from about 200 ms
for one client to about 360 ms for 30 clients. BFT is
bandwidth limited to about 9 updates/sec. The update
latency is 631 ms for one client and several seconds with
more than 6 clients.

In the next experiment, we emulated the CAIRN
topology using the Spines messaging system, and we ran
Steward and BFT on top of it. The main characteristic of
CAIRN is that East and West Coast sites were connected
through a single 38 ms, 1.86 Mbps link. Since Steward
runs a lightweight fault-tolerant protocol between wide
area sites, we expect it to achieve performance compara-
ble to existing benign fault-tolerant replication protocols.
We compare the performance of our hierarchical Byzan-
tine architecture on the CAIRN topology with that of
two-phase commit protocols [16] on the same topology.

Fig. 8 shows that Steward achieved a throughput of
about 51 updates/sec in our tests, limited mainly by
the bandwidth of the link between the East and West
Coasts in CAIRN. In comparison, an upper bound of
two-phase commit protocols presented in [43] was able
to achieve 76 updates/sec. We believe that the difference
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in performance is caused by the presence of additional
digital signatures in the message headers of Steward,
adding 128 bytes to the 200 byte payload of each update.
Fig. 8 and Fig. 9 show that BFT achieved a maximum
throughput of 2.7 updates/sec and an update latency of
over a second, except when there was a single client.

8 PROOFS OF CORRECTNESS

In this section we first prove that Steward meets the
safety property listed in Section 5. Due to space limi-
tations, we provide a proof roadmap for liveness, and
we state certain lemmas without proof. Complete proofs
are presented in Appendix B.

8.1 Proof of Safety

We prove Safety by showing that two servers cannot
globally order conflicting updates for the same sequence
number. We use two main claims. In the first claim,
we show that any two servers which globally order an
update in the same global view for the same sequence
number will globally order the same update. We show
that a leader site cannot construct conflicting Proposal
messages in the same global view. A conflicting Proposal
has the same sequence number as another Proposal, but
it has a different update. Since globally ordering two
different updates for the same sequence number in the
same global view would require two different Proposals
from the same global view, and since only one Proposal
can be constructed within a global view, all servers that
globally order an update for a given sequence number
in the same global view must order the same update.

In the second claim, we show that any two servers
which globally order an update in different global views
for the same sequence number must order the same up-
date. We show that a leader site from a later global view
cannot construct a Proposal conflicting with one used
by a server in an earlier global view to globally order
an update for that sequence number. Since no Proposals
can be created that conflict with the one that has been
globally ordered, no correct server can globally order a
different update with the same sequence number. Since
a server only executes an update once it has globally
ordered an update for all previous sequence numbers,
two servers executing the ith update must execute the
same update.

We now proceed to prove the first main claim:
Claim 8.1: Let u be the first update globally ordered

by any server for sequence number seq, and let gv be
the global view in which u was globally ordered. Then if
any other server globally orders an update for sequence
number seq in global view gv, it will globally order u.

To prove this claim, we use the following lemma,
which shows that conflicting Proposal messages cannot
be constructed in the same global view:

Lemma 8.1: Let P1(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq. Then no other

Proposal message P2(gv, lv′, seq, u′) for lv′ ≥ lv, with
u′ �= u, can be constructed.

We prove Lemma 8.1 with a series of lemmas. We be-
gin by proving that two servers cannot collect conflicting
Prepare Certificates or construct conflicting Proposals in
the same global and local view.

Lemma 8.2: Let PC1(gv, lv, seq, u) be a Prepare Cer-
tificate collected by some server in leader site S. Then
no server in S can collect a different Prepare Certificate,
PC2(gv, lv, seq, u′), with (u �= u′). Moreover, if some
server in S collects a Proposal P1(gv, lv, seq, u), then no
server in S can construct a Proposal P2(gv, lv, seq, u′),
with (u �= u′).

Proof: We assume that both Prepare Certificates
were collected and show that this leads to a contra-
diction. PC1 contains a Pre-Prepare(gv, lv, seq, u) and
2f Prepare(gv, lv, seq, Digest(u)) messages from distinct
servers. Since there are at most f faulty servers in S,
at least f + 1 of the messages in PC1 were from correct
servers. PC2 contains similar messages, but with u′ in-
stead of u. Since any two sets of 2f+1 messages intersect
on at least one correct server, there exists a correct server
that contributed to both PC1 and PC2. Assume, without
loss of generality, that this server contributed to PC1
first (either by sending the Pre-Prepare message or by
responding to it). If this server was the representative,
it would not have sent the second Pre-Prepare message,
because, from Figure 2 line A3, it increments Global seq
and does not return to seq in this local view. If this server
was a non-representative, it would not have contributed
a Prepare in response to the second Pre-Prepare, since
this would have generated a conflict. Thus, this server
did not contribute to PC2, a contradiction.

To construct Proposal P2, at least f + 1 correct servers
would have had to send partial signatures on P2, af-
ter obtaining a Prepare Certificate PC2 reflecting the
binding of seq to u′ (Figure 2, line C7). Since some
server collected PC1, no server can have collected such
a Prepare Certificate, implying that P2 could not have
been constructed.

We now show that two conflicting Proposal messages
cannot be constructed in the same global view, even
across local view changes. We maintain the following
invariant:

INVARIANT 8.1: Let P(gv, lv, seq, u) be the first
threshold-signed Proposal message constructed by any
server in leader site S for sequence number seq in global
view gv. We say that Invariant 8.1 holds with respect to P
if the following conditions hold in leader site S in global
view gv:

1) There exists a set of at least f + 1 correct servers
with a Prepare Certificate PC(gv, lv′, seq, u) or
a Proposal(gv, lv′, seq, u), for lv′ ≥ lv, in
their Local History[seq] data structure, or a Glob-
ally Ordered Update(gv′, seq, u), for gv′ ≥ gv, in
their Global History[seq] data structure.

2) There does not exist a server with any conflict-
ing Prepare Certificate or Proposal from any view
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(gv, lv′), with lv′ ≥ lv, or a conflicting Glob-
ally Ordered Update from any global view gv′ ≥
gv.

Lemma 8.3 shows that the invariant holds in the first
global and local view in which any Proposal might have
been constructed for a given sequence number. Lemma
8.4 shows that the invariant holds throughout the re-
mainder of the global view, across local view changes.
Finally, Lemma 8.5 shows that if the invariant holds, no
Proposal message conflicting with the first Proposal that
was constructed can be created. In other words, once a
Proposal has been constructed for sequence number seq,
there will always exist a set of at least f+1 correct servers
which maintain and enforce the binding reflected in the
Proposal.

Lemma 8.3: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view
gv. Then when P is constructed, Invariant 8.1 holds with
respect to P, and it holds for the remainder of (gv, lv).

Lemma 8.4: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view gv.
If Invariant 8.1 holds with respect to P at the beginning
of a run of CONSTRUCT-LOCAL-CONSTRAINT, then it is
never violated during the run.

Lemma 8.5: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view gv.
If Invariant 8.1 holds with respect to P at the beginning
of a view (gv, lv′), with lv′ ≥ lv, then it holds throughout
the view.

We can now prove Lemma 8.1:
Proof: By Lemma 8.3, Invariant 8.1 holds with re-

spect to P throughout (gv, lv). By Lemma 8.4, the invari-
ant holds with respect to P during and after CONSTRUCT-
LOCAL-CONSTRAINT. By Lemma 8.5, the invariant holds
at the beginning and end of view (gv, lv + 1). Repeated
applications of Lemma 8.4 and Lemma 8.5 shows that
the invariant always holds in global view gv.

In order for P2 to be constructed, at least f + 1
correct servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Figure 2,
line C3). Since the invariant holds throughout gv, at
least f + 1 correct servers do not collect such a Prepare
Certificate and do not send such a partial signature. This
leaves only 2f servers remaining, which is insufficient
to construct the Proposal. Since a Proposal is needed
to construct a Globally Ordered Update, no conflicting
Globally Ordered Update can be constructed.

Finally, we can prove Claim 8.1:
Proof: To globally order an update u in global

view gv for sequence number seq, a server needs a
Proposal(gv, *, seq, u) message and �S/2� corresponding
Accept messages. By Lemma 8.1, all Proposal messages
constructed in gv are for the same update, which implies
that all servers which globally order an update in gv for
seq globally order the same update.

We now prove the second main claim:
Claim 8.2: Let u be the first update globally ordered

by any server for sequence number seq, and let gv be
the global view in which u was globally ordered. Then if
any other server globally orders an update for sequence
number seq in a global view gv′, with gv′ > gv, it will
globally order u.

We prove Claim 8.2 using Lemma 8.6, which shows
that, once an update has been globally ordered for a
given sequence number, no conflicting Proposal mes-
sages can be generated for that sequence number in any
future global view.

Lemma 8.6: Let u be the first update globally ordered
by any server for sequence number seq with correspond-
ing Proposal P1(gv, lv, seq, u). Then no other Proposal
message P2(gv′, *, seq, u′) for gv′ > gv, with u′ �= u, can
be constructed.

We prove Lemma 8.6 using a series of lemmas, and
we maintain the following invariant:

INVARIANT 8.2: Let u be the first update globally or-
dered by any server for sequence number seq, and let gv
be the global view in which u was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
number seq. We say that Invariant 8.2 holds with respect
to P if the following conditions hold:

1) There exists a majority of sites, each with at
least f + 1 correct servers with a Prepare
Certificate(gv, lv′, seq, u), a Proposal(gv′, *, seq, u),
or a Globally Ordered Update(gv′, seq, u), with
gv′ ≥ gv and lv′ ≥ lv, in its Global History[seq]
data structure.

2) There does not exist, at any site in the sys-
tem, a server with any conflicting Prepare
Certificate(gv′, lv′, seq, u′), Proposal(gv′, *, seq, u′),
or Globally Ordered Update(gv′, seq, u′), with
gv′ ≥ gv, lv′ ≥ lv, and u′ �= u.

Lemma 8.7 shows that Invariant 8.2 holds when the
first update is globally ordered for sequence number seq
and that it holds throughout the view in which it is or-
dered. Lemmas 8.8 and 8.9 then show that the invariant
holds across global view changes. Finally, Lemma 8.10
shows that if Invariant 8.2 holds at the beginning of
a global view after which an update has been globally
ordered, then it holds throughout the view.

Lemma 8.7: Let u be the first update globally ordered
by any server for sequence number seq, and let gv be
the global view in which u was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
number seq. Then when u is globally ordered, Invariant
8.2 holds with respect to P, and it holds for the remainder
of global view gv.

Lemma 8.8: Let u be the first update globally ordered
by any server for sequence number seq, and let gv be
the global view in which u was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
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number seq. Assume Invariant 8.2 holds with respect to
P, and let S be one of the (majority) sites maintained
by the first condition of the invariant. Then if a run of
CONSTRUCT-ARU or CONSTRUCT-GLOBAL-CONSTRAINT
begins at S, the invariant is never violated during the
run.

Lemma 8.9: Let u be the first update globally ordered
by any server for sequence number seq, and let gv be
the global view in which u was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
number seq. Then if Invariant 8.2 holds with respect to
P at the beginning of a run of the Global View Change
protocol, then it is never violated during the run. More-
over, if at least f + 1 correct servers in the leader site
become globally constrained by completing the GLOBAL-
VIEW-CHANGE protocol, the leader site will be in the set
maintained by Condition 1 of Invariant 8.2.

Lemma 8.10: Let u be the first update globally ordered
by any server for sequence number seq, and let gv be
the global view in which gv was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
number seq. Then if Invariant 8.2 holds with respect to P
at the beginning of a global view (gv′, *), with gv′ > gv,
then it holds throughout the view.

Proof: We show that no conflicting Prepare Cer-
tificate, Proposal, or Globally Ordered Update can be
constructed during global view gv that would cause the
invariant to be violated. We assume that a conflicting
Prepare Certificate PC is collected and show that this
leads to a contradiction. This then implies that no con-
flicting Proposals or Globally Ordered Updates can be
constructed.

If PC is collected, then some server col-
lected a Pre-Prepare(gv′, lv, seq, u′) and 2f
Prepare(gv′, lv, seq, Digest(u′)) for some local view
lv and u′ �= u. At least f + 1 of these messages were
from correct servers. Moreover, this implies that at
least f + 1 correct servers were globally constrained.
By Lemma 8.9, since at least f + 1 correct servers
became globally constrained in gv′, the leader site meets
Condition 1 of Invariant 8.2, and it thus has at least
f +1 correct servers with a Prepare Certificate, Proposal,
or Globally Ordered Update binding seq to u. At least
one such server contributed to the construction of PC.
A correct representative would not send such a Pre-
Prepare message because the Get Next To Propose()
routine would return the constrained update. Similarly,
a correct server would see a conflict. Since no server
can collect a conflicting Prepare Certificate, no server
can construct a conflicting Proposal. Thus, no server can
collect a conflicting Globally Ordered Update, since
this would require a conflicting Proposal, and Invariant
8.2 holds throughout global view gv′.

We can now prove Lemma 8.6:
Proof: By Lemma 8.7, Invariant 8.2 holds with re-

spect to P1 throughout global view gv. By Lemma 8.9,

the invariant holds with respect to P1 during and after
the GLOBAL-VIEW-CHANGE protocol. By Lemma 8.10, the
invariant holds at the beginning and end of global view
gv + 1. Repeated application of Lemma 8.9 and Lemma
8.10 shows that the invariant always holds for all global
views gv′ > gv.

In order for P2 to be constructed, at least f + 1
correct servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Figure 2,
line C3). Since the invariant holds, at least f + 1 correct
servers do not collect such a Prepare Certificate and do
not send such a partial signature. This leaves only 2f
servers remaining, which is insufficient to construct the
Proposal.

Finally, we can prove Claim 8.2:
Proof: We assume that two servers globally order

conflicting updates with the same sequence number in
two global views gv and gv′ and show that this leads to
a contradiction.

Without loss of generality, assume that a server glob-
ally orders update u in gv, with gv < gv′. This server
collected a a Proposal(gv, *, seq, u) message and �S/2�
corresponding Accept messages. By Lemma 8.6, any fu-
ture Proposal message for sequence number seq contains
update u, including the Proposal from gv′. This implies
that another server that globally orders an update in gv′

for sequence number seq must do so using the Proposal
containing u, which contradicts the fact that it globally
ordered u′ for sequence number seq.

SAFETY - S1 follows directly from Claims 8.1 and 8.2.

8.2 Proof Roadmap of Global Liveness

We prove Global Liveness by contradiction: we assume
that global progress does not occur and show that, if the
system is stable and a stable server receives an update
which it has not executed, then the system will reach a
state in which some stable server will execute an update
and make global progress.

We first show that, if no global progress occurs, all
stable servers eventually reconcile their global histories
to the maximum sequence number through which any
stable server has executed all updates. By definition, if
any stable server executes an update beyond this point,
global progress will have been made, and we will have
reached a contradiction.

Once the above reconciliation completes, the system
eventually reaches a state in which a stable represen-
tative of a stable leader site remains in power for suf-
ficiently long to be able to complete the global view
change protocol; this is a precondition for globally order-
ing a new update (which would imply global progress).
To prove this, we first show that, eventually, the sta-
ble sites will move through global views together, and
within each stable site, the stable servers will move
through local views together. We then establish the rela-
tionships between the global and local timeouts, which
show that the stable servers will eventually remain in
their views long enough for global progress to be made.
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Finally, we show that a stable representative of a stable
leader site will eventually be able to globally order (and
execute) an update which it has not previously executed.
We first show that the same update cannot be globally
ordered on two different sequence numbers. This implies
that when the representative executes an update, global
progress will occur; no correct server has previously ex-
ecuted the update, since otherwise, by our reconciliation
claim, all stable servers would have eventually executed
the update and global progress would have occurred
(which contradicts our assumption). We then show that
each of the local protocols invoked during the global
ordering protocol will complete in bounded finite time.
Since the duration of our timeouts are a function of
the global view, and stable servers preinstall consecutive
global views, the stable servers will eventually reach
a global view in which a new update can be globally
ordered and executed.

9 CONCLUSION

This paper presented a hierarchical architecture that en-
ables efficient scaling of Byzantine replication to systems
that span multiple wide area sites, each consisting of
several potentially malicious replicas. The architecture
reduces the message complexity on wide area updates,
increasing the system’s scalability. By confining the effect
of any malicious replica to its local site, the architecture
enables the use of a benign fault-tolerant algorithm over
the WAN, increasing system availability. Further increase
in availability and performance is achieved by the ability
to process read-only queries within a site.

We implemented Steward, a fully functional proto-
type that realizes our architecture, and evaluated its
performance over several network topologies. The exper-
imental results show considerable improvement over flat
Byzantine replication algorithms, bringing the perfor-
mance of Byzantine replication closer to existing benign
fault-tolerant replication techniques over WANs.
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